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1. Introduction

Given a potential w : Rm → R and defining the Schrödinger operator −∆ + w in the
Hilbert space L2(Rm) of square-integrable functions Ψ : Rm → C, in quantum physics one
is interested in the unitary group

e−it(−∆+w) ∈ L (L2(Rm)), where ∆ :=
m∑
j=1

∂2j and i :=
√
−1.

Given an initial value Ψ0 ∈ L2(Rm) which is in the domain of definition of −∆ + w, the
Hilbert space valued function

[0,∞) ∋ t 7−→ Ψ(t) := e−it(−∆+w)Ψ0 ∈ L2(Rm)

uniquely solves the Schrödinger equation

(d/dt)Ψ(t) = −i(−∆+ w)Ψ(t), Ψ(0) = Ψ0

in the sense of Hilbert-space valued differentiable functions. Richard Feynman discovered
in this PhD thesis 1948 the intuitive representation

e−it(−∆+w)Ψ0(x) =
1

Z(t)

∫
{γ:[0,∞)→Rm,γ(0)=x}

e−i
∫ t
0 w(γ(s))dsΨ0(γ(t))e

−i
∫ t
0 |γ̇(s)|2dsDx(γ),

where Z(t) is a certain normalization constant, where Dx is some sort of Lebesgue measure

on the space of paths on Rm starting x and
∫ t
0
|γ̇(s)|2ds is the energy of such a path γ.

Unfortunately, one can prove that Dx does not exist1, and of course many paths do not
have a finite energy. In addition, strictly speaking one has Z(t) = 0.

On the other hand, switching from it to t, although each factor is problematic, by some
’miracle’ the product

dP x
t (γ) :=

1

Z(t)
e−

∫ t
0 |γ̇(s)|2ds ·Dx(γ)

turns out to be well-defined in a sense that can be made precise. The point is that

e−
∫ t
0 |γ̇(s)|2ds is damping and can absorb some of the infinities of Dx/Z(t), while e−

∫ t
0 |γ̇(s)|2ds

was oscillating and could not do that.

1There exists no nontrivial translation invariant measure on an infinite dimensional Banach space.
1
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In fact, P x
t turns out to be induced from a genuine probability measure P x on the space

of continuous paths γ : [0,∞) → Rm with γ(0) = x, which is called the Wiener measure.
Furthermore, any process in Rm whose law is P x is called a Brownian motion on Rm with
starting point x.

Being equipped with this observation, given a Brownian motion Xx : [0,∞)×Ω → Rm with
starting point x, which is defined on some probability space (Ω, P ), it turns that the unique
solution of the heat semigroup e−t(−∆+w) ∈ L (L2(Rm)), which with Ψ(t) := e−t(−∆+w)Ψ0

uniquely solves

(d/dt)Ψ(t) = −(−∆+ w)Ψ(t), Ψ(0) = Ψ0

in the sense of Hilbert-space valued functions, admits the completely well-defined repre-
sentation

e−t(−∆+w)Ψ0(x) =

∫
Ω

e−
∫ t
0 w(X

x(s))dsΨ0(X
x(t))dP,

which is the famous Feynman-Kac formula.

In this lecture course we are going to address the following questions:

• What is the precise definition of −∆+w as a genuine (unbounded) self-adjoint oper-
ator in the Hilbert space L2(Rm) which is bounded from below? This is a somewhat
complicated problem, as in quantum physics, one has to deal with nonsmooth and
unbounded potentials w such as the Coulomb potential w(x) = −1/|x|.

• What is the precise definition of Brownian motion in Rm? This is closely related
to the existence of the Wiener measure; which turns out to be induced in a sense
that can be made precise by the Gauss-Weierstrass function

p : (0,∞)× Rm × Rm −→ [0,∞), p(t, x, y) := (4πt)−m/2e−
|x−y|2

4t .

• What happens if we replace Rm with an open subset of Rm or more generally
with an Riemannian manifold (and the Lebesgue measure with the Riemannian
volume measure)? In fact, we are going to treat all the above problems from the
very beginning on arbitrary (possibly noncompact) Riemannian manifolds. The
essential observation here is that the Gauss-Weierstrass is the integral kernel of the
heat semigroup (’heat kernel’),

e−t(−∆)Ψ0(x) =

∫
Rm

p(t, x, y)Ψ0(y)dy.

Note that in particular p(t, x, y) is a fundamental solution of the heat equation in
Rm in the sense that

∂tp(t, x, y) = −∆xp(t, x, y), lim
t→0+

p(t, •, y) = δy.

Thus, replacing ∆ with the Laplace-Beltrami operator on a Riemannian manifold
and the Lebsgue measure dy with the Riemannian volume measure, we will be in-
terested in the heat kernel of a Riemannian manifold. In fact, proving its existence
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and its properties that guarantee the existence of the Wiener measure (or equiv-
alently Brownian motion) on an arbitrary Riemannian manifold will be the main
challenge of the course.

• The final part of the course will be devoted to the proof of the Feynman-Kac formula
on an arbitrary Riemannian manifold.

We close this section with a brief historical account on the connection between Brownian
motion and the heat equation: in 1827 the botanist Brown was watching small test particles
(pollen,...) in suspended in a fluid medium (water,...) in a body M ⊂ R3 and was shocked
by the fact that the pollen is moving. Having started with pollen, his first conclusion was
that pollen is alive, until he repeated the experiment with other test particles that he was
sure of not being alive. His observations were that the trajectory X of each test particle
was random and independent of the trajectory of any other test particle (so wlog we can
consider one test particle). This leads to the idea that X should be what we call today a
stochastic process, that is, a map

X : [0,∞)× (Ω,F , P ) −→M,

where (Ω,F , P ) is a probability space. Here, the set Ω contains the random parameters
and for each fixed ω ∈ Ω, the map

X(ω) : [0,∞) −→M

is called a (random) path of the process. Then Brown observed that the expected dis-
placement of the test particle was a decreasing function of its size and of viscosity of the
medium, which increasing with the temperature of the medium.
Let

u(·, ·, y) : (0,∞)×M −→ [0,∞), (t, x, y) 7−→ u(t, x, y)

denote the probability density of X, assuming that X starts in some y ∈ M . In other
words, the probability of finding X in A ⊂M at the time t is given by

P{Xt ∈ A} =

∫
A

u(t, x, y)dy.

It was then Einstein who derived in 1905 that this density solves the heat equation

∂tu(t, x, y) = −D∆xu(t, x, y),

where the diffusion constant D > 0 of the system is given by

kT

6πνR
,

where k is the Boltzmann constant, T the temperature of the medium, ν its viscosity and R
the radius of the test particle. Assuming that u(t, x, y) behaves like the three dimensional
Gauss-Weierstrass function, one can then easily derive the fundamental relation∫

Ω

|Xj
t − yj|2dP ≈ D · t,(1)
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for the average square displacement, which explains all observations of Brown. The sto-
chastic process underlying the random trajectory of a test particle as above is precisely a
Brownian motion.

Einstein’s conclusion was that the medium consists of very small particles (which we would
call molecules today), subject to some random kinematics, which bombard the larger test
particles and lead to their random movement. The above fundamental relation (1) was
confirmed in an experiment by Perrin in 1908 for which he received the Nobel price later.
Note that all of this is roughly 20 years before quantum mechanics, and so these results
can be thought of as a first confirmation of the atomic structure of matter.

2. Linear operators in Banach and Hilbert spaces

2.1. Motivation. We collect here some facts on linear operators. For a detailed discussion
of the (standard) results below, we refer the reader to [39, 29, 23].

This section is motivated by the following observations from linear algebra: assume a linear
operator T in a (say) complex finite dimensional Hilbert space H ∼= Cl is given. Then for
every ψ0 ∈ H there is a unique solution Ψ : [0,∞) → H of the ’heat equation’

(d/dt)Ψ(t) = −TΨ(t), Ψ(0) = Ψ0.

In fact, we can simply set Ψ(t) = e−tTΨ0, with

e−tT =
∞∑
j=0

(−tT )j/j!

the matrix exponential series. Now if H is infinite dimensional (in our case this will the
Hilbert space of square integrable functions on a Riemannian manifold), for T ’s one is
interested in (in our case: the Laplace-Beltrami operator), the exponential series will never
converge. The way out of this is provided by the following observation: assume in the
above finite dimensional situation that T is self-adjoint. Then, as T is diagonalizable, one
has

T =

∫
{λ∈R: λ is an eigenvalue of T}

λ PT (dλ) :=
∑

{λ∈R: λ is an eigenvalue of T}

λPT (λ)(2)

with PT (λ) the projection onto the eigenspace of λ. Given a function f : R → C (like
f(r) = e−tr!), the above formula suggests to define a linear operator f(T ) in H by setting

f(T ) :=

∫
{λ∈R: λ is an eigenvalue of T}

f(λ) PT (dλ) :=
∑

{λ∈R: λ is an eigenvalue of T}

f(λ)PT (λ).(3)

For f(r) = e−tr this definition is equivalent to using the matrix exponential.
By John von Neumann’s spectral theorem, it turns out that given any self-adjoint operator
T in a possibly infinite dimensional Hilbert space there exists a unique projection-valued
measure PT such that one has

T =

∫
λ dPT (λ),
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and using the above observations this fact leads to satisfactory solution theory of the
abstract heat equation induced by T . The purpose of this section is to explain these facts
im detail. Before that, let us list some issues that are supposed to motivate some of the
following definitions:

• a self-adjoint operator T : H → H in a Hilbert space is automatically bounded
(= continuous). However, the operators we will be interested in (like the Laplace-
Beltrami operator) turn out to be never bounded. The way out of this is consider
linear operators T : Dom(T ) → H that are defined on a (typically dense) subspace
Dom(T ) ⊂ H , called the domain of definition of T . Thus: any self-adjoint operator
T in H with Dom(T ) = H is automatically bounded, the self-adjoint operators
of interest are not bounded (and so cannot be defined everyhwere). Although self-
adjoint operators are not bounded, they turn out to satisfy a weaker useful property,
namely they are closed.

• In infinite dimensions, it is often easier to define a self-adjoint operator via sym-
metric sesquilinear forms. Note that in finite dimensions, given any symmetric
sesquilinear form

Q : H × H −→ C
there exists a unique self-adjoin operator TQ : H → H such that

Q(Ψ1,Ψ2) = ⟨TQΨ1,Ψ2⟩ .
In the infinite dimensional case, again domain of definition questions arise and, in
particular, one needs the sesqulinear form to be bounded from below in a certain
sense in order that it induces a self-adjoint operator (which is then also bounded
from below).

• In infinite dimensions, the actual definition of the adjoint of an operator (and thus
of self-adjointness) is a bit subtle, which is due to the above mentioned domain of
definition problems. In particular, we will distinguish symmetric operators from
self-adjoint ones, noting that an everywhere defined operator is self-adjoint if any
only if it is symmetric, and so this distinction is not needed in finite dimensions.

2.2. Facts about linear operators in Banach and Hilbert spaces. Classical refer-
ences for the topics of this section are [40, 23].

We understand all our normed spaces to be over C. As we have explained above, it is
essential to require a linear operator T between Banach spaces B1 and B2 to be only
defined on a subspace Dom(T ) ⊂ B1, called its domain of definition, so that T is actually
a linear map T : Dom(T ) → B2. Its image or range Ran(T ) ⊂ B2 is defined to be the
linear space of all f2 ∈ B2 for which there exists f1 ∈ Dom(T ) with Tf1 = f2. Its kernel
Ker(T ) is given by all f ∈ Dom(T ) with Tf = 0.

Such a linear operator T is called bounded, if there exists a constant C ≥ 0 such that
∥Tf∥ ≤ C ∥f∥ for all f ∈ Dom(T ), and the smallest such C is called the operator norm of
T and denotes by ∥T∥. Boundedness of T is equivalent to its continuity as a map between
normed spaces (considered as metric and thus topological spaces in the usual way). If
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Dom(T ) is dense, then T can be uniquely extended to a bounded linear map B1 → B2,
which will be denoted with the same symbol again. The linear space of bounded linear
operators is denoted by L (B1,B2) and becomes a Banach space itself with the above
operator norm. One sets

L (B1) := L (B1,B1).

Theorem 2.1 (Closed graph theorem). A linear operator T from B1 to B2 is bounded, if
and only if its graph

{(f1, f2) ∈ Dom(T )× B2 : Tf1 = f2} ⊂ B1 × B2

is closed.

We also record:

Theorem 2.2 (Uniform boundeness principle). For a subset A ⊂ L (B1,B2) the following
conditions are equivalent:

• for all f ∈ B1 there exists a constant Cf ≥ 0 with ∥Tf∥ ≤ Cf for all T ∈ A.
• there exists a constant C ≥ 0 with ∥T∥ ≤ C for all T ∈ A.

Let H be a separable complex Hilbert space. The underlying scalar product, which is
assumed to be antilinear in its first slot, will be simply denoted by ⟨•, •⟩, and the induced
norm (as well as the induced operator norm) is denoted by ∥•∥.

Theorem 2.3 (Riesz-Fischer’s duality theorem). Assume T ∈ L (H ,C), that is, T is a
linear continuous functional on H . Then there exists a unique fT ∈ H such that for all
h ∈ H one has

T (h) = ⟨fT , h⟩ .
The map T 7→ fT induces an anti-linear isometric isomorphism between L (H ,C) and
H .

If H̃ is another seperable complex Hilbert space case and R is a densely defined linear
operator from H to H̃ , then the adjoint R∗ of R is a linear operator from H̃ to H which
is defined as follows: Dom(R∗) is given by all f ∈ H̃ for which there exists f ∗ ∈ H such
that

⟨f ∗, h⟩ = ⟨f,Rh⟩ for all h ∈ Dom(R),

and then R∗f := f ∗.

In the sequel, let S and T be arbitrary linear operators in H . Firstly, T is called an
extension of S (symbolically S ⊂ T ), if Dom(S) ⊂ Dom(T ) and Sf = Tf for all f ∈
Dom(S).

If S is densely defined, then S is called symmetric, if S ⊂ S∗ and self-adjoint if S = S∗.
Clearly, self-adjoint operators are symmetric. Note for the symmetry of only needs to check
that it is densely defined

⟨Sf1, f2⟩ = ⟨f1, Sf2⟩
for all f1, f2 ∈ Dom(S). Checking self-adjointness is a tricky business for unbounded
operators, while checking symmetry is very easy:
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Example 2.4. Assume U ⊂ Rm is open and the operator S := −∆ = −
∑m

j=1 ∂
2
j in the

complex Hilbert space L2(U) is given the domain of definition Dom(S) := C∞
c (U). Then

S is symmetric: for all f1, f2 ∈ Dom(S) = C∞
c (U) by Stokes’ Theorem one has

⟨Sf1, f2⟩ =
∫
U

(−∆)f1f2dx

=

∫
U

(∇f1,∇f2)dx+ a boundary term that vanishes because fj is compactly supported in U

=

∫
U

f1(−∆)f2dx = ⟨f1, Sf2⟩ .

This operator is not self-adjoint (in general it has many self-adjoint extensions; in case
U = Rm it has precisely one self-adjoint extension; exercises).

The operator S is called semibounded (from below), if there exists a constant C ≥ 0 such
that for all f ∈ Dom(S) one has

⟨Sf, f⟩ ≥ −C ∥f∥2 ,(4)

or in short: S ≥ −C. Since H is assumed to be complex, semibounded operators are
automatically symmetric (by complex polarization).

S is called closed, if whenever (fn) ⊂ Dom(S) is a sequence such that fn → f for some
f ∈ H and Sfn → h for some h ∈ H , then one has f ∈ Dom(S) and Sf = h.

S is called closable, if it has a closed extension. In this case, S has a smallest closed
extension S, which is called the closure of S. The closure S is determined as follows:
Dom(S) is given by all f ∈ H for which there exists a sequence (fn) ⊂ Dom(S) such that
fn → f and such that (Sfn) converges, and then Sf := limn Sfn.

Adjoints of densely defined operators are closed, so that that symmetric operators are
closable; self-adjoint operators are closed. Bounded operators are always closed by the
closed graph theorem.

If S is densely defined and closable, then S∗ is densely defined and S∗∗ = S.

If T is symmetric, then T is called essentially self-adjoint, if T is self-adjoint. Then T is
the unique self-adjoint extension of T .

We record:

Theorem 2.5. Assume that S is semibounded (in particular, symmetric) with S ≥ −C
for some constant C ≥ 0. Then S is essentially self-adjoint, if and only if there exists
z ∈ C \ [−C,∞) such that Ker((S − z)∗) = {0}.

The resolvent set ρ(S) is defined to be the set of all z ∈ C such that S− z is invertible as a
linear map Dom(S) → H and (S − z)−1 is in addition bounded as a linear operator from
H to H . If S is closed and (S − z) invertible, then (S − z)−1 is automatically bounded
by the closed graph theorem. The spectrum σ(S) of S is defined as the complement
σ(S) := C \ ρ(S). Resolvent sets of closed operators are open, therefore spectra of closed
operators are always closed.
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A number z ∈ C is called an eigenvalue of S, if Ker(S−z) ̸= {0}. In this case, dimKer(S−
z) is called the multiplicity of z, and each f ∈ Ker(S − z) \ {0} is called an eigenvector
of S corresponding to z. Of course each eigenvalue is in the spectrum. The eigenvalues of
a symmetric operator are real, and the eigenvectors corresponding to different eigenvalues
of a symmetric operator are orthogonal. A simple result that reflects the subtlety of the
notion of a “self-adjoint operator” when compared to that of a“symmetric operator” is the
following: A symmetric operator in H is self-adjoint, if and only if its spectrum is real. If
S is self-adjoint, then S ≥ −C for a constant C ≥ 0 is equivalent to σ(S) ⊂ [−C,∞) (cf.
Satz 8.26 in [40]).

The essential spectrum σess(S) ⊂ σ(S) of S is defined to be the set of all eigenvalues λ of
S such that either λ has an infinite multiplicity, or λ is an accumulation point of σ(S).
Then the discrete spectrum σdis(S) ⊂ σ(S) is defined as the complement

σdis(S) := σ(S) \ σess(S).

As every isolated point in the spectrum of a self-adjoint operator is an eigenvalue (cf.
Folgerung 3, p. 191 in [39]), it follows that in case of S being self-adjoint, the set σdis(S)
is precisely the set of all isolated eigenvalues of S that have a finite multiplicity.

Let H̃ be another complex separable Hilbert space. We recall that given q ∈ [1,∞), some

K ∈ L (H , H̃ ) is called

• compact, if for every orthonormal sequence (en) in H and every orthonormal se-

quence (fn) in H̃ one has ⟨Ken, fn⟩ → 0 as n→ ∞
• q-summable (or an element of the q-th Schatten class of operators H → H̃ ), if for
every (en), (fn) as above one has∑

n

|⟨Ken, fn⟩|q <∞.

Let us denote the class of compact operators with J ∞(H , H̃ ) and the q-th Schatten

class with J q(H , H̃ ), with the convention J •(H ) := J •(H ,H ). These are linear
spaces with

J q1(H , H̃ ) ⊂ J q2(H , H̃ ) for all q2 ∈ [1,∞], with q1 ≤ q2,

and one has inclusions of the type J q ◦ L ⊂ J q, L ◦ J q ⊂ J q for all q ∈ [1,∞], and
J q1 ◦ J q2 ⊂ J q3 if 1/q1 + 1/q2 = 1/q3 with qj ∈ [1,∞).
For obvious reasons, J 1 is called the trace class, and moreover J 2 is called the Hilbert-
Schmidt class.

Example 2.6. A bounded operator K in L2(X,µ)-space is Hilbert-Schmidt, if (and only
if) it is an integral operator with a square integrable integral kernel, that is, if

Kf(x) =

∫
k(x, y)f(y)dµ(y)
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for some k ∈ L2(X ×X,µ⊗ µ). This follows from evaluating∑
n

|⟨Ken, fn⟩|2

explicitly using Parseval’s identity.

Let us now turn towards the formulation of the spectral theorem (I will follow [40] here):

Definition 2.7. A spectral resolution P on H is a map P : R → L (H ) such that

• for every λ ∈ R one has P (λ) = P (λ)∗, P (λ)2 = P (λ) (that is, each P (λ) is an
orthogonal projection onto its image)

• P is monotone in the sense that λ1 ≤ λ2 implies Ran(P (λ1)) ⊂ Ran(P (λ2))
• P is right-continuous in the strong topology2 of L (H )
• limλ→−∞ P (λ) = 0 and limλ→∞ P (λ) = idH , both in the strong sense.

It follows that for every f ∈ H , the function

λ 7→ ⟨P (λ)f, f⟩ = ∥P (λ)f∥2

is right-continuous and increasing. Thus by the usual Stieltjes construction3 it induces a
Borel measure on R, which will be denoted by ⟨P (dλ)f, f⟩. This measure has the total
mass

⟨P (R)f, f⟩ = ∥f∥2 .
Given such P and a Borel function ϕ : R → C, the set

DP,ϕ :=

{
f ∈ H :

∫
R
|ϕ(λ)|2 ⟨P (dλ)f, f⟩ <∞

}
is a dense linear subspace of H (cf. Satz 8.8 in [40]), and accordingly one can define a
linear operator ϕ(P ) with Dom(ϕ(P )) := DP,ϕ in H by mimicking the complex polarization
identity,

⟨ϕ(P )f1, f2⟩ := (1/4)

∫
R
ϕ(λ) ⟨P (dλ)(f1 + f2), f1 + f2⟩

−(1/4)

∫
R
ϕ(λ) ⟨P (dλ)(f1 − f2), f1 − f2⟩

+(
√
−1/4)

∫
R
ϕ(λ)

〈
P (dλ)(f1 −

√
−1f2), f1 −

√
−1f2

〉
−(

√
−1/4)

∫
R
ϕ(λ)

〈
P (dλ)(f1 +

√
−1f2), f1 +

√
−1f2

〉
,

where f1, f2 ∈ Dom(ϕ(P )). Every spectral measure induces the following “calculus”:

2Tn → T strongly in L (H ) means that Tnf → Tf for all f ∈ H ; this is weaker that convergence in
the operator norm toppology, which means that ∥Tn − T∥ → 0.

3Given a right-continuous and increasing function F : R → R there exists precisely one measure µF on
R such that for all b > a one has µF ((a, b]) = F (b)− F (a).
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Theorem 2.8. Let P be a spectral resolution on H , and let ϕ : R → C be a Borel function.
Then:
(i) One has ϕ(P )∗ = ϕ(P ); in particular, ϕ(P ) is self-adjoint, if and only if ϕ is real-valued.
(ii) One has ∥ϕ(P )∥ ≤ supR |ϕ| ∈ [0,∞].
(iii) If ϕ ≥ −C for some constant C ≥ 0, then one has ϕ(P ) ≥ −C.
(iv) If ϕ′ : R → C is another Borel function, then

ϕ(P ) + ϕ′(P ) ⊂ (ϕ+ ϕ′)(P ), Dom(ϕ(P ) + ϕ′(P )) = Dom((|ϕ|+ |ϕ′|)(P ))
and

ϕ(P )ϕ′(P ) ⊂ (ϕϕ′)(P ), Dom(ϕ(P )ϕ′(P )) = Dom((ϕϕ′)(P )) ∩Dom(ϕ′);

in particular, if ϕ′ is bounded, then

ϕ(P ) + ϕ′(P ) = (ϕ+ ϕ′)(P ),

ϕ(P )ϕ′(P ) = (ϕϕ′)(P ).

(v) For every f ∈ Dom(ϕ(P )) one has

∥ϕ(P )f∥2 =
∫
R
|ϕ(λ)|2 ⟨P (dλ)f, f⟩ .

One variant of the spectral theorem is:

Theorem 2.9. For every self-adjoint operator S in H there exists precisely one spec-
tral resolution PS on H such that S = idR(PS). The operator PS is called the spectral
resolution of S, and it has the following additional properties:

• PS is concentrated on the spectrum of S in the sense that for every Borel function
ϕ : R → C one has

ϕ(PS) = (1σ(S) · ϕ)(PS)
• if ϕ : R → R is continuous, then σ(ϕ(PS)) = ϕ(σ(S))
• if ϕ, ϕ′ : R → R are Borel functions, then one has the transformation rule (ϕ ◦
ϕ′)(PS) = ϕ(Pϕ′(PS)).

In view of these results, given a self-adjoint operator S in H , the calculus of Theorem 2.8
applied to P = PS is usually referred to as the spectral calculus of S. Likewise, given a
Borel function ϕ : R → C one sets

ϕ(S) := ϕ(PS).

Note that we have

⟨ϕ(S)f, f⟩ =
∫
σ(S)

ϕ(λ) ⟨PS(dλ)f, f⟩

or in short

ϕ(S) =

∫
σ(S)

ϕ(λ) PS(dλ)

and for ϕ the identity,

S =

∫
σ(S)

λ PS(dλ),
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which is the promised variant of (2) and (3).

Remark 2.10. Let S be a self-adjoint operator in H .
1. The spectral calculus of S is compatible with all functions of S that can be defined “by
hand”. For example, for every z ∈ C \K one has ϕ(S) = (S− z)−1 with ϕ(λ) := 1/(λ− z),
or Sn = ϕ(S) with ϕ(λ) := λn.
2. If S is a semibounded operator and z ∈ C is such that ℜz < minσ(S), then the spectral
calculus (together with a well-known Laplace transformation formula for functions) shows
that for every b > 0 one has the following formula for f1, f2 ∈ H :〈

(S − z)−bf1, f2
〉
=

1

Γ(b)

∫ ∞

0

sb−1
〈
ezse−sSf1, f2

〉
ds.(5)

3. If S ≥ −C for some constant C ≥ 0, then the collection (e−tS)t≥0 forms a strongly
continuous self-adjoint semigroup of bounded operators (contractive, if one can pick C = 0),
and one has the abstract smoothing effect

Ran(e−tS) ⊂
⋂

n∈N≥1

Dom(Sn) for all t > 0.

Moreover, for every ψ0 ∈ H the path

[0,∞) ∋ t 7−→ ψ(t) := e−tSψ0 ∈ H

is the uniquely determined continuous path with ψ(0) = ψ0 which is differentiable in (0,∞)
and satisfies there the abstract heat equation

(d/dt)ψ(t) = −Sψ(t).
This will be an exercise.
4. If S ≥ −C for some constant C ≥ 0 and if e−tS ∈ J 2(H ) for some t > 0, then S has a
purely discrete spectrum (so the spectrum consists of countably many eigenvalues having
a finite multiplicity) and if one ennumerates the eigenvalues in an increasing way and
counting multiplicity, (λn), then one has −C ≤ λ0 < λ1 ↗ ∞ if H is infinite dimensional.

Example 2.11. Assume on a sigma-finite measurable space (X,µ) we are given a mea-
surable function ψ : X → C. Then the associated maximally defined multiplication in
L2(X,µ) is given by

Dom(Mψ) := {f ∈ L2(X,µ) : ψf ∈ L2(X,µ)}, Mψf(x) := ψ(x)f(x).

Mψ is bounded from below, if and only if ψ ≥ C µ-a.e. for some C ∈ R and bounded, if
and only |ψ| ≤ c µ-a.e. for some c ≥ 0. Moreover, Mψ is always closed, and a point z ∈ C
lies in the spectrum if and only if for all ϵ > 0 one has

µ{x ∈ X : |ψ(x)− z| < ϵ} > 0.

and z is an eigenvalue, if and only if

µ{x ∈ X : ψ(x) = z} > 0.

The operator Mψ is self-adjoint if only if ψ(x) ∈ R for µ-a.e. x ∈ X. In the latter case,
concerning the spectral calculus, one has ϕ(Mψ) = Mϕ◦ψ. Some of these statements will
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be proved in the exercises.
Using the spectral theorem one can show that every self-adjoint operator is unitarily equiv-
alent to a self-adjoint multiplication operator on some finite measure space. Here, a linear
operator V between two Hilbert spaces is called unitary, if it is bijective with V −1 = V ∗

and two linear operators are called unitarily equivalent, if there exits a unitary operator V
with B = V ∗AV .

We now collect some basic facts about possibly unbounded sesquilinear forms on Hilbert
spaces. Unless otherwise stated, all statements below can be found in section VI of T.
Kato’s book [23].

Let again H be a complex separable Hilbert space. A sesquilinear form Q on H is
understood to be a map

Q : Dom(Q)×Dom(Q) −→ C,

where Dom(Q) ⊂ H is a linear subspace called the domain of definition of Q, such that
Q is antilinear4 in its first slot, and linear in its second slot. The quadratic form induced
by Q is simply the map

Q : Dom(Q) −→ C, 7→ f 7−→ Q(f, f).

Let Q and Q′ be sesquilinear forms on H in this section.

Q′ is called an extension of Q, symbolically Q ⊂ Q′, if Dom(Q) ⊂ Dom(Q′) and if both
forms coincide on Dom(Q).

Q is called symmetric, if Q(f1, f2) = Q(f2, f1)
∗, and semibounded (from below), if its

quadratic form is real-valued with and there exists a constant C ≥ 0 such that

Q(f, f) ≥ −C ∥f∥2 for all f ∈ Dom(Q),(6)

symbolically Q ≥ −C. Again by complex polarization, every semibounded form is auto-
matically symmetric (as the quadratic form is real-valued).

Following Kato, given a sequence (fn) ⊂ Dom(Q) and f ∈ H we write fn −→
Q

f as

n→ ∞, if one has fn → f in H and in addition

Q(fn − fm, fn − fm) → 0 as n,m→ ∞.

Then Q is called closed, if fn −→
Q

f implies that f ∈ Dom(Q). A semibounded Q is closed,

if and only if for some/every C ≥ 0 with Q ≥ −C the scalar product on Dom(Q) given by

⟨f1, f2⟩Q,C = (1 + C) ⟨f1, f2⟩+Q(f1, f2)(7)

4We warn the reader, however, that in [23] the forms are assumed to be antilinear in their second slot;
thus, if Q(f1, f2) is a form in our sense, the theory from [23] has to be applied to the complex conjugate
form Q(f1, f2)

∗.
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turns Dom(Q) into a Hilbert space. Futhermore, for a semibounded Q ≥ −C its closedness
is equivalent to the lower-semicontinuity of the function

H −→ [−C,∞], f 7−→

{
Q(f, f), if f ∈ Dom(Q)

∞ else.

The form Q is called closable, if it has a closed extension. If Q is semibounded and closable,
then it has a smallest semibounded and closed extension Q, which is (well-)defined as
follows: Dom(Q) is given by all f ∈ H that admit a sequence (fn) ⊂ Dom(Q) with
fn −→

Q
f ; then one has

Q(f, h) = lim
n
Q(fn, hn), where fn −→

Q
f , hn −→

Q
h.

If Q is closed, then a linear subspace D ⊂ Dom(Q) is called a core of Q, if Q|D = Q.

Proposition 2.12. If Q and Q′ are semibounded and closed, then Q+Q′ is semibounded
and closed on its natural domain of definition.

The following notions will be convenient:

Definition 2.13. Let Q be symmetric. If Dom(Q) ⊂ Dom(Q′), then Q′ is called

• Q-bounded with bound < 1, if there exist constants δ ∈ [0, 1), A ∈ [0,∞) such that

|Q′(f, f)| ≤ A ∥f∥2 + δQ(f, f) for every f ∈ Dom(Q),(8)

• infinitesimally Q-bounded, if for every δ ∈ [0,∞) there exists a constant A = Aδ ∈
[0,∞) with (8).

The next result from perturbation theory is the famous KLMN (Kato-Lax-Lions-Milgram-
Nelson) theorem and will allow us to consider perturbations of Laplacians by potentials
later on:

Theorem 2.14. Let Q be semibounded and closed, and let Q′ be symmetric and Q-bounded
with bound < 1. Then Q+Q′ is semibounded and closed on its natural domain Dom(Q)∩
Dom(Q′) = Dom(Q). Moreover, every form core of Q is also one of Q+Q′, and for every
constant c ≥ 0 with Q ≥ −c and every A, δ as in (8) one has the explicit lower bound

Q+Q′ ≥ −(1− δ)c− A.

Using the spectral calculus one defines:

Definition 2.15. Given a self-adjoint operator S in H , the (densely defined and sym-

metric) sesquilinear form QS in H given by Dom(QS) := Dom(
√

|S|) and

QS(f1, f2) :=
〈√

|S|f1,
√

|S|f2
〉

is called the form associated with S.
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The following fundamental result links the world of densely defined, semibounded, closed
forms with that of semibounded self-adjoint operators (cf. Theorem VIII.15 in [29] for this
exact formulation):

Theorem 2.16. For every self-adjoint semibounded operator S in H , the form QS is
densely defined, semibounded and closed. Conversely, for every densely defined, closed and
semibounded sesquilinear form Q in H , there exists precisely one self-adjoint semibounded
operator SQ in H such that Q = QSQ

. The operator SQ will be called the operator
associated with Q.

The correspondence S 7→ QS has the following additional properties:

Theorem 2.17. Let Q be densely defined, closed and semibounded. Then:

• SQ is the uniquely determined self-adjoint and semibounded operator in H such
that Dom(SQ) ⊂ Dom(Q) and

⟨SQf1, f2⟩ = Q(f1, f2) for all f1 ∈ Dom(SQ), f2 ∈ Dom(Q).

• Dom(SQ) is a core of Q; some f1 ∈ Dom(Q) is in Dom(SQ), if and only if there
exists f2 ∈ H and a core D of Q with

Q(f1, f3) = ⟨f2, f3⟩ for all f3 ∈ D,

and then SQf1 = f2.
• One has

Dom(Q) =

{
h ∈ H : lim

t→0+

〈
h− e−tSQh

t
, h

〉
<∞

}
,

Q(h, h) = lim
t→0+

〈
h− e−tSQh

t
, h

〉
.

• One has the variational principle

minσ(SQ) = inf{Q(f, f) : f ∈ Dom(Q), ∥f∥ = 1}(9)

= inf{⟨SQf, f⟩ : f ∈ Dom(SQ), ∥f∥ = 1}.(10)

Notation 2.18. If Q, Q′ are symmetric, we write Q ≥ Q′, if and only if Dom(Q) ⊂
Dom(Q′) and Q(f, f) ≥ Q′(f, f) for all f ∈ Dom(Q).

The Friedrichs extension of a semibounded operator can be defined as follows:

Example 2.19. Let S ≥ −C be a symmetric (in particular, a densely defined) and semi-
bounded operator in H . Then the form (f1, f2) 7→ ⟨Sf1, f2⟩ with domain of definition
Dom(S) is closable, and of course the closure Q̃S of that form is densely defined and semi-
bounded. The operator SF associated with Q̃S is called the Friedrichs realization of S. The
operator SF can also be characterized as follows: SF is the uniquely determined self-adjoint
semibounded extension of S with domain of definition ⊂ Dom(Q̃S). Let MC(S) denote
the class of all self-adjoint extensions of S which are ≥ −C. Thus we have SF ∈ MC(S),
and in addition the following maximality property holds:

T ∈ MC(S) ⇒ QT ≤ Q̃S.
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In particular, SF has the smallest bottom of spectrum minσ(SF ) among all operators in
MC(S). This is Krein’s famous result on the characterization of semibounded extensions
[1] [24].

Remark 2.20. Let U be an open subset of Rm.
1. The fundamental lemma of distribution theory states that given f1, f2 ∈ L1

loc(U) one has
f1 = f2 a.e., if and only if one has ∫

U

f1ϕ =

∫
U

f2ϕ

for all smooth comactly supported functions ϕ on U .
2. Given f ∈ L1

loc(U), p ∈ [1,∞], and a partial differential operator P on U with smooth
coefficients, one says that Pf ∈ Lploc(U) in the sense of distributions, if there exists an
h ∈ Lploc(U) such that for all smooth compactly supported functions ϕ on U one has∫

U

fP †ϕ =

∫
U

hϕ,

where P † denotes the formal adjoint of P . Then Pf := h is uniquely determined and
so well-defined by the fundamental lemma of distribution theory. Recall that the formal
adjoint of P =

∑
α Pα∂

α is the differential operator given by P †ψ =
∑

α(−1)α∂α(Pαψ).

Let us see how the Friedrichs construction can be used to define a self-adjoint realization
of the Laplace operator −∆ in L2(U), where U is an arbitrary open subset of Rm: consider
−∆ as a linear operator in L2(U), defined initially on C∞

c (U). We have seen above that
−∆ is symmetric; more precisely, for all f1, f2 ∈ C∞

c (U) one has

⟨(−∆)f1, f2⟩U =

∫
U

(∇f1,∇f2),

so

⟨(−∆)f1, f1⟩ =
∫
U

|∇f1|2 ≥ 0,

and −∆ ≥ 0 in L2(U). It follows from the previous example that −∆ canonically induces
a self-adjoint operator HU ≥ 0 in L2(U), called the Dirichlet-Laplacian in U . In terms of

the Euclidean Sobolev spaces W k,p(U) and W k,p
0 (U): one has

Dom(HU) = {f ∈ W 1,2
0 (U) : ∆f ∈ L2(U)}, HUf = −∆f,

where ∆f is understood in the sense of distributions. Here, given p ∈ [1,∞], k ∈ N, the
Banach space W k,p(U) is given by all f ∈ Lp(U) such that ∂αf ∈ Lp(U) for all |α| ≤ k,

and W k,p
0 (U) denotes the closure of C∞

c (U) in W k,p(U).

3. Basic facts on differential operators on Riemann manifolds

Let M be a manifold5 of dimension m. Recall that a vector bundle of rank ℓ is a smooth
surjective map of manifolds π : E →M such that for all x ∈M the fiber Ex := π−1({x}) ⊂

5We understand all our manifolds ad bundles to be smooth and without boundary.
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E over x is an ℓ-dimensional vector space, and for every x0 ∈ M there exists an open
neighbourhood U of x0 and smooth maps e1, . . . , eℓ : U → E such that

• ej(x) ∈ Ex for all x ∈ U , j = 1, . . . , ℓ,
• e1(x), . . . , eℓ(x) ∈ Ex is a basis.

For example, π : E = M × Cl → M is a vector bundle (’trivial vector bundle’) with
π the projection. Or examples come from differential topology: π : TM → M is the
tangent bundle, π : T ∗M → M the cotangent bundle, and one can forms bundles like
π : E1 ⊗ E2 →M , π : E1 ∧ E2 →M etc. in a natural way.

Given an open subset U ⊂ M , we denote with ΓC∞(U,E) the smooth sections of E → M
over U , that is, the linear space (in fact C∞(U) left module, where C∞(U) = C∞(U,C))
of all smooth maps ψ : U → E with ψ(x) ∈ Ex for all x ∈ U . Likewise, smooth compactly
supported sections will be denoted with ΓC∞

c
(U,E). Note that, as we have already done,

one can often safely ommit the map π in the notation.

Let E → M , F → M be vector bundles over M with rank ℓ0 and rank ℓ1, respectively.
We understand all vector bundles over C (if not we can complexify; for example, a priori,
the tangent bundle E = TM →M is of course naturally given over R).
In case E =M×Cl →M is a trivial vector bundle, then each fiber Ex is given by {x}×Cl

and we can identify ΓC∞(M,E) with C∞(M,Cl).

A linear map
P : ΓC∞(M,E) −→ ΓC∞(M,F )

is called restrictable, if for all open U ⊂M there exists a linear map

P |U : ΓC∞(U,E) −→ ΓC∞(U, F )

with P |Uψ|U = (Pψ)|U for all ψ ∈ ΓC∞(M,E).

Definition 3.1. A restrictable linear map

P : ΓC∞(M,E) −→ ΓC∞(M,F )

is called a (smooth, linear) partial differential operator of order ≤ k ∈ N≥0, if for any
chart ((x1, . . . , xm), U) of M which admits frames6 e1, . . . , eℓ0 ∈ ΓC∞(U,E), f1, . . . , fℓ1 ∈
ΓC∞(U, F ), and any multi-index7 α ∈ Nm

k , there are (necessarily uniquely determined)
smooth functions

Pα : U −→ Mat(C; ℓ0 × ℓ1)

such that for all (ϕ(1), . . . , ϕ(ℓ0)) ∈ C∞(U,Cℓ0) one has

P |U
ℓ0∑
i=1

ϕ(i)ei =

ℓ1∑
j=1

ℓ0∑
i=1

∑
α∈Nm

k

Pαij
∂|α|ϕ(i)

∂xα
fj in U.

Any differential operator P satisfies supp(Pψ) ⊂ supp(ψ), that is, P is local.

6that is, ’frame’ means that e1(x), . . . , eℓ0(x) is basis of Ex for all x ∈ U
7Nm

k denotes the set of multi-indices α = (α1, . . . , αm) ∈ (N≥0)
m such that α1 + · · ·+ αm ≤ k.
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Definition 3.2. Let k ∈ N≥0 and let

P : ΓC∞(M,E) −→ ΓC∞(M,F )

be a differential operator of order ≤ k.
a) The (linear k-th order principal) symbol of P is the unique morphism

symbkP : (T ∗M)⊙k ⊗ E −→ F

of vector bundles, where ⊙ stands for the symmetric tensor product, such that for all

((x1, . . . , xm), U), e1, . . . , eℓ0 , f1, . . . , fℓ1 as in Definition 3.1, and all real-valued ζ
(i)
α ∈

C∞(U) (where i runs through i = 1, . . . , ℓ0 and α runs through α ∈ Nm is such that
α1 + · · ·+ αm = k), one has

symbkP

( ∑
α∈Nm:α1+···+αm=k

ℓ0∑
i=1

ζ(i)α dx
α
⊙ ⊗ ei

)
=

∑
α∈Nm:α1+···+αm=k

ℓ0∑
i=1

ℓ1∑
j=1

Pαijζ
(i)
α fj in U.

b) P is called elliptic, if for all x ∈M , v ∈ T ∗
xM \{0}, the linear map symbkP,x(v

⊗k) : Ex →
Fx is invertible.

Remark 3.3. 1. Keep in mind that (at least locally) an operator P of order ≤ k can also
be considered as having order ≤ l where l > k (set the higher order coefficients = 0), and
then P can be elliptic as in the k-sense but not in the l-sense. Thus we always have to
specify the order of P when we talk about ellipticity.
2. Ellipticity is a local question: it needs to be checked in some chart around x only.

A (smooth) metric hE on E → M is by definition a section hE ∈ ΓC∞(M,E∗ ⊗ E∗), such
that hE is fiberwise a scalar product. Then the datum (E, hE) → M is referred to as a
metric vector bundle. In other words, for every x ∈ M we have a scalar product hE(x) :
Ex ×Ex → C and hE(x) depends smoothly on x. The trivial vector bundle M ×Cl →M

is equipped with its canonic smooth metric which is induced by (z, z′) 7→
∑l

j=1 zjzj, where

z, z′ ∈ Cl.

Definition 3.4. A Riemannian metric on M is by definition a metric g on TM →M , and
then the pair (M, g) is called a (smooth) Riemannian manifold.

Proposition and definition 3.5. For any Riemannian metric g on M there exists pre-
cisely one Borel measure µg on M such that for every chart ((x1, . . . , xm), U) for M and
any Borel set N ⊂ U , one has

µg(N) =

∫
N

√
det(g(x))dx,

where det(g(x)) is the determinant of the matrix gij(x) := g(∂i, ∂j)(x) and where dx =
dx1 · · · dxm stands for the Lebesgue integration.

Proof. Exercise. ■
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The above measure µg is called the Riemannian volume measure on (M, g). It is a Radon
measure with a full topological support in the sense that µg(U) > 0 for all open nonempty
U ⊂M .

Remark 3.6. That two Borel sections are equal µg-a.e. does not depend on a particular
choice of g. Thus, given k ∈ N≥0, q ∈ [1,∞] we can define a the local Sobolev space
ΓWk,q

loc
(M,E) to be the space of equivalence classes of Borel sections ψ of E →M such that

in every chart U ⊂ M in which E → M admits a local frame ej one has ψ(j) ∈ W k,q
loc (U),

if ψ =
∑

j ψ
(j)ej in U . In particular, we get the local Lq-spaces

ΓLq
loc
(M,E) := ΓW 0,q

loc
(M,E).

The fundamental lemma of distribution theory takes the following form:

Lemma 3.7. For all f1, f2 ∈ ΓL1
loc
(M,E) one has f1 = f2 a.e., if and only if there exists

a pair (respectively: for all pairs) of metrics (g, hE) with∫
M

hE(f1, ψ)dµg =

∫
M

hE(f2, ψ)dµg for all ψ ∈ ΓC∞
c
(M,E).

Proof. ⇒: Clear.
⇐: Let U ⊂M be a chart which admits an orthonormal frame e1, . . . , el for (E, hE) →M
(of course M be can covered with such U ’s) and let ψ be an arbitrary smooth section with
a compactl support in U . Then writing fj =

∑
i f

i
jei, j = 1, 2, and ψ =

∑
i ψ

iei we have∫
U

∑
i

√
det(g) · f i1ψidx =

∫
M

hE(f1, ψ)dµg =

∫
M

hE(f2, ψ)dµg

=

∫
U

∑
i

√
det(g) · f i2ψidx,

so that by the Euclidean fundamental lemma of distribution theory we have√
det(g) · f i1 =

√
det(g) · f i2

a.e. in U , for all i, so f1 = f2 as
√

det(g) > 0.
It is now obvious that these statements are equivalent to: for all pairs (g, hE) one has.... ■

Now we can prove:

Proposition and definition 3.8. Assume that g is a Riemannian metric on M and that
(E, hE) → M and (F, hF ) → M are metric vector bundles. Then for any differential
operator

P : ΓC∞(M,E) −→ ΓC∞(M,F )

of order ≤ k there is a uniquely determined differential operator

P g,hE ,hF : ΓC∞(M,F ) −→ ΓC∞(M,E)
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of order ≤ k which satisfies∫
M

hE
(
P g,hE ,hFψ, ϕ

)
dµg =

∫
M

hF (ψ, Pϕ) dµg

for all ψ ∈ ΓC∞(M,F ), ϕ ∈ ΓC∞(M,E) with either ϕ or ψ compactly supported. The
operator P g,hE ,hF is called the formal adjoint of P with respect to (g, hE, hF ). An explicit
local formula for P g,hE ,hF can be found in the proof.

Proof. Uniqueness follows from the fundamental lemma of distribution theory. As differ-
ential operators are local, it is sufficient to prove the local existence. To this end, in the
situation of Definition 3.1, we assume that ei and fj are orthonormal with respect to hE
and hF , respectively. Then an integration by parts shows that

P g,hE ,hF

ℓ1∑
j=1

ψ(i)fj :=
1√

det(g)

ℓ0∑
i=1

ℓ1∑
j=1

∑
α∈Nm

k

(−1)|α|
∂|α|

(
Pαji

√
det(g)ψ(j)

)
∂xα

ei in U(11)

does the job. ■

There is a way to define the action of differential operators on locally integrable functions:

Proposition and definition 3.9. Given P as above, f ∈ ΓL1
loc
(M,E) and a subspace

A ⊂ ΓL1
loc
(M,F ) we write Pf ∈ A, if there exists h ∈ A, such that for all triples of metrics

(g, hE, hF ) it holds that∫
M

hE
(
P g,hE ,hFψ, f

)
dµg =

∫
M

hF (ψ, h) dµg for all ψ ∈ ΓC∞
c
(M,F ) .(12)

Then h is uniquely determined and we set Pf := h. This property is equivalent to (12)
being true for some triple (g, hE, hF ) of this kind (and is thus independent of the metrics).

Proof. Clearly h is uniquely determined by the fundamental lemma of distribution theory.
It remains to show that if (12) holds for some triple (g, hE, hF ) then it also holds for any
other such triple. This is left as an exercise. ■

Remark 3.10. One says that given fn, f ∈ ΓL1
loc
(M,E) that fn → f in the sense of

distributions, if for all ψ ∈ ΓC∞
c
(M,E) and some pair of metrics (g, hE) one has∫
M

hE (fn − f, ψ) dµg → 0

as n→ ∞. Using that ψ is compactly supported one easily checks that this automatically
holds for all pairs of metrics (g, hE). Moreover, distributional limits are uniquely deter-
mined. Given P as above, it is clear that fn → f in the sense of distributions implies
Pfn → Pf in the sense of distributions, if Pfn, Pf ∈ ΓL1

loc
(M,E) (as the action of P is

defined by duality).

Lemma 3.11 (Local elliptic regularity). Assume

P : ΓC∞(M,E) −→ ΓC∞(M,F )
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is elliptic of order ≤ k and let q ∈ [1,∞). Then for all f ∈ ΓLq
loc
(M,E) with Pf ∈

ΓLq
loc
(M,F ) one has f ∈ ΓWk,q

loc
(M,E) if q > 1 and f ∈ ΓWk−1,1

loc
(M,E) if q = 1.

Proof. The q > 1 is a classical fact by Nirenberg [27] and can be found in many textbooks
such as [28]. The q = 1 case is nonstandard uses Besov spaces. Together with Guidetti
and Pallara I have given a proof in [10]. ■

Recall in this context that the local Sobolev embedding implies⋂
l∈N

ΓW l,p
loc
(M,E) ⊂ ΓC∞(M,E) for all p ∈ (1,∞).(13)

Remark 3.12. To give an idea of how ellipticity comes into play in such a result: Assume
M = Rm and E = F are the trivial line bundles Rm × C → C (so that P acts on
functions and has scalar coefficients). Assume further that P =

∑
|α|≤k Pα∂

α has constant

coefficients. The global Sobolev spaces W k,2(Rm), k ∈ N, can be equivalently defined via
Fourier transform

F : S ′(Rm) −→ S ′(Rm)(14)

mapping between Schwartz distributions:

W k,2(Rm) = {f ∈ L2(Rm) :

∫
|Ff(ζ)|2(1 + |ζ|2)kdζ <∞}.

Recall here that the space of Schwartz functions S(Rm) is defined to be the space of smooth
functions ϕ : Rm → C such that

pα,β(ϕ) := sup
x∈Rm

|xα∂βϕ(x)| <∞,

which becomes a topologic vector space with the family of seminorms pα,β, and that the
space of Schwartz distributions S ′(Rm) is defined as the space of continuous linear forms
on S(Rm). The Fourier transform is a priori a linear homeomorphism

F : S(Rm) −→ S(Rm),

which extends to a unitary map

F : L2(Rm) −→ L2(Rm),

and which acts dually to give the linear homeomorphism (14).
Then P defines a continuous map

P : W k,2(Rm) → L2(Rm),

which, using that F−1PF is nothing but multiplication by ζ 7→
∑

|α|≤k Pαζ
α, can be shown

to be bijective, if
∑

|α|=k Pαζ
α ̸= 0 for all ζ ∈ Rm \ {0} (this requires some work). So

Pf = g ∈ L2(Rm) implies f = P−1g ∈ W k,2(Rm).
The case of nonconstant coefficients can be deduced from this result by ’freezing the coef-
ficients’ (leading to P̃ with constant coefficients) and estimating the error P − P̃ carefully.
Finally, the local manifold case follows from this by a partition of unity argument.
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From now on we fix once for all a connected Riemannian manifold M = (M, g)
with dimension m.

We are going to ommit the dependence on g in the notation whenever there is no danger
of confusion. For example the Riemann volume measure is denoted by µ. In addition, a
metric vector bundle is simply depicted by E → M , that is, the dependence on the fiber
metrics will be ommited in the notation and the metric on E → M is simply denoted by
(·, ·). For all q ∈ [1,∞] we get the global8 Banach space ΓLq(M,E) given by all equivalence
classes of Borel sections f of E →M such that

∥f∥q <∞,

where

∥f∥q :=

{
inf{C ≥ 0 : |f | ≤ C µ-a.e.}, if q = ∞(∫

M
|f |qdµ

)1/q
else,

and

|f | :=
√

(f, f)

is the fiberwise norm. The space ΓL2(M,E) becomes a Hilbert space via

⟨f1, f2⟩ :=
∫
M

(f1, f2)dµ.

With this convention, it makes sense to denote the formal adjoint of a differential operator

P : ΓC∞(M,E) −→ ΓC∞(M,F )

acting between metric vector bundles simply by

P † : ΓC∞(M,F ) −→ ΓC∞(M,E).

We record:

Lemma 3.13. The space ΓC∞
c
(M,E) is dense in ΓLq(M,E) for all q ∈ [1,∞). In partic-

ular, C∞
c (M) is dense in Lq(M).

Proof. Step 1: A := ΓLq
c
(M,E) is dense in ΓLq(M,E).

Proof of step 1: Pick an exhaustion Kn of M with compact sets. Given f ∈ ΓLq(M,E) set
fn := 1Knf ∈ A. Then we have

lim
n

∫
|fn − f |qdµ = lim

n

∫
|(1Kn − 1)|q|f |qdµ = 0

by dominated convergence.
Step 2: ΓC∞

c
(M,E) is dense in A.

Proof of step 2: Given f ∈ A cover its support by finitely many charts (Un) for M which
admit an orthonormal frame. Pick a partition of unity (ϕn) ⊂ C∞

c (M) subordinate to

8Unlike the local Lq-spaces considered above, these spaces depend very much on all choices of metrics,
unless M is compact!



22 B. GÜNEYSU

(Un). Then fn := ϕnf is compactly supported in Un and Lq thereon. Given arbitrary
ϵ > 0, using Friedrichs mollifiers, for each n we can pick fn,ϵ ⊂ ΓC∞

c
(Un, E) with

∥fn,ϵ − fn∥q < ϵ/2n+1.

Then fϵ :=
∑

n fn,ϵ ∈ ΓC∞
c
(M,E) and

∥fϵ − f∥q =

∥∥∥∥∥∑
n

fn,ϵ −
∑
n

fn

∥∥∥∥∥
q

≤
∑
n

∥fn,ϵ − fn∥q < ϵ,

completing the proof. ■

4. The Friedrichs realization of the Laplace-Beltrami operator

Since we have fxied g, the tangent bundle TM →M is by definition a metric bundle, using
the isomorphism of vector bundles

♯ : T ∗M −→ TM

induced by the fiberwise nondegeneracy of g, we get a metric g∗ on T ∗M →M by setting

(α, β) := (♯α, ♯β).

Let

d : C∞(M) −→ Ω1
C∞(M) := ΓC∞(M,T ∗M)

denote the exterior differential. It is a first order differential operator (which does not
depend on g) given locally by df =

∑
i ∂ifdx

i.

Definition 4.1. The Laplace-Beltrami operator is the second order differential operator
given by

∆ := −d†d : C∞(M) −→ C∞(M).

Locally one has

d†α = − 1√
det(g)

∑
k

∂k

(√
det(g)

∑
j

gkjαj

)
if α =

∑
j αjdx

j and gkj := (dxk, dxj). This formula shows

∆ =
1√

det(g)

∑
i

∂i

(√
det(g)

∑
j

gij∂j

)
,

which can be worked out to give

∆ =
∑
ij

gij∂i∂j + lower order terms,

in particular, in each chart U , the symbol of ∆ (as an operator of order ≤ 2...!) is given
by gij(x)ζiζj, x ∈ U , ζ ∈ TxM . This implies that ∆ is elliptic (as gij is nondegenerate).



BROWNIAN MOTION AND THE FEYNMAN-KAC FORMULA ON RIEMANNIAN MANIFOLDS 23

Remark 4.2. Local elliptic regularity shows: f ∈ L2
loc(M), ∆f ∈ L2

loc(M) implies f ∈
W 2,2

loc (M), in particular, locally all weak partial derivatives of order ≤ 2 of f are in L2
loc

(say in each chart). It is a more delicate question to investigate the following GLOBAL
question: Does f ∈ L2(M), ∆f ∈ L2(M) imply df ∈ Ω1

L2(M)? We will come back to this
later (geodesic completeness!).

Lemma 4.3. a) One has

d(f1f2) = f1df2 + f2df1,(15)

d†(fα) = fd†α− (df, α),(16)

∆(f1f2) = f1∆f2 + f2∆f1 + 2ℜ(df1, df2),(17)

∆(u ◦ f) = (u′′ ◦ f) · |df |2 + (u′ ◦ f) ·∆f.(18)

Proof. Exercise. For example, one can use the above local formulae. ■

Consider now the densely defined, nonnegative, symmetric sesqulinear form Q′ in L2(M)
given by

Dom(Q′) = C∞
c (M), Q′(f1, f2) =

∫
(df1, df2)dµ.

It is induced by the symmetric nonnegative operator −∆ (with Dom(−∆) = C∞
c (M)), as

we have

Q′(f1, f2) =

∫
−∆f1f2dµ = ⟨−∆f1, f2⟩ .

By Friedrichs’ theorem (cf. Example 2.19), it follows that Q′ is closable. Let us describe
its closure. To this end, define the global Sobolev space

W 1,2(M) := {f ∈ L2(M) : df ∈ Ω1
L2(M) := ΓL2(M,T ∗M)},

which is a Hilbert space with scalar product

⟨f1, f2⟩W 1,2 := ⟨f1, f2⟩+ ⟨df1, df2⟩ =
∫
f1f2dµ+

∫
(df1, df2)dµ.

Then we define

W 1,2
0 (M) := closure of C∞

c (M) with respect to ∥·∥W 1,2 .

Remark 4.4. IfM = Rm (with its Euclidean metric) then one hasW 1,2
0 (Rm) = W 1,2(Rm),

while if M is a bounded open subset U of Rm then one has W 1,2
0 (U) ̸= W 1,2(U). We will

come to problems of this kind later on.

Now by Kato’s theory it follows that the closure Q of Q′ is the closed nonnegative densely
defined nonnegative symmetric sesqulinear form given by

Dom(Q) = W 1,2
0 (M), Q(f1, f2) =

∫
(df1, df2)dµ.

By Kato’s theory (cf. Theorem 2.17) there exists a uniquely determined self-adjoint non-
negative operator H in L2(M) such that Dom(H) ⊂ Dom(Q) and

⟨Hf1, f2⟩ = Q(f1, f2) for all f1 ∈ Dom(H), f2 ∈ Dom(Q).
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Moreover, some f1 ∈ Dom(Q) is in Dom(H), if and only if there exists f2 ∈ L2(M) with

Q(f1, f3) = ⟨f2, f3⟩ for all f3 ∈ C∞
c (M),

and then Hf1 = f2. It follows now easily that

Dom(H) = {f ∈ W 1,2
0 (M) : ∆f ∈ L2(M)}, Hf = −∆f.

5. Geodesic completeness and the essential self-adjointness of −∆

This section deals with the following question: under which condition on the geometry of
M , that is, on g, is H is the unique self-adjoint realization of −∆?

To this end, for all x, y ∈M we define ϱ(x, y) to be the infimum of all
∫ b
a
|γ̇(s)|ds such that

[a, b] ⊂ R is a closed interval and γ : [a, b] →M is a piecewise smooth curve with γ(a) = x,
γ(b) = y. Note that γ̇(s) ∈ Tγ(s)M and

ℓ(γ) :=

∫ b

a

|γ̇(s)|ds

can be interpreted as the Riemannian length of the curve γ (this notion is, as usual, justified
by approximating with ’summing up the lenghtsof polygons approximating the curve’ and
taking the limit.

Remark 5.1. The main reason why we assume throughout that M is connected is that
otherwise the set whose infimum defines ϱ(x, y) could be empty, leading to ϱ(x, y) = ∞.

The main properties of

ϱ :M ×M −→ [0,∞), (x, y) 7−→ ϱ(x, y)

are collected in the following Theorem:

Theorem 5.2. a) ϱ is a distance onM (the corresponding open balls will simply be denoted
with

B(x, r) := {y : ϱ(x, y) < r} ⊂M

in the sequel) and one has

B(x, r) = {y : ϱ(x, y) ≤ r}.(19)

b) ϱ induces the original topology on M .
c) The following statements are equivalent:
i) M is complete.
ii) All closed bounded subsets of M are compact.
ii’) All bounded subsets of M are relatively compact.
iii) M admits a sequence (χn) ⊂ C∞

c (M) of first order cut-off functions, that is, (χn) has
the following properties :

(C1) 0 ≤ χn(x) ≤ 1 for all n ∈ N≥1, x ∈M ,
(C2) for all compact K ⊂ M , there is an n0(K) ∈ N such that for all n ≥ n0(K) one

has χn |K= 1,
(C3) ∥dχn∥∞ → 0 as n→ ∞.
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Proof. a) Clearly ϱ is nonnegative and ϱ(x, x) = 0. To show the triangle inequality, fix
x, y, z ∈M and pick a piecewise smooth path γ1 from x to z and a piecewise smooth path
γ2 from z to y. Let γ be the path from x to y obtained as γ = γ2γ1 in the obvious sense.
Then one has

ϱ(x, y) ≤ ℓ(γ) = ℓ(γ2) + ℓ(γ1),

so

ϱ(x, y) ≤ ϱ(x, z) + ϱ(z, y)

follows from minimizing in γ.
To see that ϱ is nondegenerate, we first prove:
Claim: for all p ∈M there exists a chart p ∈ U ⊂M and a constant C such that

C−1|x− y| ≤ ϱ(x, y) ≤ C|x− y|
for all x, y ∈ U .
Proof of the claim: pick a chart p ∈ W with coordinates x1, . . . , xm and pick a Euclidean
ball V ⊂ W of radius r > 0 around p whose closure is included in W . For all x ∈ V ,
ζ ∈ TxM one has

|ζ|2 := |ζ|2g =
∑
ij

gij(x)ζ
iζj, |ζ|2e =

∑
j

(ζj)2.

Since (gij(x))ij is positive definite and depends continuously on x we find C > 1 such that
for all x ∈ V , ζ ∈ TxM one has

C−2
∑
j

(ζj)2 ≤
∑
ij

gij(x)ζ
iζj ≤ C2

∑
j

(ζj)2,

so

C−1|ζ|e ≤ |ζ| ≤ C|ζ|e.
For any piecewise smooth path γ which remains in V we get

C−1ℓe(γ) ≤ ℓ(γ) ≤ Cℓe(γ).

If x, y ∈ V , then we get

ϱ(x, y) ≤ ℓ(γx,y) ≤ C|x− y|,
where γx,y is the straight line from x to y.
We are going to show that on U defined as the Euclidean ball in W around p of radius r/3
one has the reverse inequality, so that U does the job.
Let x, y ∈ U and let γ be an arbitrary piecewise smooth curve in M from x to y. If γ stays
in V then9

ℓe(γ) ≥ |x− y|
and so

ℓ(γ) ≥ C−1|x− y|.(20)

9Here we use that the lenght distance of x, y ∈ Rm induced by the Euclidean Riemannian metric is
precisely |x− y|.
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If γ intersects ∂V , pick a point z ∈ ∂V which is hit by γ and let γ̃ denote the part of γ
which connects in V the point x with z. Thus

ℓ(γ) ≥ ℓ(γ̃) ≥ C−1|x− z| ≥ C−1(2r/3) ≥ C−1|x− y|.
Thus taking infγ we get

ϱ(x, y) ≥ C−1|x− y|,
proving the claim.
In order to show that ϱ is nondegenerate, fix distinct p, x ∈ M . Pick a chart U around p
and C > 1 as in the above claim. If x ∈ U then clearly ϱ(x, p) > 0. If x ∈ M \ U pick
r > 0 small with Be(p, r) ⊂ U (Euclidean ball). Then any curve γ from x to p must hit
∂Be(p, r), and so ℓ(γ) ≥ C−1r and by taking infγ we arrive at ϱ(x, p) ≥ C−1r > 0. This
completes the proof that ϱ is a distance.

The proof of (19) is left as an exercise.
b) It is enough to show that for all p ∈ M there exists a chart U around p and R > 0,
C > 1 such that for all r ∈ (0, R] one has

Be(p, C
−1r) ⊂ B(p, r) ⊂ Be(p, Cr) ⊂ U.

To this end pick U , C as in the claim and ϵ > 0 small with Be(p, ϵ) ⊂ U . Set R := ϵ/(2C)
and let 0 < r ≤ R. If x ∈ Be(p, C

−1r) we have x ∈ U and so x ∈ B(p, r). If we can show
that B(p, r) ⊂ U , then clearly B(p, r) ⊂ Be(p, Cr). To show that B(p, r) ⊂ U , assume
x /∈ U . Then any curve γ from x to p hits a point y ∈ U with |y − p| = ϵ/2. Thus we
obtain,

ℓ(γ) ≥ ϱ(y, p) ≥ C−1|y − p| = ϵ/(2C) ≥ r,

and taking infγ this shows ϱ(x, p) ≥ r and so x /∈ B(p, r).
c) i) ⇔ ii): Exercise (a proof which does not use exponential coordinates).
ii) ⇔ ii’): this is trivial.
i) ⇔ iii): I sketch a proof: if M = (M, g) is complete, then by a small generalization of
Nash’s embedding theorem we can pick a smooth embedding ι : M → Rl such that g is
the pull-back of the Euclidean metric on Rl (thus an isometric embedding), where l ≥ m
is large enough, and such that ι(M) is a closed subset of Rl: note here that the original
Nash embedding does not produce a closed image; to correct this, one constructs a new
metric g̃ on M , embeds (M, g̃) into some Rl′ isometrically via some map Ψ :M → Rl′ and
constructs, using that closed balls are compact on (M, g), a map ϕ :M → R, such that

ι := (Ψ, ψ) :M → Rl

is an isometric embedding of (M, g), where l := l′+1. A detailed explanation of the above
construction of ι has been given by O. Mueller in [26].
From here the proof is straightforward: ι is proper, and therefore the composition

f :M −→ R, f(x) := log(1 + |ι(x)|2)
is a smooth proper function with |df | ≤ 1, since

f̃ : Rl −→ R, f̃(v) := log(1 + |v|2)
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is a smooth proper function whose gradient is absolutely bounded by 1. Pick now a se-
quence (φn) ⊂ C∞

c (R) of first order cut-off functions on the Eudlidean space R. (For
example, let φ : R → [0, 1] be smooth and compactly supported with φ = 1 near 0, and set
φn(r) := φ(r/n), r ∈ R.) Then χn(x) := φn(f(x)) obviously has the desired properties, in
view of the chain rule dχn(x) = φ′

n(f(x))df(x).
iii) ⇔ ii’): Suppose that M admits a sequence (χn) ⊂ C∞

c (M) of first order cut-off func-
tions. Then given O ∈ M , r > 0, we are going to show that there is a compact set
AO,r ⊂M such that

ϱ(x,O) > r for all x ∈M \ AO,r,

which implies that any open geodesic ball is relatively compact. To see this, we define
AO := {O}, and a number nO,r ∈ N large enough such that χnO,r

= 1 on AO and

sup
x∈M

∣∣dχnO,r
(x)
∣∣ ≤ 1/(r + 1).(21)

Now let AO,r := supp(χnO,r
), let x ∈M \ AO,r, and let

γ : [a, b] −→M

be a piecewise smooth curve with γ(a) = x, γ(b) = O. Then we have

1 = χnO,r
(O)− χnO,r

(x) = χnO,r
(γ(b))− χnO,r

(γ(a)) =

∫ b

a

(
dχnO,r

(γ(s)), ˙γ(s)
)
ds,

where we have used the chain rule. By using (21) and taking infγ · · · , we arrive at

ϱ(x,O) ≥ r + 1 for all x ∈M \ AO,r,

as claimed. ■

Now we can prove the following result, which has been first shown by Gaffney, 1954 (from
my point of view: much ahead of his time!). We follows a proof given by Strichartz in
1983:

Theorem 5.3. Assume M is complete. Then the symmetric nonnegative operator −∆
(defined on C∞

c (M)) is essentially self-adjoint in L2(M). As a consequence, it has a
unique self-adjoint extension which necessarily coincides with H ≥ 0.

Proof. By the abstract functional analytic fact Theorem 2.5, it suffices to show that
Ker((−∆+ 1)∗) = {0}. Let

f ∈ Ker((−∆+ 1)∗).

Unpacking definitions one finds that this is equivalent to f ∈ L2(M) and −∆f = −f , in
particular, f is smooth by local elliptic regularity. We pick a sequence (χn) of first order
cut-off functions. Then by the product rule for d from Lemma 4.3 we have

(d(χnf), d(χnf))

= (df, χnfdχn) + (df, χ2
ndf) + |fdχn|2 + (fdχn, χndf),

which, using
(df, d(χ2

nf)) = (df, χ2
ndf) + 2(df, fχndχn),
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implies

|d(χnf)|2 = (d(χnf), d(χnf))

= (df, d(χ2
nf)) + |fdχn|2 − (df, fχndχn) + (fdχn, χndf).

This in turn implies (after adding the complex conjugate of the formula to itself)

2|d(χnf)|2 = 2ℜ(df, d(χ2
nf)) + 2|fdχn|2.

Integrating and then integrating by parts in the last equality, we get∫
|d(χnf)|2dµ = ℜ

∫
(χnd

†df, χnf)dµ+

∫
|fdχn|2dµ.

Using d†df = −∆f = −f and ∫
|d(χnf)|2dµ ≥ 0

we see ∫
|χn|2|f |2dµ ≤

∫
|fdχn|2dµ,

which implies
∫
|f |2dµ = 0 and thus f = 0 by dominated convergence, using the properties

of (χn).
■

Some remarks are in order:

Remark 5.4. 1. There are some interesting (though not many) incomplete Riemannian
manfolds such that −∆ is essentially self-adjoint.
2. We are going to prove in the exercises that even the Schrödinger operator −∆ + V in
L2(M) is essentially self-adjoint, if M is complete and V :M → R is smooth and bounded
from below. Note V has to be real-valued to get a symmetric operator.
3. The ultimate essential self-adjointness result on Riemann manifolds is the following one:
assumeM is complete and V ∈ L2

loc(M) has a little more local regularity (’local Kato class’
of M) such that −∆+ V is bounded from below. Then −∆+ V is essentially self-adjoint.
This result can by applied to get that the Hamilton operator corresponding to a molecule
is essentially self-adjoint (so there is no ambiguity concerning the quantum mechanics of
matter).
4. Similar essential self-adjointness results hold for operators of the form∇†∇+V on metric
vector bundles E → M , where ∇ is a metric connection on E → M and V is a pointwise
self-adjoint L2

loc-section of End(E) → M (Güneysu/Post; Braverman/Milatovic/Shubin;
Lesch). These results are needed at least to deal with molecules in magnetic fields.

6. Some regularity results

Lemma 6.1. Assume f1 ∈ W 1,2
0 (M), f2 ∈ W 1,2(M), ∆f2 ∈ L2(M). Then one has the

following integration by parts formula,∫
f1∆f2dµ = −

∫
(df1, df2)dµ.
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Proof. If f1 is smooth and compactly supported, then the identity follows immediately
from the definition of weak (= distributional) derivatives. It carries over to general f1’s by
a trivial density argument. ■

Note that every f2 ∈ Dom(H) satisfies the above assumption. Often, this is used in the
form f2 = e−tHh for some h ∈ L2(M), t > 0, as we know that for all t > 0,

Ran(e−tH) ⊂
⋂
n∈N

Dom(Hn)

by the spectral calculus.

Lemma 6.2. Given a sequence of smooth functions ψk : R → R, k ∈ N, with
ψk(0) = 0, sup

k∈N
sup
t∈R

|ψ′
k(t)| <∞,

and a pair of functions ψ : R → R, φ : R → R with

ψk → ψ, ψ′
k → φ

pointwise as k → ∞.
a) For every real-valued f ∈ W 1,2

0 (M) one has ψ ◦ f ∈ W 1,2
0 (M) and

d(ψ ◦ f) = (φ ◦ f)df.
b) For every real-valued f ∈ W 1,2(M) one has ψ ◦ f ∈ W 1,2(M) and

d(ψ ◦ f) = (φ ◦ f)df.
If in addition φ is continuous away from an at most countable set, then fn, f ∈ W 1,2(M),
fn → f in W 1,2(M) implies ψ ◦ fn → ψ ◦ f in W 1,2(M), as n→ ∞.
c) For every real-valued f ∈ W 1,2

loc (M) one has ψ ◦ f ∈ W 1,2
loc (M) and

d(ψ ◦ f) = (φ ◦ f)df.

Proof. a) Lemma 5.2 in [8].
b) Theorem 5.7 in [8].
c) This follows from applying b) with M replaced by a relatively compact chart of M . ■

Denote with a+ := max(0, a) ∈ [0,∞) the positive part of a ∈ R and with a− := a+ − a ∈
[0,∞) its negative part.

Example 6.3. Given c ≥ 0 set ψ(t) := (t− c)+,

ϕ(t) :=

{
0, t ≤ c,

1, t > c
.

Then picking ψ1 : R → R smooth with

ψ1(t) :=

{
0, t− 1 ≤ c,

1, t > c+ 2,
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the sequence ψk(t) := k−1ψ1(kt) satisfies the assumptions of the previous lemma, yielding
that for all real-valued f ∈ W 1,2

0 (M) (resp. f ∈ W 1,2(M)) one has (f − c)+ ∈ W 1,2
0 (M)

(resp. (f − c)+ ∈ W 1,2(M)) and the formula

d(f − c)+ =

{
df, if f > c

0, else

Moreover, fn → f in W 1,2(M) implies (fn − c)+ → (f − c)+ in W 1,2(M).

Let N ⊂ M be an arbitrary subset. Then a function f : N → R on M is called Lipschitz,
if there exists a constant C such that for all x, y ∈ N one has

|f(x)− f(y)| ≤ Cϱ(x, y).(22)

Lipschitz functions are continuous, restrictions of Lipschitz functions are again Lipschitz,
and for a fixed x0 ∈M , the function

M ∋ x 7→ ϱ(x, x0)

is Lipschitz. Note also that if U ⊂M is open, then with an obvious notation one has

ϱU(x, y) ≥ ϱ(x, y) for all x, y ∈ U,

so a Lipschitz function f : U → R in the above sense is also a Lipschitz function with
respect to the Riemannian manifold (U, gU).

Remark 6.4. The following assertions can be deduced in an elementary way and hold on
every metric space: If f, g are Lipschitz, then so is f + g, min(f, g), max(f, g); the product
fg is Lipschitz, if in addition f is bounded on the support of g.
A function f : M → R is called locally Lipschitz, if for each compact K ⊂ M there exists
a C = CK with (22) for all x, y ∈ K. The composition of a Lipschitz function with a
Lipschitz function on R is Lipschitz; the composition of a locally Lipschitz function with
a locally Lipschitz function on R is locally Lipschitz.

Lemma 6.5. a) If f :M → R is a Lipschitz function, then df ∈ Ω1
L∞(M) (as distributions,

in the sense of Definition 3.9) and one has ∥df∥∞ ≤ C ′, where C ′ is the smallest C with
(22). If f :M → R is locally Lipschitz, then df ∈ Ω1

L∞
loc
(M).

b) A C1-function f : M → R with ∥df∥∞ < ∞ is Lipschitz. In particular, C1-functions
are locally Lipschitz.

Proof. a) This follows from applying the corresponding Euclidean result (Rademacher’s
theorem) in ’nice charts’ like those appearing in the proof of Theorem 5.2, namely, by
scaling the charts if necessary, one can can find for each p ∈M a chart U with p ∈ U and

(1/2)δij ≤ gij(x) ≤ 2δij

for all x ∈ U , as bilinear forms (the point is that the constant in this quasi-isometry,
C = 2, is uniform in each chart. Rademacher’s theorem can either be deduced with
methods of Analysis 1, by reducing to the m = 1 case with a covering argument (’Vitali
covering’), using that functions on an interval having a bounded variation are almost



BROWNIAN MOTION AND THE FEYNMAN-KAC FORMULA ON RIEMANNIAN MANIFOLDS 31

everywhere differentiable by Lebesgue’s theorem, or by using a Sobolev embedding theorem
(cf. Theorem 3.1, resp. section 4.2 in [14]).
The local statement can be deduced as follows from the above: Assume N ⊂ M is open
and relatively compact and let f : M → R be locally Lipschitz. Pick ϕ ∈ C∞

c (M) with
ϕ = 1 on N . Then ϕf is globally Lipschitz and so d(ϕf) ∈ Ω1

L∞(M). Since f = ϕf on N
we thus get df ∈ Ω1

L∞(N).
b) This follows applying the mean value theorem for differentiation in nice charts. ■

Lemma 6.6. One has W 1,2
c (M) ⊂ W 1,2

0 (M) (note that W 1,2
c (M) does not depend on g, as

locally any two Riemannian metrics are equivalent as bilinear forms). In particular, for
every compactly supported Lipschitz function f :M → R one has f ∈ W 1,2

0 (M).

Proof. Let h ∈ W 1,2
c (M). Covering the support of h with finitely many nice charts, we can

assume that M is an open subset of the Euclidean Rm. In this case the assertion follows
from Friedrichs mollifiers.
For the second statement, note that f is L2 (continuous and compactly supported) and df
is L2 (bounded by the previous Lemma and compactly supported), so f ∈ W 1,2

c (M).
■

Lemma 6.7. One has the product rule d(f1f2) = f1df2+f2df1 if f1, f2 :M → R are locally
Lipschitz. If ψ : R → R is C1 and f : M → R is locally Lipschitz, then ψ ◦ f is locally
Lipschitz with the chain rule d(ψ ◦ f) = (ψ′ ◦ f)df .

Proof. In view of the cut-off function argument from the proof of Lemma 6.5 b) we can
assume that f1 and f2 are compactly supported, so that f1, f2 ∈ W 1,2

0 (M) by the previous
lemma. Pick a sequence (ϕn) ⊂ C∞

c (M) with ϕn → f1 in W 1,2(M). Since f1 is bounded,
we can assume for the proof that (ϕn) is uniformly bounded in W 1,2(M) (and so (ϕn)
is uniformly bounded in L2(M) and (dϕn) is uniformly bounded in Ω1

L2(M): indeed, let
C := ∥f1∥∞ and pick ψ : R → R with ψ(t) = t for all t with |t| ≤ C and with ψ′ bounded.
Then by Lemma 6.2 we have ψ ◦ ϕn → f1, and (ψ ◦ ϕn) is uniformly bounded in W 1,2(M).
Thus we can pick sequences ϕn, θn in C∞

c (M) which are both uniformly bounded in
W 1,2(M) and ϕn → f1 and θn → f2 in W 1,2(M). Then one easily checks that (a stan-
dard ϵ/2 type argument which uses that fj are bounded) that ϕnθn → f1f2 in L2(M),
which using Cauchy-Schwarz implies ϕnθn → f1f2 in the sense of distributions, and so
d(ϕnθn) → d(f1f2) in the sense of distributions (cf. Remark 3.10).
Similarly, as df1,df2 are bounded by Lemma 6.5 a) (since fj are compactly supported), one
can check that ϕndθn → f1df2 and θndϕn → f2df1 in Ω1

L2(M), and so

d(ϕnθn) = θn(dϕn) + ϕndθn → f2df1 + f1df2

in Ω1
L2(M), which using Cauchy-Schwarz implies ϕnθn → f2df1 + f1df2 in the sense of

distributions. This completes proof.
It remains to prove the asserted chain rule: since C1-functions are locally Lipschitz, it
suffices to prove the formula in each open relatively compact subset of M . In particular,
we can assume that f is compactly supported. Furthermore, we can assume that ψ(0) = 0

(if not: consider ψ̃ := ψ − ψ(0)), and as f is bounded also that ψ is compactly supported
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(in particular, ψ′ is bounded). Under these assumptions, the chain rule follows trivially
from Lemma 6.2. ■

Lemma 6.8. Assume f1 : M → R is bounded and Lipschitz and f2 ∈ W 1,2
0 (M). Then

f1f2 ∈ W 1,2
0 (M) and one has the product rule d(f1f2) = f1df2 + f2df1.

Proof. Assume first f2 ∈ C∞
c (M). Then we have f1f2 is compactly supported and Lipschitz,

thus in W 1,2
0 (M), and the product rule holds by the previous lemma.

If f2 ∈ W 1,2
0 (M), then f1f2 ∈ L2(M) and f1df2 + f2df1 ∈ Ω1

L2(M), as f1 and df1 are
bounded. This implies fg ∈ W 1,2(M). Pick a sequence ϕn in C∞

c (M) such that ϕn → f2
in W 1,2(M). Then we have f1ϕn ∈ W 1,2

0 (M) and f1ϕn → f1f2 in L
2(M), as f1 is bounded.

Applying the product rule to f1ϕn and using that f , df are bounded, one easily finds that
also

d(f1ϕn) → f1df2 + f2df1.

in Ω1
L2(M). It follows from these two convergences that f1ϕn → f1f2 in W 1,2(M) and

so f1f2 ∈ W 1,2
0 (M), as the latter is a closed subspace of W 1,2(M). Finally, d(f1ϕn) →

f1df2+f2df1 in Ω1
L2(M) implies the corresponding convergence in the sense of distributions

(by Cauchy-Schwarz), f1ϕn → f1f2 in L2(M) implies the corresponding convergence in
the sense of distributions, and so by Remark 3.10 also d(f1ϕn) → d(f1f2), which also
establishes the product formula for f1f2. ■

Lemma 6.9. Assume f1 ∈ W 1,2
loc (M) and that f2 : M → R is compactly supported and

Lipschitz. Then one has f1f2 ∈ W 1,2
0 (M) and the product rule applies.

Proof. Multiplying f1 with a smooth compactly supported function which is = 1 on the
support of f2 we can assume that f1 ∈ W 1,2

0 (M) (cf. Lemma 6.6), in which case the
statement follows from the previous lemma. ■

7. Basic properties of the heat kernel

The “heat semigroup”
(e−tH)t≥0 ⊂ L (L2(M))

is defined by the spectral calculus. It is a strongly continuous and self-adjoint semigroup
with ∥∥e−tH∥∥

2,2
≤ 1,

where ∥·∥q1,q2 denotes the operator for linear operators from Lq1(M) to Lq2(M). Moreoever,

for every f ∈ L2(M) the path

[0,∞) ∋ t 7−→ e−tHf ∈ L2(M)

is the uniquely determined continuous path

[0,∞) −→ L2(M)

which is C1 in (0,∞) (in the norm topology) with values in Dom(H) thereon, and which
satisfies the abstract “heat equation”

(d/dt)e−tHf = −He−tHf, t > 0,
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subject to the initial condition e−tHf |t=0 = f . All of the above facts follow from abstract
functional analytic results and only rely on the fact that H is self-adjoint and nonnegative.
The aim of this section is to show that e−tH is given by an integral kernel

e−tHf(x) =

∫
p(t, x, y)f(y)dµ(y),

such that for fixed x, (t, y) 7→ p(t, x, y) solves the heat equation

∂tu(t, y) = ∆yu(t, y)

with initial condition u(0, x) = δx.

Theorem 7.1. a) There is a unique smooth map

(0,∞)×M ×M ∋ (t, x, y) 7−→ p(t, x, y) ∈ [0,∞),

the heat kernel of H, such that for all t > 0, f ∈ L2(M), and µ-a.e. x ∈M one has

e−tHf(x) =

∫
p(t, x, y)f(y)dµ(y).(23)

b) For all s, t > 0, x, y ∈M one has∫
p(t, x, y)2dµ(y) <∞,(24)

p(t, y, x) = p(t, x, y),(25)

p(t+ s, x, y) =

∫
p(t, x, z)p(s, z, y)dµ(z),(26) ∫

p(t, x, z)dµ(z) ≤ 1.(27)

c) For any f ∈ L2(M), the function

(0,∞)×M ∋ (t, x) 7−→ Ptf(x) :=

∫
p(t, x, y)f(y)dµ(y) ∈ C

is smooth and one has

∂

∂t
Ptf(x) = ∆xPtf(x) for all (t, x) ∈ (0,∞)×M.

d) For all fixed x ∈M , the function (t, y) 7→ p(t, x, y) solves the heat equation

∂tu(t, y) = ∆yu(t, y)

in (0,∞)×M , with initial condition u(0, x) = δx, in the sense that

lim
t→0+

∫
p(t, x, y)ϕ(y)dµ(y) = ϕ(x) for all ϕ ∈ C∞

c (M).
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Proof. Before we come to the proof of the actual statements of Theorem 7.1, let us first
establish some auxiliary results.
Step 1: For fixed t > 0, there exists a smooth version of x 7→ e−tHf(x) (which from now
on will always be taken).
Proof: To see this, note that for any n ∈ N≥1 one has

Dom(Hn) ⊂ W 2n,2
loc (M),

by local elliptic regularity. By the spectral calculus and the local Sobolev embedding (13),
this implies

Ran(e−tH) ⊂
⋂

n∈N≥1

Dom(Hn) ⊂ C∞(M) for any t > 0.

Step 2: For any t > 0, U ⊂M open and relatively compact, the map

e−tH : L2(M) −→ Cb(U)(28)

is a bounded linear operator between Banach spaces, where the space of bounded continuous
functions Cb(U) is equipped with its usual uniform norm.
Proof: A priory, this map is algebraically well-defined by step 1. The asserted boundedness
follows from the closed graph theorem. Indeed, assume assume fn → f in L2(M) and
e−tHfn converges in Cb(U) to some h. Then e−tHfn → e−tHf in L2(M), thus after possibly
picking a subsequence, e−tHfn → e−tHf µ-a.e. and so e−tHf = h.

Step 3: For fixed s > 0, the map

L2(M)×M ∋ (f, x) 7−→ e−sHf(x) ∈ C
is jointly continuous.
Proof: Let U ⊂M be an arbitrary open and relatively compact subset. Given a sequence

((fn, xn))n∈N≥0
⊂ L2(M)× U

which converges to
(f, x) ∈ L2(M)× U,

we have ∣∣e−sHfn(xn)− e−sHf(x)
∣∣

≤
∣∣e−sH [fn − f ](xn)

∣∣+ ∣∣e−sHf(x)− e−sHf(xn)
∣∣

≤
∥∥e−sH∥∥

L2(M),Cb(U)
∥fn − f∥2 +

∣∣e−sHf(x)− e−sHf(xn)
∣∣

→ 0, as n→ ∞,

by step 2 and step 1.
Step 4: For fixed ϵ > 0 and f ∈ L2(M), the map

{ℜ > ϵ} ×M ∋ (z, x) 7−→ e−zHf(x)

is jointly continuous.
Proof: Indeed, this map is equal to the composition of the maps

{ℜ > ϵ} ×M
(z,x) 7→(e−(z−ϵ)Hf,x)−−−−−−−−−−−−→ L2(M)×M

(f,x) 7→e−ϵHf(x)−−−−−−−−−→ C,
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where the second map is continuous by Step 3. The first map is continuous, since the map

{ℜ > 0} ∋ z 7−→ e−zHf ∈ L2(M)(29)

is holomorphic. Note that, a priory, (29) is a weakly holomorphic semigroup by the spectral
calculus, which is then indeed (norm-) holomorphic by the weak-to-strong differentiability
theorem.
Step 5: For any f ∈ L2(M), there exists a jointly smooth version (t, x) 7→ Ptf(x) of
(t, x) 7→ e−tHf(x), which satisfies

∂

∂t
Ptf(x) = ∆xPtf(x).(30)

Proof: By Step 4, for arbitrary f ∈ L2(M), the map

{ℜ > 0} ×M ∋ (z, x) 7−→ e−zHf(x) ∈ C
is jointly continuous. It then follows from the holomorphy of (29) that for any open ball
B in the open right complex plane which has a nonempty intersection with (0,∞), for any
t ∈ B ∩ (0,∞), and for any x ∈M , we have Cauchy’s integral formula

e−tHf(x) =

∮
∂B

e−zHf(x)

t− z
dz,

noting that the holomorphy of (29) a priori only implies Cauchy’s integral formula for
almost every x. Now the claim follows from differentiating under the line integral, observing
that for fixed z ∈ {ℜ > 0}, the map

M ∋ x 7−→ e−zHf(x) = e−ℜ(z)H
[
e−

√
−1ℑ(z)Hf

]
(x) ∈ C

is smooth by Step 1. Finally, the asserted formula (30) follows from the by now proved
existence of a smooth version of (t, x) 7→ e−tHf(x) and the fact that

(d/dt)e−tHf = He−tHf, t > 0,

in the sense of norm differentiable maps (0,∞) → L2(M).

Let us now come to the actual proof of Theorem 7.1.
a) First of all, it is clear that any such heat kernel is uniquely determined (by the funda-
mental lemma of distribution theory). To see its existence, we start by remarking that for
every x ∈M , t > 0, the complex linear functional given by

L2(M) ∋ f 7−→ Ptf(x) ∈ C
is bounded by Step 2. Thus by Riesz-Fischer’s representation theorem, there exists a
unique function pt,x ∈ L2(M) such that for all f ∈ L2(M) one has

Ptf(x) = ⟨pt,x, f⟩ .(31)

Clearly pt,x ∈ R for all y ∈ M , for if not, then e−tH would not preserve reality (but it
does, as −∆ is an operator with real-valued coefficients, so H preserves reality and so
its heat semigroup). Moreover, it follows immediately from step 5 that (t, x) 7→ pt,x is
weakly smooth. Then, this map is in fact norm smooth as a map (0,∞) ×M → L2(M)
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by the weak-to-strong differentiability theorem. We claim that the integral kernel which is
well-defined by the “regularization”

p(t, x, y) :=
〈
pt/2,x, pt/2,y

〉
(32)

has the desired properties. Firstly, the smoothness of (t, x, y) 7→ p(t, x, y) follows imme-
diately from the norm smoothness of (t, x) 7→ pt,x and the smoothness of the Hilbertian
pairing (f, g) 7→ ⟨f, g⟩.
Claim 1: One has

Pt+sf(x) =

∫
⟨pt,z, ps,x⟩ f(z)dµ(z)

Proof of Claim 1:

Pt+sf(x) = PsPtf(x)

= ⟨ps,x, Ptf⟩
= ⟨Ptps,x, f⟩

=

∫
Ptps,x(z)f(z)dµ(z)

=

∫
⟨pt,z, ps,x⟩ f(z)dµ(z).

Claim 2: For all t > 0, the scalar product ⟨ps′,z, pt−s′,x⟩ does not depend on s′ ∈ (0, t).
Proof of Claim 2: Let r ∈ (0, s′). Then using Claim 1 with f = pr,x,

⟨ps′,z, pt−s′,x⟩ = Ps′pt−s′,x(z) = PrPs′−rpt−s′,x(z)

=

∫
pr,z ⟨ps′−r,z′ , pt−s′,x⟩ dµ(z′)

= Pt−rpr,z(x) = ⟨pt−r,x, pr,z⟩ = ⟨pr,z, pt−r,x⟩ .
Now it follows from Claim 1 that

Ptf(x) =

∫ 〈
pt/2,x, pt/2,y

〉
f(y)dµ(y) =

∫
p(t, x, y)f(y)dµ(y).

It remains to show p(t, x, y) ≥ 0: It will be shown as an exercise (which relies on Lemma
6.2 and Example 6.3!) that f ≤ 1 implies Ptf ≤ 1. Thus if c > 0 and f ≤ c we have
Ptf ≤ c. If f ≥ 0 we have −f ≤ c for all c > 0, so that we get Pt(−f) ≤ c and taking
c→ 0+ we have shown that f ≥ 0 implies Ptf ≥ 0.
Now note that by the fundamental lemma of distribution theory we have pt,x = p(t, x, ·)
µ-a.e., and so p(t, x, ·) = pt,x ∈ L2(M). Thus writing

p(t, x, y) = p(t, x, y)+ − p(t, x, y)−

we get

0 ≤ Pt(p(t, x, ·)−)(x) = ⟨p(t, x, ·), p(t, x, ·)−⟩
= ⟨p(t, x, ·)+, p(t, x, ·)−⟩ − ⟨p(t, x, ·)−, p(t, x, ·)−⟩
= −⟨p(t, x, ·)−, p(t, x, ·)−⟩ ,
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so ∥p(t, x, ·)−∥2 = 0 and the claim follows form continuity.

b) We have already shown the asserted square integrability. The symmetry p(t, y, x) =
p(t, x, y) follows immediately from

p(t, x, y) =
〈
pt/2,x, pt/2,y

〉
.

Next, for all 0 < s′ < t′ one has

p(t′, x, y) = ⟨ps′,x, pt′−s′,y⟩ ,

as the formula holds for s′ = t/2 and the as the RHS does not depend on s′ by Claim 2.
So ∫

p(t, x, z)p(s, z, y)dµ(z) = ⟨p(t, x, ·), p(s, y, ·)⟩ = ⟨pt,x, ps,y⟩ = p(t+ s, x, y).

It remains to show ∫
p(t, x, y)dµ(y) ≤ 1.

This follows by monotone konvergence from Ptf ≤ 1 for all f ≤ 1, by letting f run through
f = 1Kn for Kn some compact exhaustion of M .
c) = Step 5 and the proof of part a).
d) For fixed s we set

v(t, y) := p(t+ s, x, y) = p(t+ s, y, x) =

∫
p(t, y, z)p(s, z, x)dµ(z) = Ptp(s, ·, x)(y),

which by Step 5 solves the heat equation in (t, y). It follows that (t, y) 7→ v(t − s, y) =
p(t, x, y) solves the heat equation, too.

Given any self-adjoint semibounded operator H̃ and any ϕ̃ ∈ Dom(H̃ l) for some l ∈ N≥0

the spectral calculus implies∥∥∥e−tH̃ ϕ̃− ϕ̃
∥∥∥
H̃l

:=
∥∥∥e−tH̃ ϕ̃− ϕ̃

∥∥∥+ ∥∥∥H̃ l(e−tH̃ ϕ̃− ϕ̃)
∥∥∥→ 0.

Applying this with H̃ = H, ϕ̃ = ϕ, noting that ϕ ∈ Dom(H l) for all l, as ϕ is smooth and
compactly supported, we get ∥∥e−tHϕ− ϕ

∥∥
Hl → 0

for all l, but by elliptic regularity and the Sobolev embeding theorem, convergence with
respect to all ∥·∥Hl implies convergence in C∞(M) (which is locally uniform convergence
of all derivates in charts).

■

8. Strong parabolic maximum principle and its applications

From here on we will closely follow the presentation from Grigor’yan’s book [8]. The
following result (and all its consequences) relies heavily on our standing assumption that
M is connected:
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Theorem 8.1. i) The strong parabolic minimum principle holds: assume I ⊂ R is an
open interval and 0 ≤ u ∈ C2(I ×M) solves

∂tu ≥ ∆u.

If there exists (t′, x′) ∈ I ×M with u(t′, x′) = 0, then one has u(t, x) = 0 for all x ∈ M
and all t ≤ t′.

ii) The strong parabolic maximum principle holds: assume I ⊂ R is an open interval and
0 ≥ u ∈ C2(I ×M) solves

∂tu ≤ ∆u.

If there exists (t′, x′) ∈ I ×M with u(t′, x′) = 0, then one has u(t, x) = 0 for all x ∈ M
and all t ≤ t′

Proof. i) Step 1): Let Ω ⊂ R×M be nonempty, open, and relatively compact and assume10

u ∈ C2(Ω) is such that

∂tu ≥ ∆u in Ω.

Then one has infΩ u = inf∂pΩ, where ∂pΩ denotes the parabolic boundary of Ω, which is
defined as the complement

∂Ω \ ∂topΩ,
where ∂topΩ denotes the set of all (t, x) ∈ ∂Ω which admit an open neighborhood U ⊂ M
of x and ϵ > 0 such that (t− ϵ, t)× U ⊂ Ω. This is called parabolic minimum principle.

Proof of step 1:

WLOG we can assume the strict inequality ∂tu > ∆u in Ω (if this is not satisfied, one can
replace u by uϵ := u+ ϵt and take ϵ→ 0+). Let

(t0, x0) := argmin(s,y)∈Ωu(s, y).

It suffices to show (t0, x0) ∈ ∂pΩ. Assume the contrary. Then either (t0, x0) ∈ Ω or
(t0, x0) ∈ ∂topΩ. In both cases there exists a chart U around x0 and ϵ > 0 such that

Γ := (t0 − ϵ, t0)× U ⊂ Ω.

By the definition of (x0, t0), one has

t0 = argmins∈[t0−ϵ,t0]u(s, x0),

and so ∂tu(t0, x0) ≤ 0. By diagonalizing gij(x0) and making the induced coordinate trans-
formation on U , we can assume that the coordinates (x1, . . . , xm) on U satisfy, for some
constants, b1, . . . , bm,

∆f(x0) =
m∑
i=1

∂2

(∂xi)2
f(x0) +

m∑
i=1

bi
∂

∂xi
f(x0),

for all f ∈ C2(U). Since

x0 = argminy∈Uu(t0, y),

10This means that u is the restriction of C2-function on M to Ω
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we have
∂

∂xi
u(t0, x0) = 0,

∂2

(∂xi)2
u(t0, x0) ≥ 0,

and so
∆u(t0, x0) ≥ 0.

This estimate together with ∂tu(t0, x0) ≤ 0 contradicts ∂tu > ∆u in Ω and proves the
parabolic minimum principle.

Step 2): Let V be a chart in M , let x0, x1 ∈ V be such that the line connecting x0 and x1
lies in V and assume I ⊂ R is an open interval and 0 ≤ u ∈ C2(I ×M) solves

∂tu ≥ ∆u.

Then for all t0, t1 ∈ I with t1 > t0 and u(t0, x0) > 0 one has u(t1, x1) > 0.

Proof of step 2: Assume WLOG t0 = 0 and that

• V is relatively compact and its closure is contained in a chart,
• r > 0 is so small that the 2r-neighborhood of the line connecting x0 and x1 lies in
V , and that for U := Be(x0, r) one has

inf
x∈U

u(0, x) > 0.

Set

ζ :=
1

t1
(x1 − x0).

Then for all t ∈ [0, t1] one has U + tζ ∈ V . Consider the open tilted cylinder (’schiefer
Zylinder’)

Γ := {(t, x) : t ∈ (0, t1), x ∈ U + tζ}.
We are going to show that u > 0 in Γ away from the lateral surface of Γ (’Oberflaeche von
Γ ohne Deckel und Boden’). To this end, pick a function v ∈ C2(Γ) such that

∂tv ≤ ∆v in Γ,(33)

v = 0 on the lateral surface of Γ and v > 0 elsewhere on Γ.(34)

Such a function v will be constructed in the exercises. Pick ϵ > 0 such that

inf
x∈U

u(0, x) ≥ ϵ sup
x∈U

v(0, x),

in particular, u ≥ ϵv at the bottom U of Γ. In particular, u ≥ ϵv on ∂pΓ. Since the function
u− ϵv satisfies the assumptions of the parabolic minimum principle, one has u ≥ ϵv in Γ.
In light of (34), this implies u > 0 on Γ away from the lateral surface of Γ, completing the
proof of step 2.

Step 3): The strong parabolic minimum principle holds:

Proof of step 3: Given u(t′, x′) = 0 for some (t′, x′) ∈ I ×M , it suffices to prove u(t, x) = 0
for all (t, x) ∈ I ×M with t < t′. Pick a finite sequence of points x0, . . . , xk such such
that x0 = x, xk = x′ and such that xi and xi+1 lie in the same chart together with line
connecting these two points, for all i = 0, . . . , k (finally, here we use thatM is connected!!).
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Picking a finite sequence of times t = t0 < . . . tk = t′ we can use step 2 k-times to deduce
that if u(t0, x0) = u(t, x) > 0 then also u(t1, x1) > 0, and so u(t2, x2) > 0 and so on,
yielding finally that u(tk, xk) = u(t′, x′) > 0, a contradiction. This completes the proof of
the strong parabolic minimum principle.

ii) This follows from applying i) to −u. ■

Corollary 8.2. One has p > 0.

Proof. Assume there exist t′, x′, y′ with p(t′, x′, y′) = 0. Then as (t, y) 7→ p(t, x′, y) solves
the heat equation one has p(t, x′, y) = 0 for all y ∈M all t ≤ t′. Pick ϕ smooth compactly
supported with ϕ(x′) = 1. Then we have∫

p(t, x, y)ϕ(y)dµ(y) → 0

as t→ 0+ by p(t, x′, y) = 0 for all y ∈M all t ≤ t′, while∫
p(t, x, y)ϕ(y)dµ(y) → 1

as t→ 0+ by Theorem 7.1 d) and ϕ(x′) = 1. ■

Definition 8.3. Given α ∈ R, a real-valued function u ∈ C2(M) is called

• α-superharmonic, if (−∆+ α)u ≥ 0,
• α-subharmonic, if (−∆+ α)u ≤ 0,
• α-harmonic, if (−∆+ α)u = 0.

In the α-harmonic case we can assume that u is smooth by local elliptic regularity. If α = 0,
one simply says superharmonic (subharmonic) [harmonic], instead of 0-superharmonic, (0-
subharmonic) [0-harmonic].

Theorem 8.4 (Strong elliptic minimum/maximum principle). i) Assume α ∈ R and that
u ≥ 0 is α-superharmonic. If there exists x0 with u(x0) = 0, then one has u ≡ 0.
ii) Assume α ∈ R and that u ≤ 0 is α-subharmonic. If there exists x0 with u(x0) = 0, then
one has u ≡ 0.

Proof. i) Apply the strong parabolic minimum principle to v(t, x) := eαtu(x).
ii) Apply i) to −u. ■

Corollary 8.5. i) If u is superharmonic and if there exits x0 with u(x0) = inf u, then
u ≡ inf u.
ii) If u is subharmonic and if there exits x0 with u(x0) = supu, then u ≡ supu.

Proof. i) Apply the strong elliptic minumum principle to ũ := u− inf u.
ii) Apply i) to −u. ■

Example 8.6. Let N be a compact connected manifold (accoring to our convention:
smooth without boundary). By picking a Riemannian metric on N , using the Hodge-
Theorem and that continuous real-valued functions on a compact space attain their mini-
mum and maximum, we get from the above Corollary

H0(N) = {f : ∆f = 0} = {constant real-valued functions on N} = R
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for the zeroth homology group of N .

Theorem 8.7 (Elliptic minimum/maximum principle). Let V ⊂ M be open, relatively
compact with ∂V nonempty.
i) Assume u ∈ C2(V ) ∩ C(V ) is superharmonic, then one has

inf
V
u = inf

∂V
u.

ii) Assume u ∈ C2(V ) ∩ C(V ) is subharmonic, then one has

sup
V

u = sup
∂V

u.

Proof. i) set r := infV u and

S := {x ∈ V : u(x) = r}.
It suffices to show that S intersets ∂V . Assume not. Then one has S ⊂ V . We are going
to show that the closed set S is open, so S =M , a contradiction to S ⊂ V ⊂M \ ∂V .
Let x ∈ S ⊂ V and let N ⊂ V be a connected open nbh of x. Then u|N attains its
minimum in x, and so u ≡ r by the above Corollary. Thus we have shown N ⊂ S, showing
that S is open.
ii) Apply i) to −u. ■

9. Some spectral theory

In general, both parts of the spectrum (discrete spectrum and essential spectrum) of H
can be nonempty and the only thing we know for sure is σ(H) ⊂ [0,∞), as H ≥ 0.
The following simple result indicated that essential spectrum can only be nonempty on
noncompactness M ’s:

Theorem 9.1. Assume that for some t > 0 one has

sup
x∈X

p(t, x, x) <∞,

and that µ(M) < ∞. Then H has a purely discrete spectrum (so the spectrum consists of
eigenvalues having finite multiplicity), and if (λn) denotes the increasing ennumeration of
the eigenvalues with each eigenvalue counted according to its multiplicity, then one has

0 ≤ λn ↗ ∞.

Proof. By abstract functional analysis it suffices to show that Pt = e−tH is Hilbert-Schmidt.
But the latter is an integral operator, so it suffices to show∫ ∫

p(t, x, y)2dµ(x)dµ(y) <∞.

Since ∫ ∫
p(t, x, y)2dµ(x)dµ(y) =

∫
p(t, x, x)dµ(x),

the claim follows from the assumptions. ■
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The latter result clearly applies to compact M ’s (so compact M ’s have a purely discrete
spectrum), but also to some noncompact M ’s! For example, as we shall see later on (cf.
Corollary 9.8 below), the result applies to open relatively compact subsets of an arbitrary
Riemannian manifold (so those have a purely discrete spectrum, too). To prove the latter
statement, we are going to show

pU(t, x, y) ≤ p(t, x, y),

where U ⊂ M is an arbitrary open relatively compact subset and pU its heat kernel, that
is, the heat kernel of the Riemannian manifold (U, g|U). To this end, we record:

Lemma 9.2. For all 0 ≤ f ∈ W 1,2
0 (M) there exists a sequence 0 ≤ fk ∈ C∞

c (M) with
fk → f as k → ∞ in W 1,2(M).

Proof. Pick a sequence hk ∈ C∞
c (M) with hk → f in W 1,2(M), and pick ψ : R → [0,∞)

smooth with ψ(0) = 0 and supt |ψ′(t)| <∞. Then 0 ≤ ψ ◦hk ∈ C∞
c (M) and ψ ◦hk → ψ ◦f

in W 1,2(M) by Lemma 6.2 (applied with a constant sequence). Thus it suffices to show
that there exists a sequence ψk : R → [0,∞) smooth with ψk(0) = 0 and supk,t |ψ′

k(t)| <∞
such that ψk ◦ f → f in W 1,2(M). So this end, let ϕ(t) := 1(0,∞=(t), ψ(t) := t+, t ∈ R,
and pick ψk as in Example 6.3. Then for some C > 0 we have |ψk(t)− ψ(t)| ≤ C|t| for all
t, k, so that ψk ◦ f → ψ ◦ f = f in L2(M) by dominated convergence. Moreover, we have
d(ψk ◦ f) = (ψ′

k ◦ f)df by Lemma 6.2 which shows that d(ψk ◦ f) → (ϕ ◦ f)df = df again
by dominated convergence. This completes the proof. ■

Let U ⊂ M be open and denote by α̃ the trivial extension to M by zero away from U of
a function or a 1-form on U . Then we consider L2(U) as a closed subspace of L2(M) via

the embedding f 7→ f̃ , and likewise we have Ω1
L2(U) ⊂ Ω1

L2(M).

Lemma 9.3. Let U ⊂ M be open. Then for all f ∈ W 1,2
0 (U) one has f̃ ∈ W 1,2

0 (M) and

df̃ = d̃f . In particular, W 1,2
0 (U) ⊂ W 1,2

0 (M) is a closed subspace.

Proof. If f ∈ C∞
c (U) then clearly f̃ ∈ C∞

c (M) with df̃ = d̃f by locality of differential
operators.
Now let f ∈ W 1,2

0 (U) and pick a sequence fn ⊂ C∞
c (U) with fn → f in W 1,2(U). Then

clearly f̃n → f̃ in L2(M). Moreover, f̃n is Cauchy in W 1,2(M), and its limit must be f̃ ,

because f̃n → f̃ in L2(M). In particular, df̃n → df̃ in ΩL2(M). On the other hand, we

have dfn → df ∈ ΩL2(U) and so d̃fn → d̃f ∈ ΩL2(M). In view of d̃fn = df̃n, we have

ultimately shown df̃ = d̃f .
■

The analogous result withW 1,2
0 replaced byW 1,2 is wrong: in Rm, one has 1 ∈ W 1,2(B(x0, 1))

(this is trivial), but 1̃ = 1B(x0,1) /∈ W 1,2(Rm) (this requires some work).

Lemma 9.4. Let h ∈ W 1,2(M). Then there exists v ∈ W 1,2
0 (M) with h ≤ v, if and only if

one has h+ ∈ W 1,2
0 (M).

Proof. Exercise. ■
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Lemma 9.5. Assume 0 ≤ u ∈ W 1,2(M), f ∈ L2(M) is real-valued, λ > 0, and that one
has (−∆+ λ)u ≥ f weakly, meaning that∫

u(−∆+ λ)ϕdµ ≥
∫
fϕdµ(35)

for all 0 ≤ ϕ ∈ C∞
c (M). Then one has u ≥ (H + λ)−1f .

Proof. Write f = (H + λ)(H + λ)−1f and set v := (H + λ)−1f ∈ Dom(H) ⊂ W 1,2
0 (M).

Then one has

(−∆+ λ)(v − u) ≤ 0

weakly, and so

(−∆+ λ)h ≤ 0

weakly, if we set h := v − u ∈ W 1,2(M). Thus, integrating by parts,∫
(dh, dϕ)dµ+ λ

∫
hϕdµ ≤ 0

for all 0 ≤ ϕ ∈ C∞
c (M). Since both sided are continuous in the W 1,2-norm, Lemma 9.2

shows that the the latter inequality holds for all 0 ≤ ϕ ∈ W 1,2
0 (M). By Lemma 9.4 we

have 0 ≤ h+ ∈ W 1,2
0 (M), and so∫

(dh, dh+)dµ+ λ

∫
hh+dµ =

∫
(dh, dh+)dµ+ λ

∫
h2+dµ ≤ 0.

By Example 6.3 one has ∫
(dh, dh+)dµ =

∫
|dh+|2dµ,

and so ∫
|dh+|2dµ+ λ

∫
h2+dµ =≤ 0,

and so h+ = 0, as λ > 0. This shows v − u ≤ 0, and so v = (H + λ)−1f ≤ u. ■

Lemma 9.6. For all λ > 0 one has (H + λ)−1f1 ≤ (H + λ)−1f2, whenever f1, f2 ∈ L2(M)
are such that f1 ≤ f2.

Proof. By linearity we can assume f1 = 0. Using the formula (Laplace-transforms)

(r + λ)−1 =

∫ ∞

0

e−λse−srds

with r = H (spectral calculus) implies

(H + λ)−1f2 =

∫ ∞

0

e−λsPsf2ds ≥ 0,

where the intregal converges in the L2-sense, so the claim follows from Psf2 ≥ 0 (which is
a consequence of p(s, x, y) ≥ 0). Note there that on any measure space 0 ≤ hn → h in Lp

for some p ∈ [1,∞) implies h ≥ 0. ■
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Given U ⊂M open, we denote with HU , PU , pU the objects H, P , p which are defined on
the Riemannian manifold (U, g|U). Based on the above auxiliary results we can prove:

Theorem 9.7. For all open U ⊂M , t > 0, x, y ∈ U one has pU(t, x, y) ≤ p(t, x, y).

Proof. It suffices to prove that for all 0 ≤ f ∈ L2(U), x ∈ U , one has(∫
U

pU(t, x, y)f(y)dµ(y) =

)
PU
t f(x) ≤ Ptf̃(x)

(
=

∫
U

p(t, x, y)f(y)dµ(y)

)
.(36)

Step 1: For all λ > 0 one has (HU + λ)−1f ≤ (H + λ)−1f̃ .

Proof of step 1: We have u := (H + λ)−1f̃ ∈ W 1,2
0 (M) ⊂ W 1,2(M), and this function in

≥ 0 by Lemma 9.6. Clearly, u|U ∈ W 1,2(U) and (−∆+ λ)u|U = f |U . Thus, we have

(H + λ)−1f̃ = u ≥ (HU + λ)−1f̃ .

from Lemma 9.5.

Step 2: For all λ > 0, k ∈ N, one has (HU + λ)−kf ≤ (H + λ)−kf̃ .

Proof of step 2: This follows from applying step 1 and Lemma 9.6 (using the latter for M
and for U).

Step 3: One has (36).

Proof of step 3: By applying the formula e−tr = limk

(
k
t

)k
(r + k/t)−k for r = H,HU

(spectral calculus), we get the L2-convergences

PU
t = e−tH

U

= lim
k

(
k

t

)k
(HU + k/t)−k, Pt = e−tH = lim

k

(
k

t

)k
(H + k/t)−k,

so that the claim follows from Step 2.
■

Applying the last result with M replaced by V , where V ⊂ M is open with U ⊂ V ,
implies that for all 0 ≤ f ∈ L2(M) one has PU

t f |U ≤ P V
t f |V , in particular if (Uj)j∈N is an

exhaustion of M with open subsets the limit limn P
Un
t f |Un exists pointwise. As one might

guess, one has that for all t > 0 (exercise)

PUn
t f |Un ↗ Ptf µ-a.e.(37)

With some nore efforts, one can prove that the above relation actually holds pointwise
(and even in the C∞), but we will not need this stronger statement.

Corollary 9.8. For all open relatively compact U ⊂ M the operator HU has a purely
discrete spectrum.

Proof. Combine Theorem 9.7 with Theorem 9.1. ■
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10. Wiener measure and Brownian motion on Riemannian manifolds

Roughly speaking, one would like to construct Brownian motion X(x0) on M , starting
from x0 ∈M , as follows: It should be an M -valued process11 with continuous paths

X(x0) : [0,∞)× Ω −→M,(38)

which is defined on some probability space (Ω,P,F ), and which has the transition proba-
bility densities given by p(t, x, y). In other words, given n ∈ N, a finite sequence of times
0 < t1 < · · · < tn and Borel sets A1, . . . , An ⊂ M , setting δj := tj+1 − tj with t0 := 0,
we would like the probability of finding the Brownian particle simultaneously in A1 at the
time t1, in A2 at the time t2, and so on, to be given by the quantity

P{Xt1(x0) ∈ A1, . . . , Xtn(x0) ∈ An}(39)

=

∫
· · ·
∫

1A1(x1)p(δ0, x0, x1) · · ·

× 1An(xn)p(δn−1, xn−1, xn)dµ(x1) · · · dµ(xn),

whenever the particle starts from x0. Equivalently, one could say that a Brownian motion
on M with starting point x0 is a process with continuous paths (38), such that the finite-
dimensional distributions of its law are given by the right-hand side of (39)12. In fact, such
a path space measure is uniquely determined by its finite-dimensional distributions (cf.
Remark 10.8 below). In particular, all Brownian motions should have the same law, which
we will call the Wiener measure later on.

Ultimately, the above prescriptions indeed turn out to work perfectly well in terms of
giving Brownian motion for the Euclidean Rm or for compact Riemannian manifolds. On
the other hand, we see from (39) that, in particular, it is required that for all t > 0,

P{Xt(x0) ∈M} =

∫
M

p(t, x0, y)dµ(y).

Lemma 10.1. Assume M = U is an open connected subset of the Euclidean Rm with
Rm \ U has a positive measure (for example U could be bounded). Then one has∫

U

pU(t, x0, y)dy < 1 for some (in fact: all) (t, x0) ∈ (0,∞)×M.(40)

11We recall that given two measurable spaces Ω1 and Ω2, a map

X : [0,∞)× Ω1 −→ Ω2, (t, ω) 7−→ Xt(ω)

is called an Ω2-valued process, if for all t ≥ 0 the induced map Xt : Ω1 → Ω2 is measurable. The maps
t 7→ Xt(ω), with fixed ω ∈ Ω1, are referred to as the paths of X.

12The law of X(x0) is by definition the probability measure on the space of continuous paths on M ,
which is defined as the pushforward of P under the induced map

Ω −→ C([0,∞),M), ω 7−→ X•(x0)(ω).
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Proof. One has∫
U

pU(t, x0, y)dy ≤
∫
U

p(t, x0, y)dy =

∫
Rm

p(t, x0, y)dy −
∫
Rm\U

p(t, x0, y)dy,

so the claim follows from∫
Rm

p(t, x0, y)dy =

∫
Rm

1

(4πt)m/2
e−

|x0−y|2
4t dy

as by (Fourier transform) the Euclidean heat kernel is given by the Gauss-Weierstrass
formula

p(t, x0, y) =
1

(4πt)m/2
e−

|x0−y|2
4t

and as one has ∫
Rm\U

p(t, x0, y)dy > 0,

as p > 0 and Rm \ U has positive measure.
■

The above Lemma leads to the conceptual difficulty that the process can leave its space of
states with a strictly positive probability and one ends up with:

Definition 10.2. M is called stochastically complete, if one has∫
M

p(t, x0, y)dµ(y) = 1 for all (t, x0) ∈ (0,∞)×M .

Using the Champman-Kolmogorov equations it is easily checked that M is stochastically
complete, if and only if one has∫

M

p(t, x0, y)dµ(y) = 1 for some (t, x0) ∈ (0,∞)×M .

Remark 10.3. Stochastic completeness is unrelated to geodesic completeness. For ex-
ample, Rm \ {0} is stochastically complete but geodesically incomplete, and there exist
geodesically complete and but stochastically incomplete M ’s. On the other hand, a cel-
ebrated result by Yau states that if M is geodesically complete with a Ricci curvature
bounded from below by a constant, then M is stochastically complete. In particular, the
Euclidean Rm is stochastically complete (of course this follows, as already observed, also
simply from a calculation), and compact M ’s are stochastically complete.

Since we aim to work on arbitrary Riemannian manifolds, we need to solve the above
conceptual problem of stochastic incompleteness. This is done by using the Alexandrov
compactification of M . Since it does not cause much extra work, we start by explaining
the corresponding constructions in the setting of an arbitrary Polish space, recalling that
a topological space is called Polish, if it is separable and if it admits a complete metric
which induces the original topology.
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Notation 10.4. Given a locally compact Polish space N , we set

Ñ :={
N, if N is compact

Alexandrov compactification N ∪ {∞N}, if N is noncompact.

We recall here that ∞N is any point /∈ N , and that the topology on N ∪ {∞N} is defined
as follows: U ⊂ N ∪ {∞N} is declared to be open, if and only if either U is an open
subset of N or if there exists a compact set K ⊂ N such that U = (N \K)∪ {∞N}. This
construction depends trivially on the choice of ∞N , in the sense that for any other choice
∞′

N /∈ N , the canonical bijection N ∪ {∞N} → N ∪ {∞′
N} is a homeomorphism.

We consider the path space ΩN := C([0,∞), Ñ), and thereon we denote (with a slight
abuse of notation) the canonically given coordinate process by

X : [0,∞)× ΩN −→ Ñ , Xt(γ) := γ(t).

We consider ΩN a topological space with respect to the topology of uniform convergence
on compact subsets, and we equip it with its Borel sigma-algebra FN .

We fix such a locally compact Polish space N (e.g., a manifold) for the moment. It is

well-known that ΩN as defined above is Polish again. In fact, Ñ is Polish, and if we pick

a bounded metric ϱÑ : Ñ × Ñ → [0, 1] which induces the original topology on Ñ , then

ϱΩN
(γ1, γ2) :=

∞∑
j=1

max
0≤t≤j

ϱÑ(γ1(t), γ2(t))

is a complete separable metric13 on ΩN which induces the original topology (of local uniform
convergence). Furthermore, since evaluation maps of the form

X1 × C(X1, X2) −→ X2, (x, f) 7−→ f(x)

are always jointly continuous, if X1 is locally compact and Hausdorff and if C(X1, X2) is
equipped with its topology of local uniform convergence, it follows that X is in fact jointly
continuous. In particular, X is jointly (Borel) measurable.

Notation 10.5. Given a set Ω and a collection C of subsets of Ω or of maps with domain Ω,
the symbol ⟨C ⟩ stands for the smallest sigma-algebra on Ω which contains C . Furthermore,
whenever there is no danger of confusion, we will use notations such as

{f ∈ A} := {y ∈ Ω : f(y) ∈ A} ⊂ Ω,

where f : Ω → Ω′ and A ⊂ Ω′.

13In fact, it is easy to see that this is a complete metric which induces the original topology. On the
other hand, the proof that this topology is separable is a little tricky. Although it is not so easy to find a
precise reference, we believe that these results can be traced back to Kolmogorov.
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Definition 10.6. 1. A subset C ⊂ ΩN is called a Borel cylinder, if there exist n ∈ N,
0 < t1 < · · · < tn and Borel sets A1, . . . , An ⊂ Ñ , such that

C = {Xt1 ∈ A1, . . . ,Xtn ∈ An} =
n⋂
j=1

X−1
tj
(Aj).

The collection of all Borel cylinders in ΩN will be denoted by C N .
2. Likewise, given t ≥ 0, the collection C N

t of Borel cylinders in ΩN up to the time t is
defined to be the collection of subsets C ⊂ ΩN of the form

C = {Xt1 ∈ A1, . . . ,Xtn ∈ An} =
n⋂
j=1

X−1
tj
(Aj),

where n ∈ N, 0 < t1 < · · · < tn < t, and where A1, . . . , An ⊂ Ñ are Borel sets.

It is easily checked inductively that both C N and C N
t are π-systems in ΩN , that is, both col-

lections are (nonempty and) stable under taking finitely many intersections. The following
fact makes FN handy in applications:

Lemma 10.7. One has

FN =
〈
C N
〉
=
〈
(Xs : ΩN −→ Ñ)s≥0

〉
.(41)

Proof. Since for every fixed s ≥ 0 the map

Xs : ΩN −→ Ñ , γ 7−→ γ(s)

is FN -measurable, it is clear that C N ⊂ FN , and therefore〈
C N
〉
⊂ FN .

In order to see

FN ⊂
〈
C N
〉
,

pick a topology-defining metric ϱÑ on Ñ and denote the corresponding closed balls by

BÑ(x, r). Then, since the elements of ΩN are continuous, for all γ0 ∈ ΩN , n ∈ N, ϵ > 0
one has {

γ : max
0≤t≤n

ϱÑ(γ(t), γ0(t)) ≤ ϵ

}
=

⋂
0≤t≤n, t is rational

{
γ : γ(t) ∈ BÑ(γ0(t), ϵ)

}
,

=
⋂

0<t≤n, t is rational

{
γ : γ(t) ∈ BÑ(γ0(t), ϵ)

}
.

Therefore, sets of the form{
γ : max

0≤t≤n
ϱÑ(γ(t), γ0(t)) ≤ ϵ

}
, γ0 ∈ ΩN , n ∈ N, ϵ > 0(42)
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are
〈
C N
〉
-measurable. Since the collection of sets of the form (42) generates the topology

of local uniform convergence14, it is clear that the induced Borel sigma-algebra FN satisfies
FN ⊂

〈
C N
〉
.

The inclusion 〈
C N
〉
⊂
〈
(Xs : ΩN −→ Ñ)s≥0

〉
is clear, since each set in C N is a finite intersection of sets of the form X−1

s (A), s > 0,

A ⊂ Ñ Borel. To see 〈
(Xs : ΩN −→ Ñ)s≥0

〉
⊂
〈
C N
〉
,

note that for every metric ϱÑ that generates the topology on Ñ , one has〈
(Xs : ΩN −→ Ñ)s≥0

〉
=
〈{

X−1
s

(
BÑ(x, r)

)
: x ∈ Ñ , r > 0, s ≥ 0

}〉
,

with the corresponding closed balls BÑ(. . . ), so that it only remains to prove

X−1
0

(
BÑ(x, r)

)
∈
〈
C N
〉

for all x ∈ Ñ , r > 0. This, however, follows from

X−1
0

(
Bϱ

Ñ
(x, r)

)
=
{
γ : lim

n→∞
ϱÑ(γ(1/n), x) ≤ r

}
,

since clearly γ 7→ ϱÑ(γ(1/n), x) is a
〈
C N
〉
-measurable function on ΩN (the pre-image of

an interval of the form [0, R] under this map is the cylinder set X−1
1/n

(
BÑ(x,R)

)
). This

completes the proof. ■

Remark 10.8. By the above lemma, C N is a π-system that generates FN . It then follows
from an abstract measure theoretic result that every finite measure on FN is uniquely
determined by its values on C N .

Definition 10.9. Setting

FN
t :=

〈
(Xs : ΩN −→ Ñ)0≤s≤t

〉
for every t ≥ 0,

it follows from Lemma 10.7 that

FN
∗ :=

⋃
t≥0

FN
t

becomes a filtration of FN . It is called the filtration generated by the coordinate process
on ΩN .

Precisely as for the second equality in (41), one proves

FN
t =

〈
C N
t

〉
for all t ≥ 0.(43)

Particularly important FN
t -measurable sets are provided by exit times:

14To be precise, this collection forms a basis of neighbourhoods of this topology.
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Definition 10.10. Given an arbitrary subset U ⊂ Ñ , we define

ζU : ΩN −→ [0,∞], ζU := inf{t ≥ 0 : Xt ∈ Ñ \ U},(44)

and call this map the the first exit time of X from U , with inf{...} := ∞ in case the set is
empty.

There is the following result, which in a probabilistic language means that first exit times
from open sets are FN

∗ -optional times:15

Lemma 10.11. Assume that U ⊂ Ñ is open with U ̸= Ñ . Then one has

{t < ζU} ∈ FN
t for all t ≥ 0.

Proof. The proof actually only uses that X has continuous paths and that Ñ is metrizable:

Pick a metric ϱÑ on Ñ which induces the original topology. Then, since Ñ \ U is closed
and X has continuous paths, we have

{t < ζU} =
⋃
n∈N

⋃
0≤s≤t, s is rational

{ϱÑ(Xs, Ñ \ U) ≥ 1/n}.

The set on the right-hand side clearly is ∈ FN
t , since the distance function to a nonempty

set is continuous and thus Borel. ■

We return to our Riemannian setting. In order to apply the above abstract machinery in
this case, we have to extend some Riemannian data to the compactification of M (in the
noncompact case):

Notation 10.12. Let µ̃ denote the Borel measure on M̃ given by µ if M is compact, and
which is extended to ∞M by setting µ(∞M) = 1 in the noncompact case. Then we define
a Borel function

p̃ : (0,∞)× M̃ × M̃ −→ [0,∞)

as follows: p̃ := p if M is compact, and in case M is noncompact, then for t > 0, x, y ∈M
we set

p̃(t, x, y) := p(t, x, y), p̃(t,∞M , x) := 0, p̃(t,∞M ,∞M) := 1,

p̃(t, y,∞M) := 1−
∫
M

p(t, y, z)dµ(z).

It is straightforward to check that the pair (p̃, µ̃) satisfies the Chapman-Kolmogorov equa-

tions, that is, for all s, t > 0, x, y ∈ M̃ one has∫
M̃

p̃(t, x, z)p̃(s, z, y)dµ̃(z) = p̃(s+ t, x, y).(45)

15Let (Ω,F ) be a measure space, and let F∗ = (Ft)t≥0 be a filtration of F . Then a map τ : Ω → [0,∞]
is called a F∗-optional time, if for all t ≥ 0 one has {t < τ} ∈ Ft, and it is called a F∗-stopping time, if
for all t ≥ 0 one has {t ≤ τ} ∈ Ft.
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Furthermore, one has ∫
M̃

p̃(t, x, y)dµ̃(y) = 1 for all x ∈ M̃,(46)

in contrast to the possibility of
∫
M
p(t, x, y)dµ(y) < 1 in caseM is stochastically incomplete.

It is precisely the conservation of probability (46) which motivates the above Alexandrov
machinery. Since there is no danger of confusion, the following abuse of notation will be
very convenient in the sequel:

Notation 10.13. We write ζ := ζM for the first exist time of the coordinate process X on

ΩM from M ⊂ M̃ .

For obvious reasons, ζ is also called the explosion time of X. Note also that one has ζ > 0,
and that by our previous conventions we have ζ ≡ ∞ if M is compact. The last fact is
consistent with the fact that compact Riemannian manifolds are stochastically complete.

The following existence result will be central in the sequel:

Proposition and definition 10.14. The Wiener measure Px0 with initial point x0 ∈ M
is defined to be the unique probability measure on (ΩM ,FM) which satisfies

Px0{Xt1 ∈ A1, . . . ,Xtn ∈ An}

=

∫
· · ·
∫

1A1(x1)p̃(δ0, x0, x1) · · ·

× 1An(xn)p̃(δn−1, xn−1, xn)dµ̃(x1) · · · dµ̃(xn)

for all n ∈ N, all finite sequences of times 0 < t1 < · · · < tn and all Borel sets A1, . . . , An ⊂
M̃ , where δj := tj+1 − tj with t0 := 0. It has the additional property that

Px0
(
{ζ = ∞}

⋃{
ζ <∞ and Xt = ∞M for all t ∈ [ζ,∞)

})
= 1,(47)

in other words, the point at infinity ∞M is a “trap” for Px0-a.e. path.16

Proof. We will consider the case that M is an open relatively compact subset of a Rie-
mannian manifold.

Step 1: Consider Ω0
M the space of all maps from [0,∞) → M̃ with the smallest sigma-

algebra FM,0 such that with the process

X0 : [0,∞)× Ω0
M −→ M̃, X0

t (γ) := γ(t),

16It is a trap in the sense that once a path touches ∞M , it remains there for all times.
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the maps X0
t are measurable for all t ≥ 0. Then there exists a unique probability measure

Px0,0 on (Ω0
M ,F

M,0) such that

Px0,0{X0
t1
∈ A1, . . . ,X0

tn ∈ An}

=

∫
· · ·
∫

1A1(x1)p̃(δ0, x0, x1) · · ·

× 1An(xn)p̃(δn−1, xn−1, xn)dµ̃(x1) · · · dµ̃(xn).

Proof: Given subsets G ⊂ F ⊂ [0,∞) we get a projection map

πFG : M̃F −→ M̃G, γ 7−→ γ|G.

Let FM,0
F denote the smallest sigma-algebra such that the maps

πF{t} : M̃
F → M̃{t} = M̃

are measurable. A family probability measures PF which for every finite subset F of [0,∞)

associates a probability measure PF on (M̃F ,FM,0
F ) is called consistent, if

(πFG)∗PF = PG for all finite G ⊂ F ⊂ [0,∞)

Then Kolmogorov’s consistency theorem states that there exists a unique probability mea-

sure P on (M̃ [0,∞),FM,0 such that

(π
[0,∞)
F )∗P = PF for all finite F ⊂ [0,∞).

Applying this with PF given by

PF (B)

=

∫
· · ·
∫

1B(x1, . . . , xn)p̃(δ0, x0, x1) · · ·

× p̃(δn−1, xn−1, xn)dµ̃(x1) · · · dµ̃(xn).

where F = {0 < t1 < · · · < tn} and B ⊂ FM,0
F proves the claim. Here, consistency follows

from the Chapman-Kolmogorov equations

Step 2: There exists a process

Y : [0,∞)× Ω0
M −→ M̃

which has continuous paths and satisfies Px0,0{Yt = X0
t} = 1 for all t ≥ 0.

Proof: Kolmogorov-Chentsov’s theorem on the existence of a continuous version of a sto-
chastic process shows that it suffices to show the existence of constants a, b, C, ϵ > 0 such
that for all t, s ≥ 0 with |t− s| < ϵ one has∫

ϱ(X0
s,X0

t )
adPx0,0 ≤ C|t− s|1+b.

This follows from heat kernel estimates on compact Riemannian manifolds without bound-
ary (Li-Yau heat kernel estimates).
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Step 3: one has FM = FM,0 ∩ ΩM .
This follows from Lemma 10.7.

Step 3: The actual claim.
Proof: By Step 2,3, the measure Px0,0 is concentrated on ΩM , so its restriction to ΩM does
the job. ■

An obvious but nevertheless very important consequence of (47) is that for all x0 ∈M one
has

Px0{1{t<ζ} = 1{Xt∈M}} = 1.(48)

In the sequel, integration with respect to the Wiener measure will often be written as an
expectation value,

Ex0 [Ψ] :=

∫
ΨdPx0 :=

∫
Ψ(γ)dPx0(γ),

where Ψ : ΩM → C is any appropriate (say, nonnegative or integrable) Borel function.
We remark that using monotone convergence, the defining relation of the Wiener measure
implies that for all n ∈ N, all finite sequences of times 0 < t1 < · · · < tn and all Borel
functions

f1, . . . , fn : M̃ −→ [0,∞),

one has

Ex0 [f1(Xt1) · · · fn(Xtn)](49)

=

∫
· · ·
∫
f1(x1)p̃(δ0, x0, x1) · · ·

× fn(xn)p̃(δn−1, xn−1, xn)dµ̃(x1) · · · dµ̃(xn),(50)

where δj := tj+1 − tj with t0 := 0. In particular, by the very construction of M̃ and µ̃, the
above formula in combination with (48) implies

Ex0
[
1{t1<ζ}f1(Xt1) · · · 1{tn<ζ}fn(Xtn)

]
(51)

= Ex0
[
1{Xt1∈M}f1(Xt1) · · · 1{Xtn∈M}fn(Xtn)

]
=

∫
· · ·
∫
f1(x1)p(δ0, x0, x1) · · ·

× fn(xn)p(δn−1, xn−1, xn)dµ(x1) · · · dµ(xn),(52)

therefore quantities that are given by averaging over paths that remain on M until any
fixed time can be calculated by genuine Riemannian data on M , as it should be. In the
sequel, we will also freely use the following facts:

Remark 10.15. 1. Each of the measures Px0 is concentrated on the set of paths that start
in x0, meaning that

Px0{X0 = x0} = 1 for all x0 ∈M,
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as it should be. To see this, pick a metric ϱ̃ on M̃ which induces the topology on M̃ , and
set

f̃ := ϱ̃(•, x0)− ϱ̃(∞M , x0) ∈ C(M̃).

As x0 ∈M , the very definition of (p̃, µ̃) implies that for all t > 0 one has∫
M̃

p̃(t, x0, y)ϱ̃(y, x0)dµ̃(y) =

∫
M

p(t, x0, y)f̃ |M(y)dµ(y) + ϱ̃(∞M , x0),

which, since f̃ |M is a continuous bounded function on M , implies through (49) and the
fact that for all f ∈ Cb(M) one has [8]

Ptf → f locally uniformly as t→ 0+,

the L1-convergence

Ex0 [ϱ̃(Xt, x0)] =

∫
M̃

p̃(t, x0, y)ϱ̃(y, x0)dµ̃(y) → 0 as t→ 0+.

Thus we can pick a sequence of strictly positive times an with an → 0 such that ϱ̃(Xan , x) →
0 Px0-a.e., and the claim follows from

ϱ̃(X0, x) ≤ ϱ̃(X0,Xan) + ϱ̃(Xan , x) for all n ∈ N
and the continuity of the paths of X.
2. For every Borel set N ⊂M with µ(N) = 0 and every x ∈M , one has∫ ∞

0

∫
ΩM

1{(s′,γ′): γ′(s′)∈N}(s, γ)dPx(γ)ds =
∫ ∞

0

∫
N

p(s, x, y)dµ(y)ds = 0.(53)

This fact follows immediately from the defining relation of the Wiener measure. For the
first identity in (53), one also needs Fubini’s Theorem, which can be used due to X being
jointly measurable.

3. For each fixed A ∈ FM , the map

M −→ [0, 1], x 7−→ Px(A)(54)

is Borel measurable. In fact, this is obvious for A ∈ CM by the defining relation of the
Wiener measure, and it holds in general by the monotone class theorem, since CM is a
π-system which generates FM , and since the collection of sets

{A : A ∈ FM , (54) is Borel measurable}
forms a monotone Dynkin-system.

The following result is crucial:

Lemma 10.16. The family of Wiener measures satisfies the following Markov property:
For all x0 ∈ M , all times t ≥ 0, all FM

t -measurable functions ϕ : ΩM → [0,∞), and all
FM -measurable functions Ψ : ΩM → [0,∞), one has∫

ϕ(γ)Ψ(γ(t+ •))dPx0(γ) =
∫
ϕ(γ)

∫
Ψ(ω)dPγ(t)(ω)dPx0(γ) ∈ [0,∞].(55)
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Proof. By monotone convergence, it is sufficient to consider the case ϕ = 1A, Ψ = 1B with
A ∈ FM

t , B ∈ FM . Furthermore, for fixed A ∈ FM
t , using a monotone class argument

as in Remark 10.15.3, it follows that it is sufficient to prove the formula for B ∈ CM .
Using yet another monotone class argument, it follows that ultimately we have to check
the formula only for ϕ = 1A, Ψ = 1B with A ∈ CM

t , B ∈ CM . So we pick k, l ∈ N, finite
sequences of times 0 < r1 < · · · < rk < t, 0 < s1 < · · · < sl, Borel sets

A1, . . . , Ak, B1, . . . , Bl ⊂ M̃

with

A =
k⋂
i=1

X−1
ri
(Ai), B =

l⋂
i=1

X−1
si
(Bi),

and s0 := 0, r0 := 0. Then by the defining relation of the Wiener measure we have∫
1A(γ) · 1B(γ(t+ •))dPx0(γ)

=

∫
1{Xr1∈A1} · · · 1{Xrk

∈Ak}1{Xs1+t∈B1} · · · 1{Xsl+t∈Bl}dP
x0

=

∫
· · ·
∫

1A1(x1)p̃(r1 − r0, x0, x1) · · · 1Ak
(xk)p̃(rk − rk−1, xk−1, xk)

× 1B1(xk+1)p̃(s1 + t− rk, xk, xk+1) · · ·
× 1Bl

(xk+l)p̃(sl − sl−1, xk+l−1, xk+l)dµ̃(x1) · · · dµ̃(xk+l).

On the other hand, if for every y0 ∈ M̃ we set

Ψ(y0) :=

∫
· · ·
∫

1B1(y1)p̃(s1 − s0, y0, y1) · · ·

× 1Bl
(yl)p̃(sl − sl−1, yl−1, yl)dµ̃(y1) · · · dµ̃(yl),

then by using the defining relation of the Wiener measure for the dPγ(t)(ω) integration and
then using (49), we get∫

1A(γ)

∫
1B(ω)dPγ(t)(ω)dPx0(γ)

=

∫
1{Xr1∈A1}(γ) · · · 1{Xrk

∈Ak}(γ)Ψ(γ(t))dPx0(γ)

=

∫
· · ·
∫

1A1(z1)p̃(r1 − r0, x0, z1) · · · 1Ak
(zk)p̃(rk−1 − rk, zk−1, zk)

× p̃(t− rk, zk, z)1B1(y1)p̃(s1 − s0, z, y1) · · · 1Bl
(yl)p̃(sl − sl−1, yl−1, yl)

× dµ̃(y1) · · · dµ̃(yl)dµ̃(z1) · · · dµ̃(zk)dµ̃(z),
which is equal to the above expression for∫

1A(γ) · 1B(γ(t+ •))dPx0(γ),
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since by the Chapman-Kolomogorov equation and recalling s0 = 0, we have∫ ∫
p̃(t− rk, zk, z)1B1(y1)p̃(s1 − s0, z, y1)dµ̃(z)dµ̃(y1)

=

∫
p̃(t− rk + s1, zk, y1)1B1(y1)dµ̃(y1).

This completes the proof. ■

Now we are in the position to define Brownian motion on an arbitrary Riemannian mani-
fold:

Definition 10.17. 1. Let (Ω,F ,P) be a probability space, x0 ∈M , and let

X(x0) : [0,∞)× Ω −→ M̃, (t, ω) 7−→ Xt(x0)(ω)

be a continuous process. Then the tuple (Ω,F ,P, X(x0)) is called a Brownian motion on
M with starting point x0, if the law of X(x0) with respect to P is equal to the Wiener
measure Px0 . Recall that this means the following: The pushforward of P with respect to
the F/FM measurable17 map

Ω −→ ΩM , ω 7−→
(
t 7−→ Xt(x0)(ω)

)
(56)

is Px0 .
2. Assume that (Ω,F ,P, X(x0)) is a Brownian motion on M with starting point x0, and
that F∗ := (Ft)t≥0 is a filtration of F . Then the tuple (Ω,F ,F∗,P, X(x0)) is called an
adapted Brownian motion onM with starting point x0, ifX(x0) is adapted to F∗ := (Ft)t≥0

(that is, Xt(x0) : Ω → M̃ is Ft-measurable for all t ≥ 0) and if in addition the following
Markov property holds: For all times t ≥ 0, all Ft measurable functions ϕ : Ω → [0,∞),
and all Borel functions Ψ : ΩM → [0,∞), one has∫

ϕ(ω)Ψ(Xt+•(x0)(ω))dP(ω) =
∫
ϕ(ω)

∫
Ψ(γ)dPXt(x0)(ω)(γ)dP(ω).

It follows from the above results that a canonical adapted Brownian motion with starting
point x0 is given in terms of the Wiener measure by the datum

(Ω,F ,F∗,P, X(x0)) := (ΩM ,F
M ,FM

∗ ,Px0 ,X).(57)

Having recorded the existence of Brownian motion, we can immediately record the following
characterization of the stochastic completeness property that was previously defined by the
“parabolic condition”∫

M

p(t, x0, y)dµ(y) = 1 for all (t, x0) ∈ (0,∞)×M :

Namely, M is stochastically complete, if and only if for every x0 ∈M and every Brownian
motion (Ω,F ,P, X(x0)) on M with starting point x0, one has

P{Xt(x0) ∈M} = 1 for all t ≥ 0,

17Note that by assumption Xt(x0) is FM
t -measurable for all t ≥ 0, so that indeed (56) is automatically

F/FM measurable.
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that is, if all Brownian motions remain on M for all times. This observation follows
immediately from the defining relation of the Wiener measure.
The second part of Definition 10.17 is motivated by the fact that every Brownian motion
has the required Markov property with respect to its own filtration:

Lemma 10.18. Every Brownian motion (Ω,F ,P, X(x0)) on M with starting point x0 is

automatically an (FX(x0)
t )t≥0-Brownian motion, where

FX(x0)
t := ⟨(Xs(x0))0≤s≤t⟩ , t ≥ 0

denotes the filtration of F which is generated by X(x0).

Proof. We have to show that given t ≥ 0, an FX(x0)
t -measurable function ϕ : Ω → [0,∞),

and a Borel function Ψ : ΩM → [0,∞), one has∫
ϕ(ω)Ψ(Xt+•(x0)(ω))dP(ω) =

∫
ϕ(ω)

∫
Ψ(γ)dPXt(x0)(ω)(γ)dP(ω).

Assume for the moment that we can pick an FM
t -measurable function f : ΩM → [0,∞)

such that f(X ′(x0)) = ϕ, where

X ′(x0) : Ω −→ ΩM

denotes the induced F/FM measurable map (56). Then, since the law of X(x0) is Px0 ,
we can use the Markov property from Lemma 10.16 to calculate∫

ϕ(ω)Ψ(Xt+•(x0)(ω))dP(ω)

=

∫
f(ω′)Ψ(ω′(t+ •))dPx0(ω′)

=

∫
f(ω′)

∫
Ψ(γ)dPω′(t)(γ)dPx0(ω′)

=

∫
f
(
X(x0)(ω)

) ∫
Ψ(γ)dPXt(x0)(ω)(γ)dP(ω)

=

∫
ϕ(ω)

∫
Ψ(γ)dPXt(x0)(ω)(γ)dP(ω),

proving the claim in this case. It remains to prove that one can always “factor” ϕ in
the above form. Somewhat simpler variants of such a statement are usually called Doob-
Dynkin lemma in the literature. An important point here is that the factoring procedure
can be chosen to be positivity preserving. We give a quick proof: Set X := X(x0),
X ′ := X ′(x0), and assume first that ϕ is a simple function, that is, ϕ is a finite sum
ϕ =

∑
j cj1Aj

with constants cj ≥ 0 and disjoint sets Aj ∈ FX
t . Then by the definition of

this sigma-algebra, there exist times 0 ≤ sj ≤ t and Borel sets Bj ⊂ M̃ with Aj = X−1
sj

(Bj),

such that with Cj := X−1
sj
(Bj) ∈ FM

t , the function f :=
∑

j cj1Cj
on ΩM is nonnegative,

FM
t -measurable, and satisfies f(X ′) = ϕ. In the general case, there exists an increasing

sequence of nonnegative FX
t -measurable simple functions ϕn on Ω such that limn ϕn = ϕ.
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By the above, we can pick for each n an FM
t -measurable nonnegative function fn on ΩM

with fn(X
′) = ϕn. The set

Ω′ := {fn converges pointwise } ⊂ Ω

clearly contains the image of X ′, and it is straighforwardly seen to be FM
t -measurable.

Then f := limn(fn1Ω′) has the desired properties. Note that the above proof is entirely
measure theoretic and does not use any particular (say, topological) properties of the
involved quantities. ■

Definition 10.19. M is called nonparabolic, if and only if for all x, y ∈M with x ̸= y one
has the finiteness of the Coulomb potential

G(x, y) :=

∫ ∞

0

p(t, x, y)dt.

One can easily show that compact M ’s are always parabolic, and that the Euclidean Rm

is nonparabolic if and only m ≥ 3. Probabilistically, this property means [9]:

Theorem 10.20. M is nonparabolic, if and only if every Brownian motion (Ω,F ,P, X(x0))
on M with starting point x0 is transient, in the sense that for every precompact set U ⊂M
one has

P{there exists s > 0 such that for all t > s one has Xt(x0) /∈ U} = 1,

that is, if and only if all Brownian motions on M eventually leave each precompact set
almost surely.

One can show that ifM is geodesically complete with Ric ≥ 0, then (M,Ψ) is nonparabolic,
if and only if ∫ ∞

0

t

µ(x,
√
t)
dt <∞ for all x ∈M ,

11. Feynman-Kac formula

The aim here is to derive a path integral formula for the semigroup Pw
t := e−tHw ∈

L (L2(M)) associated with a Schrödinger operator of the form Hw := −∆ + w, where
w :M → R is a potential. In case w = 0 we simply have,

Ptf(x) = Ex
[
1{t<ζ}f(Xt)

]
,

which is a path integral formula, as

Ex
[
1{t<ζ}f(Xt)

]
=

∫
{t<ζ}

f(γ(t))dPx(γ).

In the general case, according to Richard Feynman’s thesis, we expect a formula of the
form

Pw
t f(x) =

∫
{t<ζ}

e−
∫ t
0 w(γ(s))dsf(γ(t))dPx(γ) = Ex

[
1{t<ζ}e

−
∫ t
0 w(Xs)dsf(Xt)

]
.(58)
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Actually, in quantum physics, one is rather interested in the unitary group e−itHw ∈
L (L2(M)), which with Ψ(t) := Pw

it Ψ, Ψ ∈ L2(M), solves the Schrödinger equation

(d/dt)Ψ(t) = −iHwΨ(t), Ψ(0) = Ψ.

Feynman then ’showed’ that (without any mathematical rigour) that

e−itHwf(x) =

∫
{t<ζ}

e−i
∫ t
0 w(γ(s))dsf(γ(t))e−i

∫ t
0 |γ̇(s)|2dsDx(γ),

where Dx is some sort of Riemannian wolume measure on the space of paths onM starting
x and

∫ t
0
|γ̇(s)|2ds is the energy of such a path γ. Now one can prove that Dx does not

exist, and of course many paths do not have a finite energy. On the other hand, switching
from it to t, although each factor is problematic, the product

e−
∫ t
0 |γ̇(s)|2ds ·Dx(γ)

is well-defined and in fact one has

e−
∫ t
0 |γ̇(s)|2dsDx(γ) = dP x(γ)

in a sense that can be made precise. The point is that e−
∫ t
0 |γ̇(s)|2ds is damping and can

absorb some of the infinities of Dx(γ), while e−
∫ t
0 |γ̇(s)|2ds was oscillating and could not do

that.

The first issue that has to be attacked is which w’s can be dealt with in such a formula. In
quantum physics, one has to deal with nonsmooth and unbounded w’s such as the Coulomb
potential w(x) = −1/|x| for M = R3. Ultimately, the following class has turned out to be
useful:

Definition 11.1. A Borel function w : M → R is said to be in the Kato class K(M) of
M , if

lim
t→0+

sup
x∈M

∫ t

0

Ex
[
1{s<ζ}|w(Xs)|

]
ds = 0.(59)

Note that ∫ t

0

Ex
[
1{s<ζ}|w(Xs)|

]
ds =

∫ t

0

∫
M

p(s, x, y) |w(y)| dµ(y)ds

Obviously, K(M) is a real linear space. We are going to show in an exercise that K(M) ⊂
L1
loc(M) and that ifM = R3 with its Euclidean metric then the Coulomb potential w(x) :=

−1/|x| is in K(R3).

Next, let us record the following simple inequalities:
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Lemma 11.2. For any Borel function w :M → C and any r, t > 0, one has(
1− e−rt

)
sup
x∈M

∫ ∞

0

e−rs
∫
M

p(s, x, y)|w(y)|dµ(y)ds

≤ sup
x∈M

∫ t

0

∫
M

p(s, x, y) |w(y)| dµ(y)ds

≤ ert sup
x∈M

∫ ∞

0

e−rs
∫
M

p(s, x, y)|w(y)|dµ(y)ds.

Proof. For any x ∈M we have∫ ∞

0

e−rs
∫
M

p(s, x, y)|w(y)|dµ(y)ds

=
∞∑
k=0

∫ t(k+1)

kt

e−rs
∫
M

p(s, x, y)|w(y)|dµ(y)ds

=
∞∑
k=0

e−rkt
∫
M

p(kt, x, z)

∫ t

0

∫
M

e−rsp(s, z, y)|w(y)|dµ(y) ds dµ(z)

≤

(
∞∑
k=0

e−rkt

)
sup
z∈M

∫ t

0

e−rs
∫
M

p(s, z, y)|w(y)|dµ(y)ds

=
1

1− e−rt
sup
z∈M

∫ t

0

e−rs
∫
M

p(s, z, y)|w(y)|dµ(y)ds,

from which the claims easily follow. Here, we have used the Chapman-Kolomogorov iden-
tity and

∫
p(s′, x′, y′)dµ(y′) ≤ 1. ■

Now we continue with a useful characterization of the contractive Dynkin and the Kato
class, respectively. In view of

(H + r)−1 =

∫ ∞

0

e−rse−sHds,

and recalling our notation for the Wiener measure (Notation 10.13), the following lemma
can be considered a resolvent/semigroup/Brownian motion equivalence-type result. It
follows immeadiately from Lemma 11.2 and the heat kernel characterization of the Kato
class:

Lemma 11.3. For a Borel function w :M → C, the following statements are equivalent:

i) w ∈ K(M).
ii) One has

lim
r→∞

sup
x∈M

∫ ∞

0

e−rs
∫
M

p(s, x, y)|w(y)|dµ(y)ds = 0.
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The following result is again of fundamental importance, since it shows that given a Kato
function w :M → R one can make sense of H +w as a self-adjoint semibounded operator
in the sense of sesquilinear forms, using the KLMN theorem (Theorem 2.14):

Lemma 11.4. For any r > 0, any Borel function w :M → C, and any f ∈ W 1,2
0 (M) one

has ∥∥∥√|w|f
∥∥∥2
2
≤ Cr(w)

2
∥df∥22 + Cr(w)r ∥f∥22 ,(60)

where

Cr(w) := sup
x∈M

∫ ∞

0

e−rs
∫
M

p(s, x, y)|w(y)|dµ(y)ds ∈ [0,∞].

Proof. We can assume that w is nonnegative. It suffices to show∥∥∥ŵ1/2(H + r)−1/2h
∥∥∥2
2
≤ Cr(w) ∥h∥22 for all h ∈ L2(M),(61)

where ŵ1/2 = ŵ1/2 denotes the maximally defined multiplication operator induced by

w1/2, that is, Dom(ŵ1/2) is given by those f ∈ L2(M) which satisfy w1/2f ∈ L2(M).
Indeed, once we have established the above estimate, applying it to h = (H + r)1/2f with
f ∈ W 1,2

0 (M) = Dom((H + r)1/2) proves∥∥∥ŵ1/2f
∥∥∥2
2
≤ Cr(w)

∥∥(H + r)1/2f
∥∥2
2
= Cr(w)

∥∥H1/2f
∥∥2
2
+ rCr(w) ∥f∥22 ,

which is nothing but the asserted estimate. So it remains to prove (61). To this end, setting
wn := min(w, n) ∈ L∞(M), n ∈ N, and using monotone convergence and Cr(wn) ≤ Cr(w),
it is actually sufficient to prove that for all n one has∥∥∥∥ŵ1/2

n (H + r)−1/2

∥∥∥∥2
2,2

≤ Cr(wn).(62)

Since ŵ
1/2
n and (H + r)−1/2 are self-adjoint and since L (L2(M)) is a C∗-algebra, one has∥∥∥∥ŵ1/2

n (H + r)−1ŵ
1/2
n

∥∥∥∥
2,2

=

∥∥∥∥ŵ1/2
n (H + r)−1/2

(
ŵ

1/2
n (H + r)−1/2

)∗∥∥∥∥
2,2

=

∥∥∥∥ŵ1/2
n (H + r)−1/2

∥∥∥∥2
2,2

.

To estimate this expression, let f1, f2 ∈ L2(M). Using the Laplace transform

(H + r)−1 =

∫ ∞

0

e−rse−sHds,
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we get ∣∣∣∣〈ŵ1/2
n (H + r)−1ŵ

1/2
n f1, f2

〉∣∣∣∣
≤
∫ ∞

0

∫
M

∫
M

w1/2
n (x)|f1(y)|w1/2

n (y)|f2(x)|p(s, x, y)e−rsdµ(y)dµ(x)ds.

Once we apply Cauchy-Schwarz to the Borel measure

dρ(y, x, s) = p(s, x, y)e−rsdµ(y)dµ(x)ds on M ×M × (0,∞),

we therefore get∣∣∣∣〈ŵ1/2
n (H + r)−1ŵ

1/2
n f1, f2

〉∣∣∣∣
≤
(∫ ∞

0

∫
M

∫
M

wn(x)|f1(y)|2p(s, x, y)e−rsdµ(y)dµ(x)ds
)1/2

×
(∫ ∞

0

∫
M

∫
M

wn(y)|f2(x)|2p(s, x, y)e−rsdµ(y)dµ(x)ds
)1/2

=

(∫
M

∫ ∞

0

e−rs
∫
M

wn(x)p(s, y, x)dµ(x)ds|f1(y)|2dµ(y)
)1/2

×
(∫

M

∫ ∞

0

e−rs
∫
M

wn(y)p(s, x, y)dµ(y)ds|f2(x)|2dµ(x)
)1/2

≤ Cr(wn)∥f1∥2∥f2∥2,

which proves (62). ■

The above result together with Theorem 2.14 immediately implies the following result,
which gives a precise definition of the left hand side of the Feynman-Kac formula:

Corollary 11.5. Assume w ∈ K(M). Then the densely defined symmetric sesqui-linear
form

C∞
c (M)× C∞

c (M) ∋ (f1, f2) 7−→
∫
(df1, df2)dµ+

∫
wf1f2dµ ∈ C

in L2(M) is semibounded and closable. Its closure Qw is given by

Dom(Qw) = W 1,2
0 (M), Qw(f1, f2) =

∫
(df1, df2)dµ+

∫
wf1f2dµ

(part of this statement is wf1f2 ∈ L1(M) for all f1, f2 ∈ W 1,2
0 (M).).

Definition 11.6. Let w ∈ K(M). The semibounded self-adjoint operator in L2(M) in-
duced by Qw is denoted with Hw and called the Schrödinger operator induced by the poten-
tial w. The induced heat semigroup e−tHw ∈ L (L2(M)), t ≥ 0, is called the Schrödinger
semigroup induced by w.
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Note that by functional analysis, given an initial value ψ0 ∈ L2(M), the function

ψ : [0,∞) −→ L2(M), ψ(t) := e−tHwψ0

is the unique continuous function which is differentiable in (0,∞) and takes values in
Dom(Hw) thereon, and which solves the heat equation (with heat sinks given by w)

(d/dt)ψ(t) = −Hwψ(t), ψ(0) = ψ0.

That the right hand side of the Feynman-Kac formula is well-defined for perturbations
from the Kato class relies on:

Lemma 11.7. Let w ∈ K(M).
a) For all x ∈M one has

Px
{
w(X•) ∈ L1

loc[0, ζ)
}
= 1.

b) There are cj = cj(w) > 0, j = 1, 2, such that for all t ≥ 0,

sup
x∈M

Ex
[
e
∫ t
0 |w(Xs)|ds1{t<ζ}

]
≤ c1e

tc2 <∞.(63)

Proof. a) Pick a continuous function ρ : M → [0,∞) such that for all c ∈ [0,∞) the level
sets {ρ ∈ [c,∞)} are compact. Then the collection of subsets (Un)n∈N of M given by

Un := interior of {ρ ∈ [1/n,∞)}

forms an exhaustion of M with open relatively compact subsets. For every n ∈ N, define
the first exit times

ζ(1)n := ζUn : ΩM −→ [0,∞].

Then the sequence ζ
(1)
n announces ζ with respect to Px for every x ∈ M in the following

sense: There exists a set Ωx ⊂ ΩM with Px(Ωx) = 1, such that for all paths γ ∈ Ωx one
has the following two properties:

• ζ(1)n (γ) ↗ ζ(γ) as n→ ∞,

• the implication ζ(γ) <∞ ⇒ ζ
(1)
n (γ) < ζ(γ) holds true for all n.

To see that ζ is indeed announced by ζ
(1)
n in the asserted form, one can simply set

Ωx := {γ ∈ ΩM : γ(0) = x}.

Then Px(Ωx) = 1 and the asserted properties follow easily from continuity arguments,

since Ωx is a set of continuous paths that start in x. It follows immediately that ζ
(2)
n :=

min(ζ
(1)
n , n) also announces ζ. As a consequence, we have

Px
{
w(X•) ∈ L1

loc[0, ζ)
}
= Px

⋂
n∈N

{∫ ζ
(2)
n

0

|h(Xs)| ds <∞

}
.
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Now we have

Ex
[∫ ζ

(2)
n

0

|w(Xs)| ds

]
≤ Ex

[∫ min(ζ,n)

0

|w(Xs)| ds

]

= Ex
[∫ n

0

|w(Xs)| 1{s<ζ}ds
]
=

∫ n

0

∫
M

p(s, x, y) |w(y)| dµ(y),

and this number is finite for all n: indeed, take a t > 0 with

sup
x∈M

∫
M

∫ t

0

p(s, x, y)|w(y)|ds dµ(y) <∞,

which clearly exists by the Kato assumption on w, and pick l ∈ N with n < lt. Then we
can estimate as follows,

sup
x∈M

∫
M

∫ n

0

p(s, x, y)|w(y)|ds dµ(y)

≤ sup
x∈M

∫
M

∫ lt

0

p(s, x, y)|w(y)|ds dµ(y)

≤
l∑

k=1

sup
x∈M

∫
M

∫ t

0

p((k − 1)t+ s, x, y)|w(y)|ds dµ(y)

=
l∑

k=1

sup
x∈M

∫ t

0

∫
M

p((k − 1)t, x, z)

∫
M

p(s, z, y)|w(y)|dµ(y)dµ(z)ds

≤

(
l∑

k=1

sup
x∈M

∫
M

p((k − 1)t, x, z)dµ(z)

)
×

× sup
z∈M

∫ t

0

∫
M

p(s, z, y)|w(y)|dµ(y)ds

≤ l sup
z∈M

∫ t

0

∫
M

p(s, z, y)|w(y)|dµ(y)ds <∞,

where we have used the Chapman-Kolomogorov identity and∫
p(s′, x′, y′)dµ(y′) ≤ 1.

b) With M̃ =M∪{∞M} the Alexandrov compactification ofM , we can canonically extend
w to a Borel function w̃ : M̃ → R by setting w̃(∞M) = 0. Then one trivially has

Ex
[
e
∫ t
0 |w(Xs)|ds1{t<ζ}

]
≤ Ex

[
e
∫ t
0 |w̃(Xs)|ds

]
.(64)

2. (Khas’minskii’s lemma) For any s ≥ 0, let

J(w, s) := sup
x∈M

Ex
[
e
∫ s
0 |w̃(Xr)|dr

]
∈ [0,∞].
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Then for every s > 0 with

D(w, s) := sup
x∈M

Ex
[∫ s

0

|w(Xr)| 1{r<ζ}dr
]
< 1

it holds that

J(w, s) ≤ 1

1−D(w, s)
.(65)

Proof: One has

D(w, s) = sup
x∈M

Ex
[∫ s

0

|w̃(Xr)| dr
]
.

For any n ∈ N, let

sσn :=
{
q = (q1, . . . , qn) : 0 < q1 < · · · < qn < s

}
⊂ Rn

denote the open scaled simplex. In the chain of equalities

Ex
[
e
∫ s
0 |w̃(Xr)|dr

]
= 1 +

∞∑
n=1

(1/n!)

∫
[0,s]n

Ex [|w̃(Xq1)| . . . |w̃(Xqn)|] dnq

= 1 +
∞∑
n=1

∫
sσn

Ex [|w̃(Xq1)| . . . |w̃(Xqn)|] dnq

= 1 +
∞∑
n=1

∫ s

0

∫ s

q1

· · ·
∫ s

qn−1

Ex [|w̃(Xq1)| . . . |w̃(Xqn)|] dnq,

the first one follows from Fubini’s theorem, and the second one from combining the fact that
the integrand is symmetric in the wariables qj with the fact that the number of orderings
of a real-walued tuple of length n is n!. In particular, by comparison with a geometric
series, it is sufficient to prowe that for all natural n ≥ 2, one has

Jn(w, s) := sup
x∈M

∫ s

0

∫ s

q1

· · ·
∫ s

qn−1

Ex [|w̃(Xq1)| . . . |w̃(Xqn)|] dnq

≤ D(w, s)Jn−1(w, s).(66)

But the Markov property of the family of Wiener measures implies

Jn(w, s) = sup
x∈M

∫ s

0

∫ s

q1

· · ·
∫ s

qn−2

∫
ΩM

|w̃(γ(q1))| . . . |w̃(γ(qn−1))| ×

×
∫
ΩM

∫ s−qn−1

0

|w̃(ω(u))| du dPγ(qn−1)(ω)dPx(γ)dn−1q

≤ D(w, s)Jn−1(w, s),(67)

which prowes Khas’minskii’s lemma.

3. Pick s > 0 with D(w, s) < 1. Then for any t > 0 one has

J(w, t) ≤ 1

1−D(w, s)
e

t
s
log( 1

1−D(w,s)).
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Proof: Pick a large n ∈ N with t < (n + 1)s. Then the Markov property of the family of
Wiener measures and Khas’minskii’s lemma imply

J(w, t) ≤ J(w, (n+ 1)s)

= sup
x∈M

∫
ΩM

e
∫ ns
0 |w̃(γ(r))|dr

∫
ΩM

e
∫ s
0 |w̃(ω(r))|drdPγ(ns)(ω)dPx(γ)

≤ 1

1−D(w, s)
J(w, ns)

=
1

1−D(w, s)
×

× sup
x∈M

∫
ΩM

e
∫ (n−1)s
0 |w̃(γ(r))|dr

∫
ΩM

e
∫ s
0 |w̃(ω(r))|drdPγ((n−1)s)(ω)dPx(γ)

≤ . . . (n-times)

≤ 1

1−D(w, s)

(
1

1−D(w, s)

)n
≤ 1

1−D(w, s)
e

t
s
log( 1

1−D(w,s)),

which proves (63) in view of (64). ■

Now we can finally prove:

Theorem 11.8 (Feynman-Kac formula). Let w ∈ K(M). Then for all t > 0, f ∈ L2(M),
µ-a.e. x ∈M , one has

e−tHwf(x) = Ex
[
1{t<ζ}e

−
∫ t
0 w(Xs)dsf(Xt)

]
.(68)

Proof. Step 1: (68) holds in case w :M → R is continuous and bounded.
Proof: Decomposing

f = f1 − f2 + f3 −
√
−1f4, fj ≥ 0,

if necessary, we can and we will assume f ≥ 0 for the proof. Since w is bounded, it simply
acts as a bounded multiplication operator (that will be denoted by the same symbol again).
By (51), for every t > 0, n ∈ N and µ-a.e. x0 ∈M , we have

(e−(t/n)He−(t/n)w)nf(x0) =∫
· · ·
∫

exp

(
−(t/n)

n∑
i=1

w(xi)

)
p(t/n, x0, x1) · · · p(t/n, xn−1, xn)f(xn)

× dµ(x1) · · · dµ(xn) =

Ex0
[
1{t<ζ} exp

(
−(t/n)

n∑
i=1

w(Xt/n)

)
f(Xt)

]
.
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Since w is continuous, for each fixed continuous path which remains on M until t, the
exp(· · · )-expression represents Riemann sums for −

∫ t
0
w(Xs)ds. Furthermore, we have

1{t<ζ} exp

(
−(t/n)

n∑
i=1

w(Xt/n)

)
f(Xt) ≤ exp(t ∥w∥∞)1{t<ζ}f(Xt),

and clearly

Ex0
[
1{t<ζ}f(Xt)

]
=

∫
M

p(t, x0, y)f(y)dµ(y) <∞,

therefore dominated convergence shows that for µ-a.e. x0 ∈M ,

lim
n→∞

(e−(t/n)He−(t/n)w)nf(x0) = Ex0
[
1{t<ζ}e

−
∫ t
0 w(Xs)dsf(Xt)

]
.

On the other hand, Trotter’s product formula

A semibounded, B bounded, e−t(A+B) = lim
n→∞

(
e−(t/n)Ae−(t/n)B

)n
strongly for all t ≥ 0,

gives (after picking a subsequence, if necessary, to turn the L2-convergence to a µ-a.e.
convergence)

lim
n→∞

e−(t/n)He−(t/n)wf(x0) = e−tHwf(x0) for µ-a.e. x0,

which proves the Feynman-Kac formula in this case.

Step 2: (68) holds in case w is a bounded potential.
Proof: We will use Friedrichs mollifiers to reduce everything to the continous (in fact:
smooth) bounded case from step 1. To this end, we pick an atlas (Ul)l∈N for M such that
each Ul is relatively compact. We also take a subordinate partition of unity φl ∈ C∞

c (Ul).
Then

w(l) := φlw : Ul −→ R
defines a bounded compactly supported function, and using Friedrichs mollifiers we can
pick a sequence

(w(l)
n )n ⊂ C∞

c (Ul)

such that µ-a.e. in Ul we have

|w(l)
n | ≤ ∥w∥∞ <∞, w(l)

n → w(l) as n→ ∞.

Defining a sequence of smooth potentials

wn :=
∑
l

φlw
(l)
n ,

one has

|wn| ≤ ∥w∥∞ , wn → w µ-a.e.(69)

It is clear from (69) and dominated convergence that

lim
n→∞

Hwnψ = Hwψ in L2(M)
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for all
ψ ∈ Dom(Hw) = Dom(Hwn) = Dom(H).

Thus by the following abstract convergence result for semigroups,

Anf → Af for all f ∈ Dom(A) = Dom(An), and A,An semibounded ⇒ e−tAn → e−tA

strongly for all t ≥ 0

we have

lim
n→∞

e−tHwnf = e−tHwf in L2(M).

In particular, passing to a subsequence if necessary, we can and we will assume

lim
n→∞

e−tHwnf(x) = e−tHwf(x) for µ-a.e. x,(70)

so we find

e−tHwf(x) = lim
n→∞

Ex
[
1{t<ζ}e

−
∫ t
0 wn(Xs)dsf(Xt)

]
for µ-a.e. x(71)

by the already established validity of the covariant Feynman-Kac formula for e−tHwnf . It
remains to show that the right-hand side of (71) is equal to

Ex
[
1{t<ζ}e

−
∫ t
0 w(Xs)dsf(Xt)

]
.

To this end, applying (69) together with the elementary inequality∣∣ea − eb
∣∣ ≤ 2 |a− b| emax(a,b), a, b ∈ R,(72)

shows that one has

1{t<ζ}

∣∣∣e− ∫ t
0 w(Xs)ds − e−

∫ t
0 wn(Xs)ds

∣∣∣
≤ 2 · 1{t<ζ}e∥w∥∞t

∫ t

0

|w(Xs)− wn(Xs)| ds Px-a.s.,

so using (69) once more with dominated convergence, we find

lim
n→∞

1{t<ζ}

∣∣∣e− ∫ t
0 wn(Xs)ds − e−

∫ t
0 w(Xs)ds

∣∣∣ = 0 Px-a.s.(73)

Finally, we may use (73) and

1{t<ζ}e
−

∫ t
0 wn(Xs)dsf(Xt) ≤ e∥w∥∞t Px-a.s.

to deduce (68) from (71) and dominated convergence.

Step 3: (68) holds in case w is bounded from below and Kato.
Proof: By adding a constant if necessary, we can assume w ≥ 0. Set wn := min(n,w), so
|wn| ≤ |w|. As in the previous step we have

1{t<ζ}

∣∣∣e− ∫ t
0 w(Xs)ds − e−

∫ t
0 wn(Xs)ds

∣∣∣
≤ 2 · 1{t<ζ}e

∫ t
0 |w(Xs)|ds

∫ t

0

|w(Xs)− wn(Xs)| ds Px-a.s.,
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so from dominated convergence

1{t<ζ}e
−

∫ t
0 wn(Xs)ds → 1{t<ζ}e

−
∫ t
0 w(Xs)ds Px-a.s.

Furthermore, because wn ≥ 0,

1{t<ζ}e
−

∫ t
0 wn(Xs)dsf(Xt) ≤ 1{t<ζ}f(Xt) Px-a.s. ,

and

Ex
[
1{t<ζ}f(Xt)

]
=

∫
p(t, x, y)f(y)dy <∞,

so

Ex
[
1{t<ζ}e

−
∫ t
0 wn(Xs)dsf(Xt)

]
→ Ex

[
1{t<ζ}e

−
∫ t
0 w(Xs)dsf(Xt)

]
by dominated convergence. On the other hand, we have wn ↗ w as n→ ∞ and |wn| ≤ |w|
so that

e−tHwn → e−tHw

strongly in L2(M), and then pointwise a.e. after picking a subsequence, by the following
convergence result for forms in combination with dominated convergence:

Let q, q1 ≤ q2 ≤ . . . be a sequence of densely defined, closed and semibounded sesquilinear
forms on a common complex separable Hilbert space H which have the same domain of
definition with qn → q. Then with An the operator corresponding to qn and A the operator
corresponding to q, one has

e−tAn → e−tA strongly as n→ ∞, for all t ≥ 0.

Step 4: (68) holds for w Kato.
Proof: Set wn := wn := max(−n,w). Then |wn| ≤ |w| so that as above one sees

1{t<ζ}e
−

∫ t
0 wn(Xs)ds → 1{t<ζ}e

−
∫ t
0 w(Xs)ds Px-a.s.

and

Ex
[
1{t<ζ}e

−
∫ t
0 wn(Xs)dsf(Xt)

]
→ Ex

[
1{t<ζ}e

−
∫ t
0 w(Xs)dsf(Xt)

]
follows from dominated convergence, because

1{t<ζ}e
−

∫ t
0 wn(Xs)dsf(Xt) ≤ 1{t<ζ}e

∫ t
0 |w(Xs)|dsf(Xt),

and

Ex
[
1{t<ζ}e

∫ t
0 |w(Xs)|dsf(Xt)

]
≤ Ex

[
1{t<ζ}e

2
∫ t
0 |w(Xs)|ds

]1/2
E
[
1{t<ζ}f(Xt)

2
]1/2

<∞,

where

Ex
[
1{t<ζ}f(Xt)

2
]
=

∫
p(t, x, y)f(y)2dy <∞

follows for example from Remark 11.10 below. Furthermore, since wn ↘ w and |wn| ≤ |w|
one has

e−tHwn → e−tHw

strongly in L2(M), and then pointwise a.e. after picking a subsequence, by the following
convergence result for forms and dominated convergence:
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Let q, q1 ≥ q2 ≥ . . . be a sequence of densely defined, closed and semibounded sesquilinear
forms on a common complex Hilbert space H with a common domain of definition with
qn → q. Then with An the operator corresponding to qn and A the operator corresponding
to q, one has

e−tAn → e−tA strongly in H as n→ ∞, for all t ≥ 0.

■

Let us prove some simple but important consequences of the Feynman-Kac formula.

Corollary 11.9. Let w ∈ K(M). Then e−tHw is positivity improving for all t > 0. In
particular, if λ := minσ(Hw) is an eigenvalue of Hw, then λ is simple and there is a
unique strictly positive normalized eigenfunction of Hw corresponding to λ.

Proof. Let f ∈ L2(M) \ {0} be given with f ≥ 0 µ-a.e. Then µ{f > 0} > 0 and we have

Px{f(Xt) > 0, t < ζ} =

∫
{f>0}

p(t, x, y)dµ(y) > 0.

Since,
∫ t
0
w(Xs)ds ∈ R Px-a.s. in {t < ζ}, it follows that with

Ω′ := {t < ζ, e−
∫ t
0 w(Xs)dsf(Xt) > 0}

one has P(Ω′) > 0, thus by the Feynman-Kac formula we arrive at

e−tHwf(x) =

∫
Ω′
e−

∫ t
0 w(Xs)dsf(Xt)dPx > 0 for µ-a.e. x.

The statement on the ground state energy follows from an abstract Perron-Frobenius the-
orem, which states that the ground state energy of the generator of a positivity improving
semigroup has a simple ground state energy and the unique normalized ground state can
be chosen strictly positive. ■

Note that, by definition, our Schroedinger semigroups map L2(M) to L2(M) boundedly.
Analogous Lq-estimates depend partially on the geometry. To this end, for arbitrary U ⊂
M and t > 0, set

CU(t) := sup
x∈U,y∈M

p(t, x, y) ∈ [0,∞].

Remark 11.10. If U is relatively compact, one has CU(t) <∞ without any assumptions
on M at all.
Proof: We have (since the heat kernel is smooth) the a-priori algebraic mapping property

1Ue
−sH : L1(M) −→ L∞(M),(74)

for all s > 0, which by the closed graph theorem self-improves in the sense that (74) is in
fact a bounded operator. Indeed, because of∫

p(s, x, y)dµ(y) ≤ 1,(75)

we have from Fubini that
e−sH : L1(M) −→ L1(M),
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is bounded, so
1Ue

−sH : L1(M) −→ L1(M),

is bounded. Assume fn → f in L1(M), and 1Ue
−sHfn converges to some g in L∞(M). Then

1Ue
−sHfn → 1Ue

−sHf in L1(M), so limn 1Ue
−sHfn = 1Ue

−sHf almost surely after picking
a subsequence, and so g = 1Ue

−sHf and (74) is bounded by the closed graph theorem. Let
us denote the operator norm of (74) by BU(s) < ∞, for any s > 0. Using the Chapman-
Kolmogorov equation, an application of this boundedness to p(t/2, •, y) ∈ L1(M) and using
(75), we find that for all x ∈ U , y ∈M one has

p(t, x, y) =
[
e−

t
2
Hp(t/2, •, y)

]
(x) ≤ sup

x′∈U

[
e−

t
2
Hp(t/2, •, y)

]
(x′)

≤ BU(t/2)

∫
M

p(t/2, z, y)dµ(z) ≤ BU(t/2),

thus we arrive at the bound
CU(t) ≤ BU(t/2) <∞.

For unbounded U ’s it can happen that CU(t) = ∞. If CM(t) < ∞ for all t > 0, then
M is called ultracontractive. For example Euclidean Rm or compact M ’s are obviously
ultracontractive.

Given a Kato function v :M → [0,∞) and t ≥ 0 set

CU(v, t) := sup
x∈U

Ex
[
e
∫ t
0 v(Xs)ds1{t<ζ}

]
∈ [0,∞).

Theorem 11.11. Let w be in the Kato class.
a) For any t ≥ 0, q ∈ [1,∞], and any Borel U ⊂M (in particular for U =M) one has∥∥1Ue−tHw |Lq(M)∩L2(M)

∥∥
q,q

≤ CU(|w|, t) <∞.(76)

b) Let t > 0, let U ⊂ M be a Borel set with CU(t/2) < ∞, let 1 < q < ∞, and let
1 < q∗ <∞ be determined by 1/q + 1/q∗ = 1. Then one has∥∥1Ue−tHw |Lq(M)∩L2(M)

∥∥
q,∞ ≤ CU

(
q∗|w|, t

)
CU(t)

1
q ,(77)

and ∥∥1Ue−tHw |Lq(M)∩L2(M)

∥∥
1,q

≤ CU
(
q|w|, t

)
CU(t)

1
q∗ .(78)

c) For every t > 0 with18 CM(t/2) <∞ and every 1 ≤ q1 ≤ q2 ≤ ∞, one has∥∥e−tHw |Lq1 (M)∩L2(M)

∥∥
q1,q2

≤ CM
(
2|w|, t

)
CM(t/2)

1
q1

− 1
q2 .(79)

Remark 11.12. 1. It is important to note that if f ∈ Dom(Hw) is an eigenfunction of
Hw, Hwf = λf , then by the spectral calculus one has f = etλe−tHwf for all t ≥ 0, so that
the above estimates give parametric Lq2- estimates for Lq1-eigenfunctions!
2. Note that part a) of the theorem does not depend at all on the geometry of M , while
part b) depends mildly on the geometry as these estimates can at least be localized (in

18Note that such a t > 0 need not exist at all.
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the sense that one can always take U relatively compact), while part c) depends heavily
on the geometry.

For the proof we recall:

Theorem 11.13 (Riesz-Thorin’s interpolation theorem). Let (X,µ) and (Y, ρ) be sigma-
finite measure spaces, let a0, a1, b0, b1 ∈ [1,∞], and assume that

T : La0µ (X) ∩ La1µ (X) −→ Lb0ρ (Y ) ∩ Lb1ρ (Y )

is a complex linear map. Assume further that there are numbers C0, C1 > 0 such that for
all f ∈ La0µ (X) ∩ La1µ (X) one has

∥Tf∥
L
b0
ρ
≤ C0 ∥f∥La0

µ
, ∥Tf∥

L
b1
ρ
≤ C1 ∥f∥La1

µ
.

Then for any r ∈ [0, 1], there exists a bounded extension

Tar,br ∈ L
(
Larµ (X), Lbrρ (Y )

)
of T , which satisfies

∥Tar,br∥Lar
µ ,Lbr

ρ
≤ C1−r

0 Cr
1 , where

1

ar
:=

1− r

a0
+

r

a1
,
1

br
:=

1− r

b0
+
r

b1
,

with the usual conventions 1/∞ := 0, 1/0 := ∞.

Proof of Theorem 11.11. Set w′ := −|w|, so that by the Feynman-Kac formula

|e−tHwf(x)| ≤ e−tHw′ |f(x)| = Ex
[
1{t<ζ}e

∫ t
0 |w(Xs)|ds|f(Xt(x))|

]
and it suffices to control e−tHw′ . In view of the Feynman-Kac formula we define

e−tHw′h(x) := Ex
[
1{t<ζ}e

∫ t
0 |w(Xs)|dsh(Xt(x)|

]
,

whenever the expectation is well-defined.
a) Let h ∈ Lq(M).
The case q = ∞ follows immediately from the Feynman-Kac formula.
In case q = 1, let

⋃
nBn = U be a relatively compact exhaustion of U . Then we have∫

U

|e−tHw′h| · 1Bndµ ≤
∫
U

|h|e−tHw′1Bndµ

≤
∥∥1Ue−tHw′

∥∥
∞,∞ ∥h∥1 ,

where we have used the self-adjointness of e−tHw′ for the first inequality, and the case of
q = ∞ for the inequality. Using monotone convergence, this implies∥∥1Ue−tHw′h

∥∥
1
≤ CU(|w|, t) ∥h∥1 .

We have shown so far that

max
(∥∥1Ue−tHw′

∥∥
1,1
,
∥∥1Ue−tHw′

∥∥
∞,∞

)
≤ CU(|w|, t).
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In case 1 < q < ∞, applying Riesz-Thorin’s theorem (cf. appendix, Theorem 11.13) with
T = 1Ue

−tHw′ , a0 = b0 = 1, a1 = b1 = ∞, C0 = C1 = CU(|w|, t), r = 1− 1/q we get∥∥1Ue−tHw′
∥∥
q,q

≤ CU(|w|, t),

which completes the proof of part a).
b) Let h ∈ Lq(M). For any u > 0, we have∥∥1Ue−uHw′h

∥∥
∞ ≤ sup

x∈U
Ex
[
1{u<ζ}e

∫ u
0 |w|(Xr)dr|h|(Xu)

]
≤ sup

x∈U
Ex
[
1{u<ζ}e

q∗
∫ u
0 |w|(Xr(x))dr

]1/q∗
Ex
[
1{u<ζ}|h|q(Xu)

]1/q
≤ CU(q

∗|w|, u)1/q∗
∥∥1Ue−uH∥∥1/q1,∞ ∥h∥q ≤ CU(q

∗|w|, u)1/q∗CU(u)1/q ∥h∥q ,

The L1 → Lq estimate follows from the above Lq → L∞ estimate and a duality argument,
namely, for every u > 0 we can estimate for every h ∈ L1(M) as follows:∥∥1Ue−uHw′h

∥∥
q
≤ sup

ψ∈C∞
c (M),∥ψ∥q∗≤1

∫
U

e−uHw′ |h| · |ψ|dµ

= sup
ψ∈C∞

c (M),∥ψ∥q∗≤1

∫
U

|h| · e−uHw′ |ψ|dµ

≤ sup
ψ∈C∞

c (M),∥ψ∥q∗≤1

∥∥1Ue−uHw′ |ψ|
∥∥
∞ ∥h∥1

≤ sup
ψ∈C∞

c (M),∥ψ∥q∗≤1

∥∥1Ue−uHw′
∥∥
q∗,∞ ∥ψ∥q∗ ∥h∥1

≤
∥∥1Ue−uHw′

∥∥
q∗,∞ ∥h∥1 ,

which by the above can be estimated as

≤ CU(q|w|, u)1/qCU(u)1/q
∗ ∥h∥1 .

c) Throughout, let h ∈ Lq1(M).
Case 1 = q1 < q2 = 2 < ∞: This follows from part b) applied to U = M . Case
1 = q1 < q2 = ∞: We have∥∥e−tHw′h

∥∥
∞ =

∥∥∥e− t
2
Hw′e−

t
2
Hw′h

∥∥∥
∞

≤
∥∥∥e− t

2
Hw′
∥∥∥
2,∞

∥∥∥e− t
2
Hw′h

∥∥∥
2
≤
∥∥∥e− t

2
Hw′
∥∥∥
2,∞

∥∥∥e− t
2
Hw′
∥∥∥
1,2

∥h∥1 ,

which can be estimated by the previous case and part b) as

≤ CM(2|w|, t/2)CM(t/2) ∥h∥1 .(80)

Case 1 < q1 < q2 = ∞: Qualitatively, this case is covered by part b). However, being
equipped with a global L1 → L∞ estimate, we can use Riesz-Thorin to get an estimate
which has “some more uniformity” in q = q1: Indeed, applying Riesz-Thorin with

T = e−tHw′ , a0 = 1, b0 = ∞, a1 = b1 = ∞, r = 1− 1/q1
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implies ∥∥e−tHw′
∥∥
q1,∞

≤
∥∥e−tHw′

∥∥1/q1
1,∞

∥∥e−tHw′
∥∥1−1/q1

∞,∞ ,

which can be estimated by the above considerations as

≤
(
CM(2|w|, t/2)CM(t/2)

)1/q1CM(2|w|, t)1−1/q1 ≤ CM(2|w|, t)CM(t/2)1/q1 .

Case 1 ≤ q1 ≤ q2 <∞: Applying Riesz-Thorin with

T = e−tHw′ , a0 = 1, b0 = 1, a1 =
q1(q2 − 1)

q2 − q1
, b1 = ∞, r = 1− 1/q2

gives the bound ∥∥e−tHw′
∥∥
q1,q2

≤
∥∥e−tHw′

∥∥1/q1
1,1

∥∥e−tHw′
∥∥1−1/q2

a1,∞
,

and thus ∥∥e−tHw′
∥∥
q1,q2

≤
∥∥e−tHw′

∥∥1/q1
1,1

∥∥e−tHw′
∥∥1/q1−1/q2

1,∞

∥∥e−tHw′
∥∥1−1/q1

∞,∞ .

Combining the last estimate with the previously established estimates, we arrive at∥∥e−tHw′
∥∥
q1,q2

≤ CM
(
2|w|, t

)
CM(t/2)

1
q1

− 1
q2 .

■

Theorem 11.14. Assume w ∈ K(M). Then for all f ∈ L2(M), the map

(0,∞)×M ∋ (t, x) 7−→ e−tHwf(x) ∈ C
is jointly continuous. (To be precise: there exists a jointly continuous map (t, x) 7→ ft(x) ∈
C from (0,∞) ×M to C, such that for all t > 0 the µ-equivalence class e−tHwf agrees
µ-a.e. with ft.) In particular, all eigenfunctions of Hw are continuous.

We prepare the proof of Theorem 11.14 with the following simple Lemma:

Lemma 11.15. Let U ⊂M be open, and assume that

(hn)n∈N ⊂ Cb(U) = C(U) ∩ L∞(U), h ∈ L∞(U), ∥hn − h∥∞ → 0 as n→ ∞.(81)

Then (hn) converges uniformly everywhere in U . In particular, h can be chosen to be
continuous.

Proof. This fact follows from a standard argument which only uses that µ is a Borel measure
with a full support: Assume the contrary. Then (hn) is not a Cauchy sequence with respect
to ∥ • ∥∞. Accordingly, there is an ϵ > 0 such that for all N ∈ N one can find natural
numbers n,m ≥ N and a point x ∈ U with |hn(x) − hm(x)| > ϵ. Thus, since hn and hm
are continuous, there exists a nonempty open set U ′ ⊂ U with |hn(x)− hm(x)| > ϵ for all
x ∈ U ′. We arrive at µ{|hn − hm| > ϵ} > 0, which contradicts the assumption that (hn) is
Cauchy with respect to ∥ • ∥∞.

The continuous representative h̃ of h is simply given by the ∥ • ∥∞-limit of the sequence
hn. This completes the proof. ■
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Proof of Theorem 11.14. The statement concerning the eigensections is immediately im-
plied by the continuity of the semigroup in x ∈M , using the spectral calculus.
To show the latter, let us recall that by Theorem 11.11 a), the operator e−tHw maps bounded
functions into bounded functions. This fact will be used several times in the sequel. The
proof of the joint continuity of the semigroup in (t, x) will be carried out in three steps:
Step 1: One has

lim
t→0+

∥∥(e−tHw − e−tH)|L2(M)∩L∞(M)

∥∥
∞,∞ = 0.

Proof: Let f ∈ L2(M) ∩ L∞(M) and assume t ≤ 1. Let us define a sequence of bounded
potentials by

wn(x) :=

{
min(|w(x)|,n)

|w(x)| w(x), if w(x) ̸= 0

0, else.

Since wn is bounded, we can use Duhamel’s formula

e−tHwnf(x)− e−tHf(x) =

∫ t

0

e−(t−s)Hwne
−sHwnf(x)ds,

thus using that e−(t−s)H is positivity preserving, we get the first inequality in∣∣e−tHwnf(x)− e−tHf(x)
∣∣ ≤ ∫ t

0

e−(t−s)H [|wn| · ∣∣e−sHwnf
∣∣] (x)ds

≤ ∥f∥∞
∫ t

0

e−(t−s)H |wn|(x)
∥∥e−sHwn |L2(M)∩L∞(M)

∥∥
∞,∞ ds.

We have ∥∥e−sHwn |L2(M)∩L∞(M)

∥∥
∞,∞ ≤ sup

x∈M
Ex
[
e
∫ s
0 |wn(Xr)|dr1{s<ζ}

]
≤ sup

x∈M
Ex
[
e
∫ s
0 |w(Xr)|dr1{s<ζ}

]
≤ c1(|w|)esc2(|w|) ≤ c1(|w|)ec2(|w|) =: cw,

where we have used Khashminkii’s lemma and s ≤ 1. Therefore, we find∣∣e−tHwnf(x)− e−tHf(x)
∣∣ ≤ cw ∥f∥∞

∫ t

0

e−(t−s)H |wn|ds

= cw ∥f∥∞
∫ t

0

∫
M

p(t− s, x, y)|wn(y)|dµ(y)ds

≤ cw ∥f∥∞
∫ t

0

∫
M

p(s, x, y)|w(y)|dµ(y)ds.

On the other hand, in view of wn ↗ w, |wn| ≤ |w|, we can use dominated convergence
to conclude that Qwn ↗ Qw as n → ∞ in the sense of monotonely increasing quadratic
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forms, so that (by picking a subsequence of wn if necessary) we have the first equality in∣∣e−tHwf(x)− e−tHf(x)
∣∣ = lim

n→∞

∣∣e−tHwnf(x)− e−tHf(x)
∣∣

≤ Cw ∥f∥∞
∫ t

0

∫
M

p(s, x, y)|w(y)|dµ(y)ds,

which tends to 0 as t → 0+ uniformly in x, by the very definition of the Kato class. This
completes the proof of step 1.

Step 2: For all fixed t > 0, f ∈ L2(M)∩L∞(M), the function x 7→ e−tHwf(x) is continuous.
Proof: Let 0 < s < t. Recalling that e−sHe−(t−s)Hwf is continuous (in fact, smooth) by
local elliptic regularity, a use of the above lemma shows that it is sufficient to prove∥∥e−tHwf − e−sHe−(t−s)Hwf

∥∥
∞ → 0 as s→ 0+.(82)

To this end, we start by observing that for all 0 < s < t the spectral calculus gives us

e−tHwf − e−sHe−(t−s)Hwf =
(
e−tHwe(t−s)Hw − e−sH

)
e−(t−s)Hwf

=
(
e−sHw − e−sH

)
e−(t−s)Hwf,

and thus,∥∥e−tHwf − e−sHe−(t−s)Hwf
∥∥
∞

=
∥∥(e−sHw − e−sH

)
e−(t−s)Hwf

∥∥
∞

≤
∥∥(e−sHw − e−sH)|L2(M)∩L∞(M)

∥∥
∞,∞

∥∥e−(t−s)Hwf
∥∥
∞

≤
∥∥(e−sHw − e−sH)|L2(M)∩L∞(M)

∥∥
∞,∞

∥∥e−(t−s)Hw |L2(M)∩L∞(M)

∥∥
∞,∞ ∥f∥∞ .(83)

which is

≤ C(w, t) ∥f∥∞
∥∥(e−sHw − e−sH)|L2(M)∩L∞(M)

∥∥
∞,∞ .

Now step 1 shows that the above expression tends to 0 as s → 0+, which completes the
proof of step 2.

Step 3: For all fixed t > 0, f ∈ L2(M), the function e−tHwf is continuous.
Proof: It remains to remove the boundedness condition on f . Let U be an arbitrary open
relatively compact subset of M . Then we have

e−tHw ∈ L
(
L2(M), L∞(U)

)
.

Thus, setting for n ∈ N

fn :=

{
min(n,|f |)

|f | f, if f ̸= 0

0, else
∈ L2(M) ∩ L∞(M),

we have fn → f in L2(M), and x 7→ e−tHwfn(x) is continuous by step 2. Furthermore,
e−tHwfn → e−tHwf in L∞(U). Now the claim of step 3 follows from the previous lemma.
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Step 4: The full statement. It remains to prove the asserted joint continuity. Note first
that for every open relatively compact U ⊂M and every s > 0, one has

e−sHw ∈ L
(
L2(M), Cb(U)

)
,(84)

which follows from combining the algebraic mapping property

e−sHw : L2(M) −→ Cb(U)

(step 3) with the closed graph theorem. Now

L2(M)× U ∋ (f, x) 7−→ e−sHwf(x) ∈ C
is continuous for all s > 0: given a sequence

((fn, xn))n∈N ⊂ L2(M)× U

which converges to
(f, x) ∈ L2(M)× U,

we have ∣∣e−sHwfn(xn)− e−sHwf(x)
∣∣

≤
∣∣e−sHw [fn − f ](xn)

∣∣+ ∣∣e−sHwf(x)− e−sHwf(xn)
∣∣

≤
∥∥e−sHw

∥∥
L (L2(M),Cb(U))

∥fn − f∥+
∣∣e−sHwf(x)− e−sHwf(xn)

∣∣
→ 0, as n→ ∞.

Finally, the asserted joint continuity follows from observing that for every ϵ > 0 the map

(ϵ,∞)× U ∋ (t, x) 7−→ e−tHwf(x) ∈ C
is equal to the composition

(ϵ,∞)× U
(t,x)7→(e−(t−ϵ)Hwf,x)
−−−−−−−−−−−−−→ L2(M)× U

(f,x)7→e−ϵHwf(x)−−−−−−−−−−→∈ C,
where the first map is norm continuous by the spectral calculus, and where the second map
is continuous as explained above. This completes the proof. ■

12. Molecular Schrödinger operators
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