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For H a magnetic Schrödinger operator on a Riemannian manifold,
there are path integral formulae of the form

e−tHψ(x)
Itô integrals

=

∫
{γ(0)=x}

e−St(γ)ψ(γ(t))Dγ ...Feynman-Kac-Itô

e−itHψ(x)
heuristic

=

∫
{γ(0)=x}

e−iSt(γ)ψ(γ(t))Dγ ...Feynman

Are there path integral formulae for e−tH and e−itH in case H is a
magnetic Schrödinger operator on an infinite weighted graph?

These H’s are self-adjoint in Hilbert spaces of square summable
complex-valued functions on infinite countable sets, and arise
naturally in approximations to solid state physics (Harper,...).
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A weighted graph is a triple (X , b,m), such that

X is a countable set (discrete topology)

b : X × X → [0,∞) is a symmetric function with∑
y b(x , y) <∞ for all x ∈ X

m is an arbitrary function m : X → (0,∞).

Interpretation:

X : vertices of a graph

(x , y) ∈ X × X with b(x , y) > 0: weighted and directed edges
of a graph

m(x): weight of a vertex x ∈ X .

Example: The “obvious” graph on the lattice X = Zd is given by
bZd (x , y) = 1 if |x − y |Rd = 1 and bZd (x , y) = 0 else. One can put
weights in the obvious way.
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Define the 1-forms Ω1(X ) on (X , b) to be the antisymmetric maps
θ : {b > 0} → C.

Interpretation: for each x , the only possible tangential directions
are the edges emerging from x . Why antisymmetric θ’s?

Example: Assume X is embedded in a manifold X̃ and that for all
x ∼ y there is a canonically given path γx ,y : [0, 1]→ X̃ from x to
y such that γy ,x = γx ,y (1− •).
 every θ̃ ∈ Ω1(X̃ ) induces a θ ∈ Ω1(X ) via

θ(x , y) :=

∫ 1

0
θ̃(dγx ,y (s)).
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On arbitrary weighted graph (X , b,m) arbitrary, we now fix...

θ ∈ Ω1
R(X ) ... “magnetic potential”

v : X → [0,∞) ... “electric potential”
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On Ω1
c(X ) we define a scalar product (“Riemannian metric”) via

(θ1, θ2)(x) :=
1

m(x)

∑
y

b(x , y)θ1(x , y)θ2(x , y),

and a “covariant derivative” via

∇θ : Cc(X )→ Ω1
c(X ), ∇θf (x , y) := e iθ(x ,y)f (y)− f (x).

Why not iθ(x , y)f (y)− f (x) or so instead?

Lattice gauge theory: in the embedded case, we have to replace
the infinitesimal ∇γ̇x,y (0) with //∇γx,y (δ) for some small δ > 0.

Morally: Lie algebra → Lie group
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We can define a symmetric nonnegative and closable
sesquilinear form in `2(X ,m) via

Qθ,v (ψ1, ψ2) :=
1

2

∑
x

(∇θψ1,∇θψ2)(x)m(x) +
∑
x

v(x)ψ1(x)ψ2(x)m(x)

=
1

2

∑
x

∑
y

b(x , y)
(
ψ(x)− e iθ(x ,y)ψ(y)

)(
ψ(x)− e iθ(x ,y)ψ(y)

)
+
∑
x

v(x)ψ1(x)ψ2(x)m(x), ψ1, ψ2 ∈ Cc(X ).

 Qθ,v canonically induces a self-adjoint operator Hθ,v ≥ 0 in
`2(X ,m). Formally:

Hθ,vψ(x) =
1

m(x)

∑
y

b(x , y)
(
ψ(x)− e iθ(x ,y)ψ(y)

)
+ v(x)ψ(x).
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Example: Constant magnetic field B(x) ≡ B ∈ R on R2

 induced by the 1-form θ̃B(x) = Bx2dx1 − Bx2dx2 on R2

 with γx ,y : [0, 1]→ R2 the straight line from x to y , define θB
on the standard graph (Z2, bZ2) by

θBψ(x , x ± ej) :=

∫ 1

0
θ̃B(dγx ,x±ej (s)).

 For v : Z2 → R bounded, HθB ,v is bounded in `2(Z2) and can
be calculated explicitely; this is the famous Harper operator
(perturbed by v). The spectral theory of HθB ,v |v=0 is very exotic
(ten martini problem...)
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Let us now collect the probabilistic ingredients of our path integral
formulae for e−tHθ,v and e−itHθ,v ...
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Ω := right-continuous paths γ : [0,∞)→ X having left limits,

with X : [0,∞)× Ω→ X , Xt(γ) := γ(t)

the coordinate process and F the sigma-algebra on Ω generated
by X. Important data:

τW : Ω→ [0,∞] ... first exit time of X from W ⊂ X ,

N : [0,∞)× Ω→ [0,∞] ... Nt := number of jumps of X until t ≥ 0,

τj : Ω→ [0,∞) ... j-th jump time of X, j ∈ N.

Strategy: For each x define a probability measure Px on Ω with
Px{X0 = x} = 1 from H := H0,0, so that H becomes our −∆...
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H = H0,0 is self-adjoint and ≥ 0 in `2(X ,m), so that

∑
y∈X

e−tH(x , y)m(y) ≤ 1 for all t > 0, x ∈ X . (1)

For simplicity we assume equality in (1)  (X , b,m) stochastically
complete.

For every x ∈ X there exists a unique probability measure Px on
(Ω,F ) s.t. for all 0 = t0 < t1 < · · · < tl , Uj ⊂ X , with
δj := tj+1 − tj ,

Px{Xt1 ∈ U1, . . . ,Xtl ∈ Ul}

=
∑

x1,...,xl∈X
e−δ0H(x0, x1) · · · e−δl−1H(xl−1, xl)m(x1) · · ·m(xl).
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Some path properties of X under Px :

(i) Markov (“memoryless”) property w.r.t. F∗

(ii) Px{b(Xτj ,Xτj+1) > 0 for all j ∈ N} = 1

(iii) Px{Nt <∞} = 1, Px{Nt = 0} = e−tdeg(x),

with deg(x) :=
1

m(x)

∑
y∈X

b(x , y) weighted degree function.

 the (Itô-) integral of θ along X:∫ •
0
θ(dXs) : [0,∞)× Ω→ R,

∫ t

0
θ(dXs) :=

Nt∑
j=1

θ(Xτj−1,Xτj ).

 Px -almost surely well-defined by (ii) and (iii).
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Main results: let t ≥ 0, ψ ∈ `2(X ,m), x ∈ X be arbitrary.

Theorem (FKI formula, B. G., M. Keller, M. Schmidt)

One has

e−tHθ,vψ(x) =

∫
e i

∫ t
0 θ(dXs)−

∫ t
0 v(Xs)dsψ(Xt)dPx .

Theorem (Feynman formula; B. G., M. Keller)

If deg is bounded, then one has

e−itHθ,vψ(x)

=

∫
iNt e i

∫ t
0 θ(dXs)−i

∫ t
0 (v(Xs)+deg(Xs))ds+

∫ t
0 deg(Xs)dsψ(Xt)dPx .
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A sketch of proof of the Feynman formula:

First step (local formula): Pick exhaustion X = ∪nWn with
finite subsets Wn ⊂ X . Then:

e−itH
(Wn)
v,θ ψ(x) = Ptψ(x)

:=

∫
{t<τWn}

iNt e i
∫ t
0 θ(dXs)−i

∫ t
0 (v(Xs)+deg(Xs))ds+

∫ t
0 deg(Xs)dsψ(Xt)dPx .

Indeed, Ptψ(x) defines a continuous semigroup in the finite
dimensional Hilbert space `2(Wn,m). It remains to show

˙Ptψ(x)|t=0 = −iH
(Wn)
v ,θ ψ(x)...
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Explanation of ˙Ptψ(x)|t=0 = −iH
(Wn)
v ,θ : one has

H
(Wn)
v ,θ ψ(x) = deg(x)ψ(x) + v(x)ψ(x) + θ-part, x ∈Wn.

Using 1{t<τWn} = 1{Nt=0} + 1{t<τWn ,Nt≥1} Px -a.s., we find

1

t
Ptψ(x)− 1

t
ψ(x)(x)

1

t

∫
{Nt=0}

e−itv(x)−itdeg(x)+tdeg(x)ψ(x)dPx − 1

t
ψ(x) + R(t).

For t → 0+, the difference produces the −i(deg(x) + v(x)) part of

−iH
(Wn)
v ,θ ψ(x), using Px{Nt = 0} = e−tdeg(x).

The remainder R(t) produces −i times the θ-part as t → 0+.
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Feynman-Kac-Itô (FKI) formula and Feynman formula on graphs

Second step (local to global): Take n→∞:

LHS e−itHv,θψ(x)→ e−itH
(Wn)
v,θ ψ(x) by Mosco convergence.

RHS: using 1{t<τWn} → 1 and dominated convergence. Integrable
majorant:∣∣∣1{t<τWn}i

Nt e i
∫ t
0 θ(dXs)−i

∫ t
0 (v(Xs)+deg(Xs))ds+

∫ t
0 deg(Xs)dsψ(Xt)

∣∣∣
≤ e

∫ t
0 deg(Xs)dsψ(Xt),

which corresponds to the nonmagnetic operator H0,−deg by the
well-known Feynman-Kac formula (Trotter+Markov)

e−tH0,−deg |ψ|(x) =

∫
e
∫ t
0 deg(Xs)ds |ψ|(Xt)dPx <∞.
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Remarks, applications and outlook:

i) stochastic completeness and v ≥ 0 can be removed

ii) |e−itHθ,vψ(x)| ≤ e−tH0,−deg |ψ|(x) ... seems completely new

iii) |e−tHθ,vψ(x)| ≤ |e−tH0,v |ψ|(x) ... as expected,

 diamagnetism: inf spec(Hθ,v ) ≥ inf spec(H0,v ).

Good for the existence of the world that we chose e iθ and not iθ!

iv) path integral formula for the composition e itHθ,v e−itHθ′,v′ .
Scattering?

v) Physical interpretation of iNt in the Feynman formula?
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Thank you for listening!
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	Introduction
	Foundations of magnetic Schrödinger operators on graphs
	Stochastic processes for magnetic Schrödinger operators on graphs
	Feynman-Kac-Itô (FKI) formula and Feynman formula on graphs

