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Introduction
Main result

On the proof of the main result

Compact manifolds and Rm

For the moment, let (X , g) be either the Euclidean Rm or a
compact Riemannian m-manifold

Theorem (Helffer/Robert; early 1980’s)

For every “very bounded” smooth potential w : X → R, one has
ZQM(g ; w ; ~)/Zcl(g ; w ; ~)→ 1 as ~→ 0+, where

ZQM(g ; w ; ~) := tr
(
e−(~2∆g+w)

)
, ,

Zcl(g ; w ; ~) := (2π~)−m
∫
T∗X

e
−(|p|2

g∗+w(q))
dp ∧ dq.

Note that Zcl(g ; w ; ~) is the integral of a globally defined 2m-form
on T ∗X , as m!dp ∧ dq is the local representation of the m-th
power of the symplectic form on T ∗X .
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• We are interested in generalizations of this results to arbitrary
Riemannian manifolds with minimal assumptions on w (no
asymptotic expansions at hand), and even more general
noncompact “spaces” than Riemannian manifolds
• essential observation for a possible abstract result: integrate out
the momentum in HR-formula: HR is equivalent to

lim
t→0+

(2πt)m/2tr
(
e−t(∆g+w/t)

)
=

∫
X
e−wdµg

• nice: no tangent space left! Idea: Consider ∆g ≥ 0 as generator
of a semigroup on an L2-space. But how should we replace
(2πt)m/2? Probably this comes from the heat kernel pg (t, x , x)
 Let us build the whole analysis from an abstract heat kernel!
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After some thinking (and taking my previous result for infinite
weighted graphs into account), I finally had the essential insight:
Rewrite the RHS of

lim
t→0+

(2πt)m/2tr
(
e−t(∆g+w/t)

)
=

∫
X
e−wdµg

according to∫
X
e−wdµg =

∫
X

lim
t→0+

(2πt)m/2pg (t, x , x)︸ ︷︷ ︸
=1

e−w(x)dµg (x)

with pg (t, x , y) the minimal heat kernel. Everything that follows is
based on this trivial observation....
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µ-heat kernels I

• X : seperable metrizable locally cpt. space; µ: Radon measure on
X with full support
• a Borel function (t, x , y) 7→ p(t, x , y) from (0,∞)× X × X to
(0,∞) is called a sppc µ-heat kernel, if it is symmetric in (x , y)
with∫

p(t, x , y)dµ(y) ≤ 1, p(t + s, x , y) =

∫
p(t, x , z)p(s, z , y)dµ(z)

and if Pt f :=
∫

p(t, ·, y)f (y)dµ(y) is well-defined and strongly
continuous at t = 0+ in L2(X , µ)

• let Hp ≥ 0 be the self-adjoint generator in L2(X , µ) of (Pt)t>0,
and let Qp be the quadratic form of Hp,

 we fix such a triple (X , µ, p) in the sequel
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µ-heat kernels II

• p is called regular, if Ccpt(X ) ∩Dom(Qp) is dense in Ccpt(X )
and dense in Dom(Qp) (resp. natural norms)  then Qp

automatically is a regular Dirichlet form

• Fukushima (1970’s): regular Dirichlet forms are in 1:1
correspondence with Hunt processes having càdlàg paths

• thus every regular p induces a Wiener measure Px
t with starting

point x ∈ X and terminal time t > 0 on the space Ω(X , t) of
càdlàg paths γ : [0, t]→ X

• Using a construction by Fitzsimmons/Pitman/Yor, we can
construct the pinned Wiener measure Px ,y

t with terminal point y ; a
very subtle point: unlike Px

t , the measure Px ,y
t lives on the smaller

σ-algebra F−(X , t) $ F (X , t)....annoying or interesting
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µ-heat kernels III

• If p is regular, we say it satisfies the principle of not feeling the
boundary, if for all compact subsets K ⊂ X with K̊ 6= ∅ and all
x ∈ K̊ , one has

lim
t→0+

Px ,x
t {γ : γ(s) ∈ K for all s ∈ [0, t)} = 1.

• We call a pair (%1, %2) of Borel functions %1 : (0, 1)→ (0,∞),
%2 : X → [0,∞) an asymptotic control pair for p, if:

· the limit limt→0+ p(t, x , x)%1(t) exists for all x ∈ X

· there exists a Borel function φ : (0, 1)→ (0,∞) such that

p(t, x , x) . %2(x)φ(t), sup
0<t<1

φ(t)%1(t) <∞.
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Example I: Complete Riemannian manifolds

• (X , g) a geodesically complete connected Riemannian
m-manifold, µg the volume measure, ∆g ≥ 0 the Laplace-Beltrami
operator, pg (t, x , y) > 0 the minimal nonnegative heat kernel
• the principle of not feeling the boundary is equivalent to

pU
g (t, x , x)/pg (t, x , x)→ 0 as t → 0+,

a classical fact (Kac, Varadhan, Hsu)!
• asymptotic expansion of heat kernel implies

lim
t→0+

pg (t, x , x)%(m)(t) = 1,

where %(m)(t) := (2πt)m/2
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Example I: Complete Riemannian manifolds

• Given x ∈ X , and b > 1, let rg ,b(x) be the supremum of all
r > 0 such that Bg (x , r) admits a centered chart with
(1/b)(δij) ≤ (gij) ≤ b(δij); then for all b > 1 the function

%g (x) := 1/min(rg ,b(x , b), 1)m

turns (%(m), %g ) into an asymptotic control function for pg

(Grigor’yan or G. in Potential Analysis 2016);

• if Ricg ≥ −C 2, then %′g (x) := 1/µg (Bg (x , 1)) turns (%(m), %′g )
into an asymptotic control function for pg

• set Hg := Hpg in L2(X , µg ), Qg := Qpg in L2(X , µg ).
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Example II: Infinite weighted graphs

• (X , b, µ): a weighted connected graph, that is b(x , y) ≥ 0 is
edge weight with

∑
y b(x , y) <∞ and µ(x) > 0 is vertex weight;

X carries discrete topology; for ψ : X → C (say bounded) set

∆b,µψ(x) = − 1

µ(x)

∑
{y :y∼bx}

b(x , y)
(
ψ(x)− ψ(y)

)
.

 minimal heat kernel (t, x , y) 7→ pb,µ(t, x , y) > 0 exists and is a
regular sppc µ-heat kernel (Keller/Lenz);
• from discreteness we immediately get

pb,µ(t, x , y) ≤ 1/µ(x) for all (t, x , y) ∈ (0,∞)× X × X ,

and
lim

t→0+
pb,µ(t, x , x) · 1 = 1/µ(x) for all x ∈ X .
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Example II: Finite weighted graphs

• pb,µ satisfies principle of not feeling the boundary: Px ,x
t is

concentrated on pure jump paths, and

Px ,x
t {γ : γ(s) ∈ {x , x1, . . . , xl} for all s ∈ [0, t)}
≥ Px ,x

t {γ : γ has not jumped before t}

≥ exp
(
− t

µ(x)

∑
y

b(x , y)
)(

pb,µ(t, x , x)µ(x)
)−1

.

Cf. Norris’ book or G./Keller/Schmidt in Probability Theory and
Related Fields 2016.
• the operator Hb,µ := Hpb,µ in L2(X , b) is a restriction of ∆b,µ;
set Qb,µ := Qpb,µ
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The main result

Theorem (B.G.)

Assume that X admits a metric which induces the original
topology, such that for every x ∈ X there is an r > 0 with B(x , r)
relatively compact. Let p satisfy the principle of not feeling the
boundary. Then for every asymptotic control pair (%1, %2) for p,
and every continuous potential w : X → R with w− being
infinitesimally Qp-bounded and

∫
e−w%2dµ <∞, one has

lim
t→0+

%1(t)tr
(
e−t(Hpuw/t)

)
=

∫
e−w(x) lim

t→0+
p(t, x , x)%1(t)dµ(x).

For example w− could be bounded or more generally Kato (in
practice an Lq + L∞ condition).
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Complete Riemannian manifolds I

Recall that %(m)(t) := (2πt)m/2.

Corollary

Assume that (X , g) is a smooth geodesically complete connected
Riemannian m-manifold. Then for every Borel function
% : X → [0,∞) which makes (%(m), %) an asymptotic control pair
for p, and for every continuous potential w : X → R with w−

infinitesimally Qg -bounded and
∫
e−w(x)%(x)dµg (x) <∞, one has

lim
t→0+

(2πt)m/2tr
(
e−t(Hguw/t)

)
=

∫
e−wdµg .

Batu Güneysu Semiclassical limits on Dirichlet spaces



Introduction
Main result

On the proof of the main result

Complete Riemannian manifolds II

Corollary

Let (X , g) be a smooth geodesically complete connected
Riemannian m-manifold with Ricg ≥ −A for some constant A ≥ 0,
and let w : X → R be a continuous with infX w > −∞ and

∞∑
k=2

exp
(
− inf

x∈X ,k−1<dg (x ,x0)<k
w(x)

)
kme2k

√
(m−1)A <∞

for some x0 ∈ X . Then one has

lim
t→0+

(2πt)m/2tr
(
e−t(Hguw/t)

)
=

∫
e−wdµg .

Proof: Use volume doubling machinery to prove
∫
e−w%dµg <∞.
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Infinite weighted graphs

We recover the following result (G., Journal of Mathematical
Physics 2014 or so)

Corollary

Let (X , b, µ) be a weighted graph which is connected in the graph
theoretic sense. Then for every potential w : X → R with w−

infinitesimally Qb,µ-bounded and
∑

x∈X e−w(x) <∞, one has

lim
t→0+

tr
(
e−t(Hb,µuw/t)

)
=
∑
x∈X

e−w(x).

Integration on RHS is not w.r.t. to underlying Hilbert space
measure!
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Upper bound

• From functional analysis and Chapman-Kolmogorov (and some
approximation arguments...) we get the Golden-Thompson
inequality:

tr
(
e−t(Hpuw)

)
≤
∫

p(t, x , x)e−w(x)dµ(x) for all t > 0, (1)

so that

lim sup
t→0+

%1(t)tr
(
e−tHp(w/t)

)
≤ lim sup

t→0+

∫
%1(t)p(t, x , x)e−w(x)dµ(x).

• assumptions on the heat kernel control pair (%1, %2) and w are
precisely such that we can interchange limit with integral using
dominated convergence
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Lower bound

Let Kn be a rel. cpt. exhaustion of X . For each n pick δn ∈ (0,∞]
such that for all 0 < δ < δn and all x ∈ Kn the ball B(x , δ) is rel.
cpt. (always possible)

%1(t)tr
(
e−tHp(w/t)

)
=

∫
%1(t)p(t, x , x)

∫
e−

1
t

∫ t
0 w(γ(s))dsdPx ,x

t (γ) dµ(x)

≥
∫
Kn

%1(t)p(t, x , x)

∫
{γ: γ(s)∈B(x ,δ) ∀ s ∈ [0, t)}

e−
1
t

∫ t
0 w(γ(s))dsdPx ,x

t (γ) dµ(x)

≥
∫
Kn

%1(t)p(t, x , x)Px ,x
t {γ : γ(s) ∈ B(x , δ) ∀ s ∈ [0, t)}e−wδ(x)dµ(x),

where wδ(x) := maxB(x ,δ) w ; by principle of not feeling the

boundary and Fatou’s Lemma:

lim inf
t→0+

%1(t)tr
(
e−tHp(w/t)

)
≥
∫
Kn

e−wδ(x) lim inf
t→0+

p(t, x , x)%1(t)dµ(x).
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A conjecture

Conjecture: The principle of not feeling the boundary holds
automatically (at least if Qp is strongly local).
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Thank you for listening!
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