Brownian Motion and the Feynman-Kac Formula on Riemannian manifolds, TU Chemnitz, WS 2021/2022, Prof. Dr. Batu Güneysu, Exercise sheet 6

1. Let $h \in W^{1,2}(M)$. Show that there exists $v \in W^{1,2}_0(M)$ with $h \leq v$, if and only if one has $h_+ \in W^{1,2}_0(M)$.

2. Define the hyperboloid

 $H^m := \left\{ (x', x^{m+1}) : x^{m+1} > 0, (x^{m+1})^2 - (((x')^1)^2 + \dots ((x')^m)^2) = 1 \right\} \subset \mathbb{R}^{m+1},$

where we have writen the points of \mathbb{R}^{m+1} as (x', x^{m+1}) with $x' \in \mathbb{R}^m$. Note that H^m is an *m*-dimensional submanifold.

Define a smooth section of $T^*\mathbb{R}^{m+1} \otimes T^*\mathbb{R}^{m+1}$ by

$$g_{\text{Mink}} := dx^1 \otimes dx^1 + \dots + dx^m \otimes dx^m - dx^{m+1} \otimes dx^{m+1}.$$

Show that the restriction of g_{Mink} of H^m is a complete Riemannian metric on H.

Remark 1: The Riemannian manifold $\mathbb{H}^m := (H^m, g_{\text{Mink}})$ is called the *Hyperbolic space of dimension* m.

Remark 2: g_{Mink} is not a Riemannian metric on \mathbb{R}^{m+1} (as it is not positive definite), but it is a so called semi-Riemannian metric on \mathbb{R}^{m+1} , called the *Minkowski metric*. The semi-Riemannian manifold ($\mathbb{R}^{m+1}, g_{\text{Mink}}$) plays a crucial role in special relativity.