Brownian Motion and the Feynman-Kac Formula on Riemannian manifolds, WS 2021/2022, Prof. Dr. Batu Güneysu, Exercise sheet 2

Recall that a symmetric operator is called essentially self-adjoint, if its closure (which always exists) is self-adjoint. It is easy to show that a symmetric operator is essentially self-ajoint, if and only if it has precisely one self-adjoint extension (which is then the closure).

Let $U \subset \mathbb{R}^{m}$ be an open connected subset. We consider $-\Delta$ as a symmetric nonnegative operator T_{U} in $L^{2}(U)$ with dense domain of definition $C_{c}^{\infty}(U)$.

1. Show that T_{U} is closable but not closed (and thus not bounded and not self-adjoint). Hint: Show closability by writing down a closed extension, and then calculate the closure explicitly. Remark: this fact is true for any possibly nonsymmetric differential operator with sufficiently smooth coefficients!
2. a) Calculate T_{U}^{*}.
b) Show that there exist self-adjoint extensions of T_{U}.

3 a) Show that if $U=\mathbb{R}^{m}$, then $T_{\mathbb{R}^{m}}$ has precisely one self-adjoint extension T; show that $\sigma(T)=\sigma_{\text {ess }}(T)=[0, \infty)$ (in particular, T has no discrete spectrum).
b) Give an example of a U such that T_{U} has at least two self-adjoint extensions.
c) Give an example of a bounded U and a self-adjoint extension of T_{U} which has a purely discrete spectrum. Remark: We will see later that this is a somewhat generic phanomenon, in the sense that for any bounded U the Dirichlet realization of T_{U} has a purely discrete spectrum.

Upshot: $T_{\mathbb{R}^{m}}$ has precisely one self-ajoint extension (so essential self - adjointness corresponds ${ }^{1}$ to completeness of U) which has a purely essential spectrum. If $U \neq \mathbb{R}^{m}$, then T_{U} has several self-adjoint extensions (in general: infinitely many!). If U is bounded, then self-adjoint extensions of T_{U} typically have a purely discrete spectrum ${ }^{2}$.

[^0]
[^0]: ${ }^{1}$ There exist U 's which are not complete $\left(\Leftrightarrow U \neq \mathbb{R}^{m}\right)$ for which T_{U} is essentially self-adjoint, but this should be condered as pathological!
 ${ }^{2}$ There exist self-adjoint extensions of T_{U} with U bounded whose spectrum is not purely discrete; but this should be considered as pathological.

