On the geometry of semiclassical limits on Dirichlet spaces

Batu Güneysu

Institut für Mathematik Humboldt-Universität zu Berlin

A geometry day in Como

January 13, 2017

Compact manifolds and \mathbb{R}^m

For the moment, let (X, g) be either the Euclidean \mathbb{R}^m or a compact Riemannian *m*-manifold

Theorem (Helffer/Robert; early 1980's)

For every "very bounded" smooth potential $w : X \to \mathbb{R}$, one has $Z_{QM}(g; w; \hbar)/Z_{cl}(g; w; \hbar) \to 1$ as $\hbar \to 0+$, where

$$egin{aligned} &Z_{QM}(g;w;\hbar):=\mathrm{tr}ig(\mathrm{e}^{-(\hbar^2\Delta_g+w)}ig),\quad,\ &Z_{cl}(g;w;\hbar):=(2\pi\hbar)^{-m}\int_{T^*X}\mathrm{e}^{-(|p|_{g^*}^2+w(q))}\mathrm{d}p\wedge\mathrm{d}q. \end{aligned}$$

Note that $Z_{cl}(g; w; \hbar)$ is the integral of a globally defined 2m-form on T^*X , as $m!dp \wedge dq$ is the local representation of the *m*-th power of the symplectic form on T^*X .

Compact manifolds and \mathbb{R}^m

For the moment, let (X, g) be either the Euclidean \mathbb{R}^m or a compact Riemannian *m*-manifold

Theorem (Helffer/Robert; early 1980's)

For every "very bounded" smooth potential $w : X \to \mathbb{R}$, one has $Z_{QM}(g; w; \hbar)/Z_{cl}(g; w; \hbar) \to 1$ as $\hbar \to 0+$, where

$$egin{aligned} & Z_{QM}(g;w;\hbar) := \mathrm{tr}ig(\mathrm{e}^{-(\hbar^2\Delta_g+w)}ig), \quad, \ & Z_{cl}(g;w;\hbar) := (2\pi\hbar)^{-m}\int_{T^*X}\mathrm{e}^{-(|p|_{g^*}^2+w(q))}\mathrm{d}p\wedge\mathrm{d}q. \end{aligned}$$

Note that $Z_{cl}(g; w; \hbar)$ is the integral of a globally defined 2m-form on T^*X , as $m!dp \wedge dq$ is the local representation of the *m*-th power of the symplectic form on T^*X .

• We are interested in generalizations of this results to arbitrary Riemannian manifolds with minimal assumptions on *w* (no asymptotic expansions at hand), and even more general noncompact "spaces" than Riemannian manifolds

• essential observation for a possible abstract result: integrate out the momentum in HR-formula: HR is equivalent to

$$\lim_{t\to 0+} (2\pi t)^{m/2} \operatorname{tr} \left(e^{-t(\Delta_g + w/t)} \right) = \int_X e^{-w} d\mu_g$$

• nice: no tangent space left! Idea: Consider $\Delta_g \geq 0$ as generator of a semigroup on an L^2 -space. But how should we replace $(2\pi t)^{m/2}$? Probably this comes from the heat kernel $p_g(t, x, x)$ \rightsquigarrow Let us build the whole analysis from an abstract heat kernel! We are interested in generalizations of this results to arbitrary Riemannian manifolds with minimal assumptions on w (no asymptotic expansions at hand), and even more general noncompact "spaces" than Riemannian manifolds
essential observation for a possible abstract result: integrate out the momentum in HR-formula: HR is equivalent to

$$\lim_{t\to 0+} (2\pi t)^{m/2} \operatorname{tr} \left(\operatorname{e}^{-t(\Delta_g + w/t)} \right) = \int_X \operatorname{e}^{-w} \mathrm{d} \mu_g$$

• nice: no tangent space left! Idea: Consider $\Delta_g \geq 0$ as generator of a semigroup on an L^2 -space. But how should we replace $(2\pi t)^{m/2}$? Probably this comes from the heat kernel $p_g(t, x, x)$ \rightsquigarrow Let us build the whole analysis from an abstract heat kernel! We are interested in generalizations of this results to arbitrary Riemannian manifolds with minimal assumptions on w (no asymptotic expansions at hand), and even more general noncompact "spaces" than Riemannian manifolds
essential observation for a possible abstract result: integrate out the momentum in HR-formula: HR is equivalent to

$$\lim_{t\to 0+} (2\pi t)^{m/2} \mathrm{tr} \big(\mathrm{e}^{-t(\Delta_g + w/t)} \big) = \int_X \mathrm{e}^{-w} \mathrm{d} \mu_g$$

• nice: no tangent space left! Idea: Consider $\Delta_g \ge 0$ as generator of a semigroup on an L^2 -space. But how should we replace $(2\pi t)^{m/2}$? Probably this comes from the heat kernel $p_g(t, x, x) \rightarrow$ Let us build the whole analysis from an abstract heat kernel!

After some thinking (and taking my previous result for infinite weighted graphs into account), I finally had the essential insight: Rewrite the RHS of

$$\lim_{t\to 0+} (2\pi t)^{m/2} \operatorname{tr} \left(e^{-t(\Delta_g + w/t)} \right) = \int_X e^{-w} d\mu_g$$

according to

$$\int_{X} \mathrm{e}^{-w} \mathrm{d}\mu_{g} = \int_{X} \underbrace{\lim_{t \to 0+} (2\pi t)^{m/2} p_{g}(t, x, x)}_{=1} \mathrm{e}^{-w(x)} \mathrm{d}\mu_{g}(x)$$

with $p_g(t, x, y)$ the minimal heat kernel. Everything that follows is based on this trivial observation....

• X: seperable metrizable locally cpt. space; μ : Radon measure on X with full support

• a Borel function $(t, x, y) \mapsto p(t, x, y)$ from $(0, \infty) \times X \times X$ to $(0, \infty)$ is called a *sppc* μ -*heat kernel*, if it is symmetric in (x, y) with

$$\int p(t,x,y) \mathrm{d}\mu(y) \leq 1, \ p(t+s,x,y) = \int p(t,x,z) p(s,z,y) \mathrm{d}\mu(z)$$

and if $P_t f := \int p(t, \cdot, y) f(y) d\mu(y)$ is well-defined and strongly continuous at t = 0+ in $L^2(X, \mu)$

• let $H_p \ge 0$ be the self-adjoint generator in $L^2(X, \mu)$ of $(P_t)_{t>0}$, and let Q_p be the quadratic form of H_p ,

 \rightsquigarrow we fix such a triple (X, μ, p) in the sequel

- X: seperable metrizable locally cpt. space; μ : Radon measure on X with full support
- a Borel function $(t, x, y) \mapsto p(t, x, y)$ from $(0, \infty) \times X \times X$ to $(0, \infty)$ is called a *sppc* μ -*heat kernel*, if it is symmetric in (x, y) with

$$\int p(t,x,y) \mathrm{d}\mu(y) \leq 1, \ p(t+s,x,y) = \int p(t,x,z) p(s,z,y) \mathrm{d}\mu(z)$$

and if $P_t f := \int p(t, \cdot, y) f(y) d\mu(y)$ is well-defined and strongly continuous at t = 0+ in $L^2(X, \mu)$

let H_p ≥ 0 be the self-adjoint generator in L²(X, μ) of (P_t)_{t>0}, and let Q_p be the quadratic form of H_p,
 → we fix such a triple (X, μ, p) in the sequel

- X: seperable metrizable locally cpt. space; μ : Radon measure on X with full support
- a Borel function $(t, x, y) \mapsto p(t, x, y)$ from $(0, \infty) \times X \times X$ to $(0, \infty)$ is called a *sppc* μ -*heat kernel*, if it is symmetric in (x, y) with

$$\int p(t,x,y) \mathrm{d}\mu(y) \leq 1, \ p(t+s,x,y) = \int p(t,x,z) p(s,z,y) \mathrm{d}\mu(z)$$

and if $P_t f := \int p(t, \cdot, y) f(y) d\mu(y)$ is well-defined and strongly continuous at t = 0+ in $L^2(X, \mu)$

• let $H_p \ge 0$ be the self-adjoint generator in $L^2(X, \mu)$ of $(P_t)_{t>0}$, and let Q_p be the quadratic form of H_p ,

 \rightsquigarrow we fix such a triple (X, $\mu, p)$ in the sequel

• p is called *regular*, if $C_{cpt}(X) \cap Dom(Q_p)$ is dense in $C_{cpt}(X)$ and dense in $Dom(Q_p)$ (resp. natural norms) \rightsquigarrow then Q_p automatically is a regular Dirichlet form

• Fukushima (1970's): regular Dirichlet forms are in 1:1 correspondence with Hunt processes having càdlàg paths

• thus every regular p induces a Wiener measure \mathbb{P}_t^x with starting point $x \in X$ and terminal time t > 0 on the space $\Omega(X, t)$ of càdlàg paths $\gamma : [0, t] \to X$

- p is called *regular*, if $C_{cpt}(X) \cap Dom(Q_p)$ is dense in $C_{cpt}(X)$ and dense in $Dom(Q_p)$ (resp. natural norms) \rightsquigarrow then Q_p automatically is a regular Dirichlet form
- Fukushima (1970's): regular Dirichlet forms are in 1:1 correspondence with Hunt processes having càdlàg paths

• thus every regular p induces a Wiener measure \mathbb{P}_t^x with starting point $x \in X$ and terminal time t > 0 on the space $\Omega(X, t)$ of càdlàg paths $\gamma : [0, t] \to X$

• p is called *regular*, if $C_{cpt}(X) \cap Dom(Q_p)$ is dense in $C_{cpt}(X)$ and dense in $Dom(Q_p)$ (resp. natural norms) \rightsquigarrow then Q_p automatically is a regular Dirichlet form

• Fukushima (1970's): regular Dirichlet forms are in 1:1 correspondence with Hunt processes having càdlàg paths

• thus every regular p induces a Wiener measure \mathbb{P}_t^x with starting point $x \in X$ and terminal time t > 0 on the space $\Omega(X, t)$ of càdlàg paths $\gamma : [0, t] \to X$

• p is called *regular*, if $C_{cpt}(X) \cap Dom(Q_p)$ is dense in $C_{cpt}(X)$ and dense in $Dom(Q_p)$ (resp. natural norms) \rightsquigarrow then Q_p automatically is a regular Dirichlet form

• Fukushima (1970's): regular Dirichlet forms are in 1:1 correspondence with Hunt processes having càdlàg paths

• thus every regular p induces a Wiener measure \mathbb{P}_t^x with starting point $x \in X$ and terminal time t > 0 on the space $\Omega(X, t)$ of càdlàg paths $\gamma : [0, t] \to X$

• If p is regular, we say it satisfies the principle of not feeling the boundary, if for all compact subsets $K \subset X$ with $\mathring{K} \neq \emptyset$ and all $x \in \mathring{K}$, one has

$$\lim_{t\to 0+}\mathbb{P}^{x,x}_t\{\gamma: \ \gamma(s)\in K \text{ for all } s\in [0,t)\}=1.$$

• We call a pair (ϱ_1, ϱ_2) of Borel functions $\varrho_1 : (0, 1) \to (0, \infty)$, $\varrho_2 : X \to [0, \infty)$ an asymptotic control pair for p, if:

- the limit $\lim_{t\to 0+} p(t,x,x)\varrho_1(t)$ exists for all $x\in X$
- \cdot there exists a Borel function $\phi:(0,1)
 ightarrow(0,\infty)$ such that

$$p(t,x,x) \lesssim \varrho_2(x)\phi(t), \quad \sup_{0 < t < 1} \phi(t)\varrho_1(t) < \infty.$$

• If p is regular, we say it satisfies the principle of not feeling the boundary, if for all compact subsets $K \subset X$ with $\mathring{K} \neq \emptyset$ and all $x \in \mathring{K}$, one has

$$\lim_{t\to 0+} \mathbb{P}^{\times,\times}_t \{\gamma: \ \gamma(s)\in K \text{ for all } s\in [0,t)\}=1.$$

• We call a pair (ϱ_1, ϱ_2) of Borel functions $\varrho_1 : (0, 1) \to (0, \infty)$, $\varrho_2 : X \to [0, \infty)$ an asymptotic control pair for p, if:

- · the limit $\lim_{t\to 0+} p(t, x, x) \varrho_1(t)$ exists for all $x \in X$
- \cdot there exists a Borel function $\phi:(0,1)\to(0,\infty)$ such that

$$p(t,x,x) \lesssim arrho_2(x)\phi(t), \quad \sup_{0 < t < 1} \phi(t)arrho_1(t) < \infty.$$

• (X,g) a geodesically complete connected Riemannian *m*-manifold, μ_g the volume measure, $\Delta_g \ge 0$ the Laplace-Beltrami operator, $p_g(t, x, y) > 0$ the minimal nonnegative heat kernel • the principle of not feeling the boundary is equivalent to

$$p_g^U(t,x,x)/p_g(t,x,x)
ightarrow 0$$
 as $t
ightarrow 0+,$

a classical fact (Kac, Varadhan, Hsu)!asymptotic expansion of heat kernel implies

$$\lim_{t\to 0+} p_g(t,x,x)\varrho^{(m)}(t) = 1,$$

where $\varrho^{(m)}(t) := (2\pi t)^{m/2}$

- (X,g) a geodesically complete connected Riemannian *m*-manifold, μ_g the volume measure, $\Delta_g \ge 0$ the Laplace-Beltrami operator, $p_g(t, x, y) > 0$ the minimal nonnegative heat kernel a the minimal a particular to
- the principle of not feeling the boundary is equivalent to

$$ho_g^U(t,x,x)/
ho_g(t,x,x)
ightarrow 0$$
 as $t
ightarrow 0+,$

a classical fact (Kac, Varadhan, Hsu)!

asymptotic expansion of heat kernel implies

$$\lim_{t\to 0+} p_g(t,x,x)\varrho^{(m)}(t) = 1,$$

where $\varrho^{(m)}(t) := (2\pi t)^{m/2}$

- (X,g) a geodesically complete connected Riemannian *m*-manifold, μ_g the volume measure, $\Delta_g \ge 0$ the Laplace-Beltrami operator, $p_g(t, x, y) > 0$ the minimal nonnegative heat kernel
- the principle of not feeling the boundary is equivalent to

$${p_g^U(t,x,x)}/{p_g(t,x,x)} o 0$$
 as $t o 0+,$

- a classical fact (Kac, Varadhan, Hsu)!
- asymptotic expansion of heat kernel implies

$$\lim_{t\to 0+} p_g(t,x,x)\varrho^{(m)}(t) = 1,$$

where $\varrho^{(m)}(t):=(2\pi t)^{m/2}$

• Given $x \in X$, and b > 1, let $r_{g,b}(x)$ be the supremum of all r > 0 such that $B_g(x, r)$ admits a centered chart with $(1/b)(\delta_{ij}) \le (g_{ij}) \le b(\delta_{ij})$; then for all b > 1 the function

 $\varrho_g(x) := 1/\min(r_{g,b}(x,b),1)^m$

turns $(\varrho^{(m)}, \varrho_g)$ into an asymptotic control function for p_g (Grigor'yan or G. in Potential Analysis 2016);

• if $\operatorname{Ric}_g \geq -C^2$, then $\varrho'_g(x) := 1/\mu_g(B_g(x,1))$ turns $(\varrho^{(m)}, \varrho'_g)$ into an asymptotic control function for p_g

• set
$$H_g := H_{p_g}$$
 in $L^2(X, \mu_g)$, $Q_g := Q_{p_g}$ in $L^2(X, \mu_g)$.

• Given $x \in X$, and b > 1, let $r_{g,b}(x)$ be the supremum of all r > 0 such that $B_g(x, r)$ admits a centered chart with $(1/b)(\delta_{ij}) \le (g_{ij}) \le b(\delta_{ij})$; then for all b > 1 the function

 $\varrho_g(x) := 1/\min(r_{g,b}(x,b),1)^m$

turns $(\varrho^{(m)}, \varrho_g)$ into an asymptotic control function for p_g (Grigor'yan or G. in Potential Analysis 2016);

• if $\operatorname{Ric}_g \geq -C^2$, then $\varrho'_g(x) := 1/\mu_g(B_g(x,1))$ turns $(\varrho^{(m)}, \varrho'_g)$ into an asymptotic control function for p_g

• set $H_g := H_{p_g}$ in $L^2(X, \mu_g)$, $Q_g := Q_{p_g}$ in $L^2(X, \mu_g)$.

• Given $x \in X$, and b > 1, let $r_{g,b}(x)$ be the supremum of all r > 0 such that $B_g(x, r)$ admits a centered chart with $(1/b)(\delta_{ij}) \le (g_{ij}) \le b(\delta_{ij})$; then for all b > 1 the function

 $\varrho_g(x) := 1/\min(r_{g,b}(x,b),1)^m$

turns $(\varrho^{(m)}, \varrho_g)$ into an asymptotic control function for ρ_g (Grigor'yan or G. in Potential Analysis 2016);

• if $\operatorname{Ric}_g \geq -C^2$, then $\varrho'_g(x) := 1/\mu_g(B_g(x,1))$ turns $(\varrho^{(m)}, \varrho'_g)$ into an asymptotic control function for p_g

• set
$$H_g := H_{p_g}$$
 in $L^2(X, \mu_g)$, $Q_g := Q_{p_g}$ in $L^2(X, \mu_g)$.

Example II: Infinite weighted graphs

• (X, b, μ) : a weighted connected graph, that is $b(x, y) \ge 0$ is edge weight with $\sum_{y} b(x, y) < \infty$ and $\mu(x) > 0$ is vertex weight; X carries discrete topology; for $\psi : X \to \mathbb{C}$ (say bounded) set

$$\Delta_{b,\mu}\psi(x) = -\frac{1}{\mu(x)}\sum_{\{y:y\sim_b x\}}b(x,y)(\psi(x)-\psi(y)).$$

→ minimal heat kernel $(t, x, y) \mapsto p_{b,\mu}(t, x, y) > 0$ exists and is a regular sppc μ -heat kernel (Keller/Lenz); • from discreteness we immediately get

 $p_{b,\mu}(t,x,y) \leq 1/\mu(x)$ for all $(t,x,y) \in (0,\infty) imes X imes X,$

and

$$\lim_{t\to 0+} p_{b,\mu}(t,x,x) \cdot 1 = 1/\mu(x) \quad \text{ for all } x \in X.$$

Example II: Infinite weighted graphs

• (X, b, μ) : a weighted connected graph, that is $b(x, y) \ge 0$ is edge weight with $\sum_{y} b(x, y) < \infty$ and $\mu(x) > 0$ is vertex weight; X carries discrete topology; for $\psi : X \to \mathbb{C}$ (say bounded) set

$$\Delta_{b,\mu}\psi(x) = -\frac{1}{\mu(x)}\sum_{\{y:y\sim_b x\}}b(x,y)(\psi(x)-\psi(y)).$$

 \rightsquigarrow minimal heat kernel $(t, x, y) \mapsto p_{b,\mu}(t, x, y) > 0$ exists and is a regular sppc μ -heat kernel (Keller/Lenz);

• from discreteness we immediately get

$$p_{b,\mu}(t,x,y) \leq 1/\mu(x)$$
 for all $(t,x,y) \in (0,\infty) imes X imes X,$

and

$$\lim_{t\to 0+} p_{b,\mu}(t,x,x)\cdot 1 = 1/\mu(x) \quad \text{ for all } x\in X.$$

Example II: Finite weighted graphs

• $p_{b,\mu}$ satisfies principle of not feeling the boundary: $\mathbb{P}_t^{x,x}$ is concentrated on pure jump paths, and

$$\mathbb{P}_{t}^{x,x}\{\gamma:\gamma(s)\in\{x,x_{1},\ldots,x_{l}\}\text{ for all }s\in[0,t)\}\\\geq\mathbb{P}_{t}^{x,x}\{\gamma:\gamma\text{ has not jumped before }t\}\\\geq\exp\Big(-\frac{t}{\mu(x)}\sum_{y}b(x,y)\Big)\big(p_{b,\mu}(t,x,x)\mu(x)\big)^{-1}.$$

Cf. Norris' book or G./Keller/Schmidt in Probability Theory and Related Fields 2016.

• the operator $H_{b,\mu} := H_{\rho_{b,\mu}}$ in $L^2(X, b)$ is a restriction of $\Delta_{b,\mu}$; set $Q_{b,\mu} := Q_{\rho_{b,\mu}}$

Example II: Finite weighted graphs

• $p_{b,\mu}$ satisfies principle of not feeling the boundary: $\mathbb{P}_t^{x,x}$ is concentrated on pure jump paths, and

$$\mathbb{P}_{t}^{x,x}\{\gamma:\gamma(s)\in\{x,x_{1},\ldots,x_{l}\}\text{ for all }s\in[0,t)\}\\\geq\mathbb{P}_{t}^{x,x}\{\gamma:\gamma\text{ has not jumped before }t\}\\\geq\exp\Big(-\frac{t}{\mu(x)}\sum_{y}b(x,y)\Big)\big(p_{b,\mu}(t,x,x)\mu(x)\big)^{-1}.$$

Cf. Norris' book or G./Keller/Schmidt in Probability Theory and Related Fields 2016.

• the operator $H_{b,\mu} := H_{p_{b,\mu}}$ in $L^2(X, b)$ is a restriction of $\Delta_{b,\mu}$; set $Q_{b,\mu} := Q_{p_{b,\mu}}$

The main result

Theorem (B.G.)

Assume that X admits a metric which induces the original topology, such that for every $x \in X$ there is an r > 0 with B(x, r) relatively compact. Let p satisfy the principle of not feeling the boundary. Then for every asymptotic control pair (ϱ_1, ϱ_2) for p, and every continuous potential $w : X \to \mathbb{R}$ with w^- being infinitesimally Q_p -bounded and $\int e^{-w} \varrho_2 d\mu < \infty$, one has

$$\lim_{t\to 0+} \varrho_1(t) \operatorname{tr} \left(\operatorname{e}^{-t(H_p + w/t)} \right) = \int \operatorname{e}^{-w(x)} \lim_{t\to 0+} p(t, x, x) \varrho_1(t) \mathrm{d} \mu(x).$$

For example w^- could be bounded or more generally Kato (in practice an $L^q + L^\infty$ condition).

Complete Riemannian manifolds I

Recall that
$$\varrho^{(m)}(t) := (2\pi t)^{m/2}$$
.

Corollary

Assume that (X, g) is a smooth geodesically complete connected Riemannian m-manifold. Then for every Borel function $\varrho: X \to [0, \infty)$ which makes $(\varrho^{(m)}, \varrho)$ an asymptotic control pair for p, and for every continuous potential $w: X \to \mathbb{R}$ with $w^$ infinitesimally Q_g -bounded and $\int e^{-w(x)} \varrho(x) d\mu_g(x) < \infty$, one has

$$\lim_{t\to 0+} (2\pi t)^{m/2} \operatorname{tr} \left(\operatorname{e}^{-t(H_g + w/t)} \right) = \int \operatorname{e}^{-w} \mathrm{d}\mu_g.$$

Complete Riemannian manifolds II

Corollary

Let (X, g) be a smooth geodesically complete connected Riemannian m-manifold with $\operatorname{Ric}_g \ge -A$ for some constant $A \ge 0$, and let $w : X \to \mathbb{R}$ be a continuous with $\inf_X w > -\infty$ and

$$\sum_{k=2}^{\infty} \exp\left(-\inf_{x\in X, k-1 < d_g(x, x_0) < k} w(x)\right) k^m \mathrm{e}^{2k\sqrt{(m-1)A}} < \infty$$

for some $x_0 \in X$. Then one has

$$\lim_{t\to 0+} (2\pi t)^{m/2} \operatorname{tr} \left(\operatorname{e}^{-t(H_g \stackrel{\cdot}{+} w/t)} \right) = \int \operatorname{e}^{-w} \mathrm{d} \mu_g.$$

Proof: Use volume doubling machinery to prove $\int e^{-w} \rho d\mu_g < \infty$.

Infinite weighted graphs

We recover the following result (G., Journal of Mathematical Physics 2014 or so) ${}$

Corollary

Let (X, b, μ) be a weighted graph which is connected in the graph theoretic sense. Then for every potential $w : X \to \mathbb{R}$ with $w^$ infinitesimally $Q_{b,\mu}$ -bounded and $\sum_{x \in X} e^{-w(x)} < \infty$, one has

$$\lim_{t\to 0+} \operatorname{tr} \left(\mathrm{e}^{-t(H_{b,\mu} \downarrow w/t)} \right) = \sum_{x\in X} \mathrm{e}^{-w(x)}.$$

Integration on RHS is not w.r.t. to underlying Hilbert space measure!

Upper bound

• From functional analysis and Chapman-Kolmogorov (and some approximation arguments...) we get the Golden-Thompson inequality:

$$\operatorname{tr}\left(\mathrm{e}^{-t(H_{
ho}+w)}
ight)\leq\int p(t,x,x)\mathrm{e}^{-w(x)}\mathrm{d}\mu(x)\quad ext{ for all }t>0,\quad(1)$$

so that

$$\limsup_{t\to 0+} \varrho_1(t) \operatorname{tr} \left(\mathrm{e}^{-tH_p(w/t)} \right) \leq \limsup_{t\to 0+} \int \varrho_1(t) \rho(t,x,x) \mathrm{e}^{-w(x)} \mathrm{d}\mu(x).$$

• assumptions on the heat kernel control pair (ρ_1, ρ_2) and w are precisely such that we can interchange limit with integral using dominated convergence

Upper bound

• From functional analysis and Chapman-Kolmogorov (and some approximation arguments...) we get the Golden-Thompson inequality:

$$\operatorname{tr}\left(\mathrm{e}^{-t(H_{\rho}+w)}\right) \leq \int p(t,x,x) \mathrm{e}^{-w(x)} \mathrm{d}\mu(x) \quad \text{ for all } t > 0, \quad (1)$$

so that

$$\limsup_{t\to 0+} \varrho_1(t) \operatorname{tr} \left(\operatorname{e}^{-tH_p(w/t)} \right) \leq \limsup_{t\to 0+} \int \varrho_1(t) \rho(t,x,x) \operatorname{e}^{-w(x)} \mathrm{d} \mu(x).$$

• assumptions on the heat kernel control pair (ϱ_1, ϱ_2) and w are precisely such that we can interchange limit with integral using dominated convergence

Lower bound

Let K_n be a rel. cpt. exhaustion of X. For each n pick $\delta_n \in (0, \infty]$ such that for all $0 < \delta < \delta_n$ and all $x \in K_n$ the ball $B(x, \delta)$ is rel. cpt. (always possible)

$$\begin{split} \varrho_{1}(t)\mathrm{tr}\left(\mathrm{e}^{-tH_{p}(w/t)}\right) &= \int \varrho_{1}(t)p(t,x,x) \int \mathrm{e}^{-\frac{1}{t}\int_{0}^{t}w(\gamma(s))\mathrm{d}s}\mathrm{d}\mathbb{P}_{t}^{x,x}(\gamma) \,\,\mathrm{d}\mu(x) \\ &\geq \int_{K_{n}} \varrho_{1}(t)p(t,x,x) \int_{\{\gamma: \ \gamma(s)\in\overline{B(x,\delta)} \ \forall \ s\in[0,t)\}} \mathrm{e}^{-\frac{1}{t}\int_{0}^{t}w(\gamma(s))\mathrm{d}s}\mathrm{d}\mathbb{P}_{t}^{x,x}(\gamma) \,\,\mathrm{d}\mu(x) \\ &\geq \int_{K_{n}} \varrho_{1}(t)p(t,x,x)\mathbb{P}_{t}^{x,x}\{\gamma: \ \gamma(s)\in\overline{B(x,\delta)} \ \forall \ s\in[0,t)\} \mathrm{e}^{-w_{\delta}(x)}\mathrm{d}\mu(x), \end{split}$$

where $w_{\delta}(x) := \max_{\overline{B(x,\delta)}} w$; by principle of not feeling the boundary and Fatou's Lemma:

$$\liminf_{t\to 0+} \varrho_1(t) \operatorname{tr} \left(\mathrm{e}^{-tH_p(w/t)} \right) \geq \int_{K_n} \mathrm{e}^{-w_\delta(x)} \liminf_{t\to 0+} p(t,x,x) \varrho_1(t) \mathrm{d} \mu(x).$$

Lower bound

Let K_n be a rel. cpt. exhaustion of X. For each n pick $\delta_n \in (0, \infty]$ such that for all $0 < \delta < \delta_n$ and all $x \in K_n$ the ball $B(x, \delta)$ is rel. cpt. (always possible)

$$\begin{split} \varrho_{1}(t)\mathrm{tr}\left(\mathrm{e}^{-tH_{p}(w/t)}\right) &= \int \varrho_{1}(t)p(t,x,x) \int \mathrm{e}^{-\frac{1}{t}\int_{0}^{t}w(\gamma(s))\mathrm{d}s}\mathrm{d}\mathbb{P}_{t}^{x,x}(\gamma) \,\mathrm{d}\mu(x)\\ &\geq \int_{\mathcal{K}_{n}} \varrho_{1}(t)p(t,x,x) \int_{\{\gamma: \ \gamma(s)\in\overline{B(x,\delta)}\ \forall\ s\in[0,t)\}} \mathrm{e}^{-\frac{1}{t}\int_{0}^{t}w(\gamma(s))\mathrm{d}s}\mathrm{d}\mathbb{P}_{t}^{x,x}(\gamma) \,\mathrm{d}\mu(x)\\ &\geq \int_{\mathcal{K}_{n}} \varrho_{1}(t)p(t,x,x)\mathbb{P}_{t}^{x,x}\{\gamma: \ \gamma(s)\in\overline{B(x,\delta)}\ \forall\ s\in[0,t)\}} \mathrm{e}^{-w_{\delta}(x)}\mathrm{d}\mu(x), \end{split}$$

where $w_{\delta}(x) := \max_{\overline{B(x,\delta)}} w$; by principle of not feeling the boundary and Fatou's Lemma:

$$\liminf_{t\to 0+} \varrho_1(t) \operatorname{tr} \left(\mathrm{e}^{-tH_p(w/t)} \right) \geq \int_{K_n} \mathrm{e}^{-w_\delta(x)} \liminf_{t\to 0+} p(t,x,x) \varrho_1(t) \mathrm{d}\mu(x).$$

Lower bound

Let K_n be a rel. cpt. exhaustion of X. For each n pick $\delta_n \in (0, \infty]$ such that for all $0 < \delta < \delta_n$ and all $x \in K_n$ the ball $B(x, \delta)$ is rel. cpt. (always possible)

$$\begin{split} \varrho_{1}(t)\mathrm{tr}\left(\mathrm{e}^{-tH_{p}(w/t)}\right) &= \int \varrho_{1}(t)p(t,x,x) \int \mathrm{e}^{-\frac{1}{t}\int_{0}^{t}w(\gamma(s))\mathrm{d}s}\mathrm{d}\mathbb{P}_{t}^{x,x}(\gamma) \,\,\mathrm{d}\mu(x) \\ &\geq \int_{\mathcal{K}_{n}} \varrho_{1}(t)p(t,x,x) \int_{\{\gamma: \ \gamma(s)\in\overline{B(x,\delta)} \ \forall \ s\in[0,t)\}} \mathrm{e}^{-\frac{1}{t}\int_{0}^{t}w(\gamma(s))\mathrm{d}s}\mathrm{d}\mathbb{P}_{t}^{x,x}(\gamma) \,\,\mathrm{d}\mu(x) \\ &\geq \int_{\mathcal{K}_{n}} \varrho_{1}(t)p(t,x,x)\mathbb{P}_{t}^{x,x}\{\gamma: \ \gamma(s)\in\overline{B(x,\delta)} \ \forall \ s\in[0,t)\} \mathrm{e}^{-w_{\delta}(x)}\mathrm{d}\mu(x), \end{split}$$

where $w_{\delta}(x) := \max_{\overline{B(x,\delta)}} w$; by principle of not feeling the boundary and Fatou's Lemma:

$$\liminf_{t\to 0+} \varrho_1(t) \mathrm{tr}\left(\mathrm{e}^{-tH_p(w/t)}\right) \geq \int_{\mathcal{K}_n} \mathrm{e}^{-w_\delta(x)} \liminf_{t\to 0+} p(t,x,x) \varrho_1(t) \mathrm{d}\mu(x).$$

Conjecture: The principle of not feeling the boundary holds automatically (at least if Q_p is strongly local).

Thank you for listening!