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We summarize recent results on stochastic differential equations associated with the

standard model of non-relativistic quantum electrodynamics for an electron in an elec-
trostatic potential interacting with the quantized electromagnetic field. Moreover, we

present a Feynman-Kac formula for the corresponding semi-group – which is new in

case the electron-spin is taken into account – and a new Feynman-Kac formula for an
operator-valued integral kernel of the semi-group. Finally, we announce a proof of the

norm-continuity of the integral kernel.
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1. Introduction

In his famous work on quantum electrodynamics (QED) R. P. Feynman developed

in particular a path integral description for the quantum mechanical dynamics of a

non-relativistic (NR) electron interacting with the quantized (relativistic) electro-

magnetic radiation field.2 It is equally well-known that Feynman’s formalism can

be justified mathematically for various models given by semi-bounded self-adjoint

Hamiltonians, provided that one considers the associated semi-groups instead of

the unitary groups representing the quantum mechanical time evolution. For in-

stance, Feynman-Kac (FK) representations of semi-groups have been extensively

exploited in the study of Schrödinger operators and led to many important – physi-

cally relevant – spectral theoretic results. A natural next step, therefore, is to study

FK representations of the semi-group generated by the Hamiltonian of the stan-

dard model of NRQED which is a Schrödinger operator minimally coupled to the

quantized radiation field.

Employing some ideas from earlier work on polynomial quantum field models

(in particular Ref. 11), FK representations in NRQED have been derived first by
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F. Hiroshima4 in the scalar case, i.e., without electron spin. A formula which takes

spin into account as well has been established more recently by F. Hiroshima and

J. Lőrinczi.6 In both articles the FK formula is derived by means of repeated Trotter

product expansions. In principle it should, however, also be possible to verify and

analyze FK formulas in NRQED by means of a suitable version of stochastic calculus

in Hilbert spaces.9,10 This approach is explored in a recent paper by the present

authors,3 whose main results are summarized in this review. Before we explain its

organization we also mention that various mathematical questions in NRQED (such

as self-adjointness properties, ergodic properties in the scalar case, uniqueness and

localization of ground states, and Gibbs measures associated with ground states)

have already been investigated by means of FK representations before, mainly by

F. Hiroshima and his co-workers. We refer the reader to the monograph Ref. 8 for

an exhaustive exposition of these issues and appropriate references.

The model considered here is explained in Sect. 2. In Sect. 3 we introduce new

representations of FK integrands in NRQED in a form resembling the annihilation-

preservation-creation processes playing a prominent role in quantum stochastic cal-

culus.7 As a crucial merit of the application of the stochastic calculus, the FK inte-

grands are identified as solutions of stochastic differential equations (SDE’s), which

may be exploited in further investigations of NRQED. To the best of our knowl-

edge the analysis of these novel equations is non-standard due to the appearance of

non-deterministic, unbounded, non-commuting operators in their coefficients. Our

main existence and uniqueness theorem for these SDE’s is also stated in Sect. 3.

The final Sect. 4 is devoted to various FK formulas.

2. Definition of the model

The standard model of NRQED for one electron interacting with the quantized

photon field is given by a Hamiltonian acting in the Hilbert space H defined by

H := L2(R3, Ĥ ) =

∫ ⊕
R3

Ĥ dx, with Ĥ := C2 ⊗F .

Here F = ⊕∞n=0F
(n) is the bosonic Fock space modeled over h := L2(R3 ×Z2,dk),

i.e., F (n) is the n-th symmetric tensor power of h; dk denotes the product of the

Lebesgue measure and the counting measure on Z2. We write E [v] := {ζ(h) : h ∈ v}
for the set of exponential vectors corresponding to some subset v ⊂ h, where

ζ(h) :=
(
1, ih, . . . , (n!)−

1/2inh⊗n , . . .
)
∈ F , h ∈ h,

and denote its complex linear hull by C [v] := spanC(E [v]). The symbols a†(f) and

a(f) denote the usual bosonic creation and annihilation operators of a photon state

f ∈ h satisfying the following canonical commutations relations on, e.g., C [h],

[a(f), a(g)] = [a†(f), a†(g)] = 0, [a(f), a†(g)] = 〈f |g〉1F , f, g ∈ h.

The field operator ϕ(f) is defined as the self-adjoint closure of (a†(f) + a(f))�C [h].

For f = (f1, f2, f3) ∈ h3, we write ϕ(f) := (ϕ(f1), ϕ(f2), ϕ(f3)) for short. Finally,
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Γ(T ) denotes the second quantization of a bounded linear or anti-linear operator T

defined on h with norm 6 1.

Let ω(k) := (k2 + µ2)1/2, k ∈ R3, with µ > 0, and let m = (m1,m2,m3) :

R3 → R3 be either the identity map on R3 or zero. Then the differential sec-

ond quantization dΓ(ω) is interpreted as the radiation field energy and dΓ(m) :=

(dΓ(m1),dΓ(m2),dΓ(m3)) is the field momentum operator, in case m(k) = k. We

introduce the following dense subspaces of h,

d := L2
(
R3 × Z2, [1 + (ω + 1

2m
2)2]dk

)
, k := L2

(
R3 × Z2, [

1
ω + (ω + 1

2m
2)2]dk

)
.

If we interpret a Schrödinger operator acting in L2(R3) and dΓ(ω) as operators

in H in the canonical way, then the Hamiltonian of NRQED is a perturbation of

their sum. To explain this more precisely, we introduce the interaction terms

ϕ(G) :=

∫ ⊕
R3

1C2 ⊗ ϕ(Gx)dx, σ · ϕ(F ) :=

3∑
j=1

∫ ⊕
R3

σj ⊗ ϕ(Fj,x)dx,

where σ1, σ2, and σ3 are the 2×2 Pauli spin-matrices and the coupling functions

Gx = (G1,x, G2,x, G3,x) and F x = (F1,x, F2,x, F3,x) satisfy the following:

Assumption 2.1. The map (x,k, λ) 7→ (Gx,F x)(k, λ) is measurable, x 7→ Gx
belongs to C2(R3, h3), and x 7→ F x ∈ h3 is globally Lipschitz continuous on R3. All

components of Gx, F x, and ∂x`Gx belong to k and the map

R3 3 x 7−→ (Gx, ∂x1
Gx, ∂x2

Gx, ∂x3
Gx,F x) ∈ k15

is bounded and continuous. Moreover, there is a conjugation C : h → h, i.e., an

anti-linear isometry with C2 = 1h, such that, for all t > 0, x ∈ R3, and ` = 1, 2, 3,

[C, e−tω+im·x] = 0, G`,x, F`,x ∈ hC := {f ∈ h : Cf = f}. (1)

Example 2.1. In the standard model of NRQED for one electron interacting with

the quantized electromagnetic radiation field in Coulomb gauge and with a sharp

ultra-violet cut-off one chooses ω(k) = |k|, m = 0, and G is given by

GΛ
x(k, λ) := (α/2)

1/2(2π)−
3/2ω(k)−

1/2 1{ω(k)6Λ} e
−ik·xε(k, λ),

where α,Λ > 0. Applying a suitable unitary transformation, we may achieve that

ε(k, 0) = |e × k|−1e × k and ε(k, 1) = |k|−1k × ε(k, 0), for a.e. k and some unit

vector e in R3. If the electron spin is neglected, then we choose F = 0; otherwise

we set F equal to FΛ
x(k) := − i

2k×G
Λ
x(k, λ). The choice m(k) := k appears in the

definition of certain fiber Hamiltonians associated with the model. An appropriate

conjugation is given by (Cf)(k, λ) := −(−1)λf(−k, λ).

Let V ∈ L1
loc(R3,R). Then the total Hamiltonian for our model is given by

HV := 1
2 (−i∇x − ϕ(G))2 − σ · ϕ(F ) + dΓ(ω) + V.

A priori it is interpreted as a quadratic form with dense domain C∞0 (R3)⊗C2⊗C [dC ],

where dC := d∩ hC . If this form is bounded from below, then we denote the unique
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self-adjoint operator representing its closure again by HV . The SDE’s discussed

below involve the generalized fiber Hamiltonians defined, for fixed ξ,x ∈ R3, by

ĤV (ξ,x) := 1C2 ⊗ ĤV
scal(ξ,x)− σ · ϕ(F x),

ĤV
scal(ξ,x) := 1

2v(ξ,x)2 − i
2ϕ(divGx) + dΓ(ω) + V (x),

where v(ξ,x) := ξ−dΓ(m)−ϕ(Gx). They act in Ĥ and F , respectively. Essentially

well-known, simple estimations reveal that they are closed on the domain D̂, where

D̂ := D(dΓ(m)2) ∩ D(dΓ(ω)), ‖ψ‖2D̂ := ‖ψ‖2 +
∥∥( 1

2dΓ(m)2 + dΓ(ω)
)
ψ
∥∥2

; (2)

cf. App. B of Ref. 3 and the references given there. If divGx = 0, then they are

self-adjoint on D̂. Moreover, C2 ⊗ C [dC ] (resp. C [dC ]) is an operator core.

Example 2.2. In the situation of Ex. 2.1 the SDE’s involving Ĥ0(ξ,0) are of direct

physical interest, as H0 is unitarily equivalent to the direct integral
∫ ⊕

R3 Ĥ
0(ξ,0)dξ.

3. Annihilation-preservation-creation processes and SDE’s

In what follows, the interval I is either [0, T ] with 0 < T < ∞ or [0,∞) and we

fix a stochastic basis B := (Ω,F, (Ft)t∈I ,P) satisfying the usual assumptions.9 If K

is a Hilbert space, then SI(K ) denotes the space of continuous K -valued semi-

martingales w.r.t. B. The bold letter B denotes a B-Brownian motion in R3 (with

covariance matrix 1) and X ∈ SI(R3) is a solution of the Itô equation

X• = q +B• +

∫ •
0

β(s,Xs) ds, (3)

for some F0-measurable q : Ω→ R3, under the following convention:

• If I = [0, T ], then β(t,x) = y−x
T −t , so that X is a Brownian bridge from q to y.

• If I = [0,∞), then β : I × R3 → R3 is continuous and β(t, ·) is globally Lipschitz

continuous with Lipschitz constant Lt, where [0,∞) 3 t 7→ Lt is non-decreasing.

Moreover, we always assume that P{V (X•) ∈ L1
loc(I)} = 1.

Definition 3.1. We define a process of isometries ιt : h→ L2(R4 × Z2), t ∈ R,

ιtf(k0,k, λ) := π−
1/2e−itk0−im·(Xt−X0)ω(k)

1/2(ω(k)2 + k2
0)−

1/2 f(k, λ),

a.e. (k0,k, λ) ∈ R4 ×Z2. As usual ιτ is ι stopped at τ , and we set wτ,t := w∗τ,t with

wτ,t := (ιτt )∗ιt = e−(t−τ)ω−im·(Xt−Xτ ) 1t>τ + 1t6τ : Ω→ B(hC), t, τ ∈ I.

In the case m = 0, the isometry ιt has been introduced by Nelson.11

Definition 3.2 (Basic processes). Let τ ∈ I. Then we P-a.s. define, for all t ∈ I,

Kτ,t :=

∫ t

0

1s>τ ιsGXs
dXs +

1

2

∫ t

0

1s>τ ιs(divGXs
− im ·GXs

) ds,
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as well as Kt := K0,t, U
−
τ,t := (ιτt )∗Kτ,t, U

−
t := U−0,t, U

+
t := ι∗tKt, and

uVξ,t :=
1

2
‖Kt‖2 +

∫ t

0

V (Xs) ds− iξ · (Xt −X0), ξ ∈ R3.

The process K defined above appears in Ref. 4. In the next definition exp{· · · }
abbreviates exponential series of operators which are strongly convergent on C [h].

Definition 3.3 (Annihilation-preservation-creation process). We set

WV
ξ,t ζ(h) := e−u

V
−ξ,t exp{ia†(U+

t )}Γ(w0,t) exp{ia(U−t )}ζ(h)

= e−u
V
−ξ,t−〈U

−
t |h〉ζ

(
w0,t h+ U+

t

)
, t ∈ I, h ∈ dC , (4)

which, by linear extension, uniquely defines linear operators WV
ξ,t on C [dC ].

Proposition 3.1. Let h ∈ dC . Then WV
ξ ζ(h) ∈ SI(F ) and, P-a.s.,

WV
ξ,•ζ(h) = ζ(h)− i

∫ •
0

v(ξ,Xs)W
V
ξ,sζ(h)dXs −

∫ •
0

ĤV
scal(ξ,Xs)W

V
ξ,sζ(h)ds

on [0, sup I). Moreover, P-a.s., all operators WV
ξ,t, t ∈ I, extend uniquely to elements

of B(F ) – again denoted by the same symbols – such that ‖WV
ξ,t‖ 6 e−

∫ t
0
V (Xs)ds.

Proof. The expression in the second line of (4) is essentially an exponential function

of basic processes. Moreover, it is possible to show that U± ∈ SI(hC), uV0 ∈ SI(R),

and to represent these processes as stochastic integrals w.r.t. the process (t,Xt)t∈I .

The Itô formula and the rules of stochastic calculus for real Hilbert spaces proved

in Ref. 10 apply in this situation and eventually lead to the asserted SDE. In the

computations we exploit that 〈U+|GX〉, 〈U+|divGX〉, and 〈U+|im ·GX〉 are real

as a consequence of (1).

Remark 3.1. The adjoint of W 0
0,t (with m = 0) appears in Hiroshima’s FK for-

mula4 for the scalar semi-group where it is represented asW 0 ∗
0,t = Γ(ι∗0)e−iϕ(Kt)Γ(ιt).

As noted in Ref. 4, the isometries ιt are not strongly differentiable w.r.t. t, which

seems to prevent an application of Itô’s formula at first sight. However, the applica-

tion of Itô’s formula to the more regular representation of W 0
0,t as an annihilation-

preservation-creation process is fairly straightforward.

Next, let t4n := {(s1, . . . , sn) ∈ Rn : 0 6 s1 6 . . . 6 sn 6 t}. If t1, . . . , tn ∈ R
and A ⊂ [n] := {1, . . . , n}, then we set tA := (ta1 , . . . , tam) where A = {a1, . . . , am},
a1 < ... < am, and analogously for a multi-index α ∈ [3]n = {1, 2, 3}n.

Definition 3.4 (Time-ordered integral processes). Let t, t1, . . . , tn ∈ I, α ∈
[3]n, and A,B ⊂ [n]. We put L

α∅
t (t∅) := Rα∅(t∅) := 1 and, if A 6= ∅ 6= B,

L αA
t (tA) :=

∏
a∈A
{a†(wta,tFαa,Xta

) + i〈U−ta,t|Fαa,Xta
〉},

RαB(tB) :=
∏
b∈B

{a(w0,tbFαb,Xtb
) + i〈Fαb,Xtb

|U+
tb
〉},
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on C [dC ]. If C ⊂ [n] with #C ∈ 2N0, then we further set Iα∅(t∅) := 1 and

IαC (tC) :=
∑

C=∪{cp,c′p}
cp<c′p

#C/2∏
p=1

〈Fαc′p ,Xt
c′p
|wtcp ,tc′p Fαcp ,Xtcp

〉, if C 6= ∅.

Here the sum runs over all possibilities to split C into disjoint subsets {cp, c′p} ⊂ C
with cp < c′p, p = 1, . . . ,#C/2. Writing dt[n] := dt1 . . . dtn, we finally define

WV,(n)
ξ,t ψ :=

∑
α∈[3]n

σαn . . . σα1
⊗

∑
A∪B∪C=[n]

#C∈2N0

∫
t4n

IαC (tC) L αA
t (tA)WV

ξ,t RαB(tB)ψ dt[n],

for ψ ∈ C2 ⊗ C [dC ], n ∈ N, and WV,(0)
ξ,t := 1C2 ⊗WV

ξ,t. Here the second sum runs

over all disjoint partitions of [n], where A, B, or C may be empty and #C is even.

We can now state our fundamental existence and uniqueness result for the SDE

associated with the generalized fiber Hamiltonian; recall that D̂ is normed by (2).

Theorem 3.1. (a) P-a.s., all operators WV,(n)
ξ,t with n ∈ N0 and t ∈ I extend

uniquely to elements of B(Ĥ ), which are henceforth again denoted by the same sym-

bols. Furthermore, P-a.s., the limit WV
ξ,t := limN→∞

∑N
n=0 WV,(n)

ξ,t exists in B(Ĥ )

locally uniformly in t ∈ I, and ‖WV
ξ,t‖ 6 ect−

∫ t
0
V (Xs)ds with c ∝ supx ‖ω−

1/2F x‖2.

(b) Let η : Ω → D̂ be F0-measurable. Then WV
ξ η ∈ SI(Ĥ ) and, up to indistin-

guishability, WV
ξ η is the unique element of SI(Ĥ ) whose paths belong P-a.s. to

C(I, D̂) and which P-a.s. solves

X• = η − i
∫ •

0

v(ξ,Xs) Xs dXs −
∫ •

0

ĤV (ξ,Xs) Xs ds on [0, sup I). (5)

If V is bounded and continuous, then we infer the following from Thm. 3.1:

• The existence of a stochastic flow for the system comprised of (3) and (5).

• The existence of a family of transition operators associated with the flow, which

enjoys the Feller and Markov properties.

• A Blagoveščensky-Freidlin type theorem, i.e., the existence of strong solutions.

4. Feynman-Kac representations

The construction of WV
ξ depends on the choice of X. Since we are dealing with

different choices of X at the same time in this section, we indicate this by adding

the variable [X] to the symbol WV
ξ .

Theorem 4.1 (FK formula: fiber case). Assume that G and F do not depend

on x, and let ξ ∈ R3 and t > 0. Then e−tĤ
0(ξ,0) = E[W0

ξ,t[B]∗].
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Remark 4.1. In the earlier literature FK formulas for fiber Hamiltonians have

been deduced from the FK formula for the total Hamiltonian by inserting suitable

peak functions.5,6,8 By a standard procedure, based on Thm. 3.1, we are able to

avoid this detour and treat the fiber case directly. For non-zero F , Thm. 4.1 is new

as the earlier formulas involved an additional regularization procedure;6,8 compare

Rem. 4.2 (a) below.

For x,y ∈ R3, we setBx := x+B and let bt;y,x ∈ S[0,t](R3) denote the Brownian

bridge from y to x in time t > 0, defined as the solution of b• = By• +
∫ •

0
x−bs
t−s ds.

Theorem 4.2 (FK formula). Assume that V = V+−V−, where V± : R3 → [0,∞)

such that V+ ∈ L1
loc(R3) and V− is − 1

2∆-form bounded with form bound b 6 1. Then

Ψ ∈ Q(HV+) ⊂H = L2(R3, Ĥ ) implies ‖Ψ(·)‖ = ‖Ψ(·)‖Ĥ ∈ Q(− 1
2∆ + V+) with〈

‖Ψ(·)‖
∣∣(− 1

2∆ + V+)‖Ψ(·)‖
〉
6
〈
Ψ
∣∣(HV+ + c supx‖ω−

1/2F x‖2
)
Ψ
〉
. (6)

In particular, V− is HV+-form bounded with form bound b as well, so that HV has

a distinguished self-adjoint realization defined via quadratic forms (which is again

denoted by HV ). For all t > 0, Ψ ∈H , and a.e. x ∈ R3, we then have

(e−tH
V

Ψ)(x) = E
[
WV

0,t[B
x]∗Ψ(Bxt )

]
=

∫
R3

e−|x−y|
2/2t

(2πt)3/2
E
[
WV

0,t[b
t;y,x]

]
Ψ(y)dy. (7)

Proof. Let V ∈ C(R3) be bounded. Employing (inter alia) the Markov property

of the stochastic flow we check that (TtΨ)(x) := E[WV
0,t[B

x]∗Ψ(Bxt )] defines a

strongly continuous semi-group of self-adjoint operators Tt ∈ B(H ). Then we use

(5) to verify that the generator of this semi-group agrees with HV on a suitable

core of HV . This yields the first identity in (7) and the second one follows from

Thm. 3.1 and well-known relations for Brownian motions and Brownian bridges.

Invoking standard extension procedures we then get (6) and (7) for general V .

Remark 4.2. (a) In the scalar case (F = 0), and under slightly more restrictive

conditions on G, the first equality in (7) has been proved by F. Hiroshima in Ref. 4

while the second one is new. For a spin-1/2 electron, the sesqui-linear form of the

semi-group has been represented earlier only as a limit of expectation values of

certain regularized FK integrands involving a Poisson jump process to account for

the spin degrees of freedom.6 Hence, both identities in (7) are new for non-zero F .

(b) The assumptions of Thm. 4.2 imply P{V (Bx• ) ∈ L1
loc([0,∞))} = 1, for a.e. x.

(c) In Thm. 4.2, the integral E
[
WV

0,t[b
t;y,x]

]
∈ B(Ĥ ) is defined only for a.e. (x,y) ∈

R6. The condition on V of Thm. 4.3 implies its existence for all x,y ∈ R3.

(d) The condition on V− in Thm. 4.2 ensures the validity of the FK formula for the

Schrödinger operator with potential V−,12 which is what we really use in the proof.

Let us announce the next theorem as a first application. Its proof combines argu-

ments from Ref. 1 with certain weighted estimates on W0
0,t inferred from Thm. 3.1.

Here the weights are given by unbounded functions of dΓ(ω).
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Theorem 4.3. Assume that V = V+−V−, where V− > 0 belongs to the Kato class

and V+ > 0 is in the local Kato class. Then the following map is continuous w.r.t.

the norm topology on B(Ĥ ),

(0,∞)× R3 × R3 3 (t,x,y) 7−→ E
[
WV

0,t[b
t;y,x]

]
∈ B(Ĥ ).

Remark 4.3. (a) All results presented above hold true for several electrons as well.

(b) Suitable analogs of all results stated here are available for Nelson’s model.
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