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Introduction
CZ(p): Connection to problems 1, 2, 3 and local aspects

CZ(p): Global criteria

For a possibly noncompact smooth Riemannian m-manifold
M ≡ (M, g), consider the following global problems for second
order Sobolev spaces on M, on the Lp-scale, 1 < p <∞:

Problem 1 (denseness): Under which assumptions on M
does one have H2,p

0 (M) = H2,p(M) (without rinj(M) > 0)?

Problem 2 (Poisson’s equation): Under which assumptions
on M does one have the implication

f ∈ Lp(M) ∩ C2(M),∆f ∈ Lp(M)⇒ f ∈ H2,p(M)

(that is, |Hess(f )| ∈ Lp(M))?

Problem 3 (gradient estimate): Under which assumptions
on M does one have an inequality of the form

‖grad(f )‖p ≤ C (‖∆f ‖p + ‖f ‖p) for all f ∈ C∞c (M)?
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Introduction
CZ(p): Connection to problems 1, 2, 3 and local aspects

CZ(p): Global criteria

As we will see in a moment, there is a common inequality behind
these types of problems:

Definition

Let 1 < p <∞. We say that M satisfies the
Lp-Calderón-Zygmund inequality (or in short CZ(p)), if there are
C1 ≥ 0, C2 > 0, such that for all u ∈ C∞c (M) one has

‖Hess (u)‖p ≤ C1 ‖u‖p + C2 ‖∆u‖p . (1)

In Rm, CZ(p) with C1 = 0 follows e.g. from estimates on
singular integral operators that go back to Calderón and
Zygmund (1950’s). Note that in Rm: ‖Hess (u)‖2 = ‖∆u‖2

(“Bochner’s formula”)

In general, CZ(p) depends very sensitively on the curvature
and there has been no systematic treatement so far

CZ(p) always extends automatically from C∞c (M) to H2,p
0 (M)
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CZ(p): Connection to problems 1, 2, 3 and local aspects

CZ(p): Global criteria

What is the precise connection between CZ(p) and the problems 1,
2, 3?
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CZ(p): Global criteria

Definition

a) M is said to admit a sequence (χn) ⊂ C∞c (M) of Laplacian
cut-off functions, if (χn) has the following properties:

(C1) 0 ≤ χn(x) ≤ 1 for all n ∈ N, x ∈ M,

(C2) for all compact K ⊂ M, there is an n0(K ) ∈ N such that for
all n ≥ n0(K ) one has χn |K= 1,

(C3) supx∈M |dχn(x)|x → 0 as n→∞,

(C4) supx∈M |∆χn(x)| → 0 as n→∞.

b) M is said to admit a sequence (χn) ⊂ C∞c (M) of Hessian
cut-off functions, if (χn) has the above properties (C1), (C2),
(C3), and in addition

(C4’) supx∈M |Hess(χn)(x)|x → 0 as n→∞.

(C1) & (C2) & (C3)⇔ completeness;
(C1) & (C2) & (C3) & (C4′) ⇒ (C1) & (C2) & (C3) & (C4)
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CZ(p): Global criteria

Theorem (G.; G. & P.)

a) If M is complete with Ric ≥ 0, then M admits L-C.O.F.’s
b) If M is complete with ‖R‖∞ <∞ (with R the curvature
tensor), then M admits H-C.O.F.’s.

No rinj(M) > 0 required! Proofs are subtle and rely on a highly
nontrivial rigidity result by Cheeger-Colding (1996) for a), and a
smoothing result by B. Chow et. al. (Ricci flow II, 2008) for b).
The connection between #-C.O.F.’s, CZ(p) and problems 1, 2 is
the following elementary result:

Proposition

Assume that M satisfies CZ(p).
a) If M admits L-C.O.F.’s, then H2,p

0 (M) = H2,p(M).
b) Assume that M admits H-C.O.F’s. Then for any u ∈ C2 (M)
with u, |grad(u)| ,∆u ∈ Lp (M), one has |Hess(u)| ∈ Lp (M).
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CZ(p): Global criteria

The key to problem 3 (and many other results in the sequel!) is
the following interpolation result:

Theorem (G. & P.; Coulhon & Duong 2003 for 1 < p ≤ 2)

Assume that either 2 ≤ p <∞, or in case 1 < p < 2 that either M
is complete or a relatively compact open subset of an arbitrary
smooth Riemannian manifold. Then there is a C = C (m, p) > 0
s.t. for all ε > 0, u ∈ C∞c (M) one has the interpolation
inequality

‖grad(u)‖p ≤ Cε−1 ‖u‖p + Cε ‖Hess (u)‖p ,

in particular, under CZ(p) one has the gradient estimate from
problem 3: ‖grad(u)‖p ≤ C (‖∆u‖p + ‖u‖p).

Proof: The 2 ≤ p <∞ case: Apply the divergence theorem to

X := u ·
(
|grad(u)|2 + α

) p−2
2

grad(u), α > 0, and take α→ 0+.
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CZ(p): Global criteria

In what sense do we have CZ(p) locally?
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CZ(p): Global criteria

A Hessian (key-)estimate on balls: Using harmonic coordinates
and an appropriate local elliptic estimate, we get (with rQ,k,α(x)
the Ck,α-harmonic radius at x with Q−1(δij) ≤ (gij) ≤ Q(δij)):

Theorem (G. & P.)

Fix an arbitrary x ∈ M. Then for all 1 < p <∞, all
0 < r < r2,1,1/2(x)/2, and all real numbers D with
infBr2,1,1/2(x)(x) r2,1,1/2(•) ≥ D > 0, there is a

C = C (r , p,m,D) > 0, such that for all u ∈ C∞c (M) one has∥∥∥1Br/2(x)Hess (u)
∥∥∥
p

≤ C
(∥∥1B2r (x)u

∥∥
p

+
∥∥1B2r (x)∆u

∥∥
p

+
∥∥1B2r (x)grad(u)

∥∥
p

)
.

Interpolation gives “qualitatively sharp” CZ(p)’s on balls (first
order terms produces the gradient terms in the proof)

Batu Güneysu Calderón-Zygmund inequality on noncompact Riem. manifolds



Introduction
CZ(p): Connection to problems 1, 2, 3 and local aspects

CZ(p): Global criteria

A Hessian (key-)estimate on balls: Using harmonic coordinates
and an appropriate local elliptic estimate, we get (with rQ,k,α(x)
the Ck,α-harmonic radius at x with Q−1(δij) ≤ (gij) ≤ Q(δij)):

Theorem (G. & P.)

Fix an arbitrary x ∈ M. Then for all 1 < p <∞, all
0 < r < r2,1,1/2(x)/2, and all real numbers D with
infBr2,1,1/2(x)(x) r2,1,1/2(•) ≥ D > 0, there is a

C = C (r , p,m,D) > 0, such that for all u ∈ C∞c (M) one has∥∥∥1Br/2(x)Hess (u)
∥∥∥
p

≤ C
(∥∥1B2r (x)u

∥∥
p

+
∥∥1B2r (x)∆u

∥∥
p

+
∥∥1B2r (x)grad(u)

∥∥
p

)
.

Interpolation gives “qualitatively sharp” CZ(p)’s on balls (first
order terms produces the gradient terms in the proof)
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CZ(p): Global criteria

Theorem (G. & P.)

a) CZ(p) holds on any relatively compact open subset Ω ⊂ M.
Moreover, if Ω ⊂ M is a relatively compact domain with smooth
boundary ∂Ω, then CZ(p) holds in the stronger form
‖Hess (u)‖p ≤ C ‖∆u‖p.
b) Assume that either p ≥ 2 or that 1 < p < 2 and that M is
complete. If there is a relatively compact domain Ω ⊂ M such that
CZ(p) holds on M \ Ω, then CZ(p) also holds on M.

The weak CZ(p) of part a) follows e.g. from the previous Hessian
estimate on balls and interpolation. The strong form follows from
the weak form and the (resulting!) gradient estimate, and elliptic
regularity.
The topological stability from part b) follows from part a) and the
interpolation result: we pick up gradient terms from gluing!
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CZ(p): Global criteria

Which noncompact M’s admit CZ(p)?
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CZ(p): Global criteria

One can give an essentially complete answer for the Hilbert space
case p = 2:

Theorem (G. & P.)

a) Assume that Ric ≥ −C 2. Then CZ(2) holds in the following
“infinitesimal” way: For every ε > 0 and every u ∈ C∞c (M) one has

‖Hess (u)‖2
2 ≤

Cε2

2
‖u‖2

2 +

(
1 +

C 2

2ε2

)
‖∆u‖2

2 .

b) There exists a smooth 2-dimensional, complete Riemannian
manifold N with unbounded curvature, such that CZ(2) fails on N.

Part a) is really just Bochner’s formula (remember the Rm case!):∫
|Hess(u)|2 =

∫
(du,d∆u)−

∫
Ric(grad(u), grad(u)).

Part b) is rather complicated ( parabolic model surfaces).
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CZ(p): Global criteria

A result for arbitrary p, but positive injectivity radius:

Theorem (G. & P.)

Let 1 < p <∞ and assume ‖Ric‖∞ <∞, rinj(M) > 0. Then
there is a C = C (m, p, ‖Ric‖∞ , rinj(M)) > 0 such that for all
u ∈ C∞c (M) one has

‖Hess (u)‖p ≤ C (‖u‖p + ‖∆u‖p).

Idea of proof: By harmonic radius estimates there is a
D = D(m, rinj(M), ‖Ric‖∞) > 0 such that r2,1,1/2(M) ≥ D. Let
r := D/2. By the Hessian estimate on balls we have a
c = c(r , p,m,D) > 0 such that, for all (xi ), all u ∈ C∞c (M),∫

Br/2(xi )
|Hess (u)|p ≤ c

∫
B2r (xi )

(|∆u|p + |grad (u)|p + |u|p).

Take appropriate sequence of points (xi ), sum over i and use
interpolation.
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D = D(m, rinj(M), ‖Ric‖∞) > 0 such that r2,1,1/2(M) ≥ D. Let
r := D/2. By the Hessian estimate on balls we have a
c = c(r , p,m,D) > 0 such that, for all (xi ), all u ∈ C∞c (M),∫

Br/2(xi )
|Hess (u)|p ≤ c

∫
B2r (xi )

(|∆u|p + |grad (u)|p + |u|p).

Take appropriate sequence of points (xi ), sum over i and use
interpolation.
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The latter theorem applies to give:

Theorem

Let f : M → N be an isometric immersion of M into a smooth
complete, simply connected Riemannian manifold N with
−C̃ 2 ≤ SecN ≤ 0. If ‖IIf ‖∞ <∞, then CZ(p) holds on M for
every 1 < p <∞.
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A result for small p, but without positive injectivity radius
assumption

Theorem (G. & P.)

Let 1 < p ≤ 2, and assume that M is complete, that
max(‖R‖∞ , ‖∇R‖∞) <∞, and that there are D ≥ 1, 0 ≤ δ < 2
with the volume growth

vol(Btr (x)) ≤ DtDet
δ+rδvol(Br (x)) for all x ∈ M, r > 0, t ≥ 1.

Then there is a

C = C (m, p, ‖R‖∞ , ‖∇R‖∞ ,D, δ) > 0,

such that for all u ∈ C∞c (M) one has

‖Hess (u)‖p ≤ C (‖u‖p + ‖∆u‖p).

Batu Güneysu Calderón-Zygmund inequality on noncompact Riem. manifolds



Introduction
CZ(p): Connection to problems 1, 2, 3 and local aspects

CZ(p): Global criteria

The proof of the latter result shows a deep connection
between boundedness of covariant Lp-Riesz transforms and
CZ(p): The asserted inequality follows immediately, once we
have ∥∥∥∇(∆1 + a1)−1/2d(∆0 + a1)−1/2u

∥∥∥
p
≤ a2 ‖u‖p .

But
∥∥d(∆0 + a1)−1/2

∥∥
p,p
≤ C (p) for all p is a classical result

by Bakry (1987), and one can use probabilistic heat equation
derivative formula by Thalmaier/F. Y. Wang (2003) for
∇e−t∆1 to estimate

∥∥∇(∆1 + a1)−1/2
∥∥
p,p

for 1 < p ≤ 2
The volume growth assumption is subtle: It is satisfied under
completeness and Ric ≥ 0, but a negative lower bound is not
enough. Indeed, if M is complete with Ric ≥ (−C )(m− 1) for
some C ≥ 0, then one has Gromov’s estimate

vol(Btr (x)) ≤ vol(Br (x))tme(m−1)
√
C(t−1)r for all t > 1, r > 0.

This inequality is sufficient, only if we can pick C = 0!
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have ∥∥∥∇(∆1 + a1)−1/2d(∆0 + a1)−1/2u

∥∥∥
p
≤ a2 ‖u‖p .

But
∥∥d(∆0 + a1)−1/2

∥∥
p,p
≤ C (p) for all p is a classical result

by Bakry (1987), and one can use probabilistic heat equation
derivative formula by Thalmaier/F. Y. Wang (2003) for
∇e−t∆1 to estimate

∥∥∇(∆1 + a1)−1/2
∥∥
p,p

for 1 < p ≤ 2
The volume growth assumption is subtle: It is satisfied under
completeness and Ric ≥ 0, but a negative lower bound is not
enough. Indeed, if M is complete with Ric ≥ (−C )(m− 1) for
some C ≥ 0, then one has Gromov’s estimate

vol(Btr (x)) ≤ vol(Br (x))tme(m−1)
√
C(t−1)r for all t > 1, r > 0.

This inequality is sufficient, only if we can pick C = 0!
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Thank you!
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