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Abstract. Let Q be a di�erential operator of order ď 1 on a complex metric vector bundle
E Ñ M with metric connection ∇ over a possibly noncompact Riemannian manifold M .
Under very mild regularity assumptions on Q that guarantee that ∇:∇{2 ` Q generates a

holomorphic semigroup e´zH
∇
Q in ΓL2pM ,E q (where z runs through a complex sector which

contains r0,8q), we prove an explicit Feynman-Kac type formula for e´tH
∇
Q , t ą 0, generalizing

the standard self-adjoint theory where Q is a self-adjoint zeroth order operator. For compact
M 's we combine this formula with Berezin integration to derive a Feynman-Kac type formula
for an operator trace of the form

Tr

ˆ

rV

ż t

0

e´sH
∇
V P e´pt´sqH

∇
V ds

˙

,

where V, rV are of zeroth order and P is of order ď 1. These formulae are then used to obtain
a probabilistic representations of the lower order terms of the equivariant Chern character (a
di�erential graded extension of the JLO-cocycle) of a compact even-dimensional Riemannian
spin manifold, which in combination with cyclic homology play a crucial role in the context of
the Duistermaat-Heckmann localization formula on the loop space of such a manifold.

1. Introduction

The classical Feynman-Kac formula states that given a real-valued (for simplicity) smooth
potential V : M Ñ R on a possibly noncompact Riemannian manifold M such that the
symmetric Schrödinger operator ∆{2`V is semibounded from below in L2pM q (de�ned initially
on smooth compactly supported functions), one has

e´tHV Ψpxq “ E
”

1ttăζxue
´
şt
0 V pb

x
s qdsΨpbxt q

ı

for all Ψ P L2
pM q, t ą 0, a.e. x P M ,

whenever the expectation value is well-de�ned. Here

‚ HV denotes the Friedrichs realization1 of ∆{2 ` V , taking into account that in general
∆{2`V need not have a unique self-adjoint realization, and e´tHV is de�ned via spectral
calculus,

‚ bx is an arbitrary Brownian motion on M starting from x with lifetime ζx ą 0, taking
into account that M need not be stochastically complete.

1which corresponds to Dirichlet boundary conditions
1
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Covariant versions of this formula have played a crucial role in mathematical physics through
the Feynman-Kac-Itô formula [S05, BHL00] and in geometry through probabilistic proofs of
the Atiyah-Singer index theorem [B84, H02]. In this context, one replaces ∆ with ∇:∇, where

∇ : ΓC8pM ,E q ÝÑ ΓC8pM , T ˚M b E q

is a metric connection on a metric vector bundle E Ñ M , and the potential with a smooth
pointwise self-adjoint section V of EndpE q Ñ M . In other words, V is a self-adjoint zeroth order
operator. Assuming now that the symmetric covariant Schrödinger type operator ∇:∇{2 ` V
in the space of square integrable sections ΓL2pM ,E q is bounded from below, one can prove that

e´tH
∇
V Ψpxq “ E

“

1ttăζxuVx∇ptq{{x∇ptq´1Ψpbxt q
‰

for all Ψ P ΓL2pM ,E q, t ą 0, a.e. x P M ,(1.1)

whenever the expectation is well-de�ned. Here

‚ H∇
V is the Friedrichs realization of ∇:∇{2` V ,

‚ {{x∇ denotes the stochastic parallel transport along the paths of bx (cf. section 2 below
for the precise de�nition),

‚ Vx∇ denotes the solution of the following pathwise given ordinary di�erential equation
in EndpExq,

pd{dtqVx∇ptq “ ´Vx∇ptq{{x∇ptq´1V pbxt q{{
x
∇ptq, Vx∇p0q “ 1.

These facts are well-established (cf. the appendix of [BD01]). Note that a classical assumption
on the negative part V ´ of V that guarantees that ∇:∇{2`V is semibounded from below and
that one has the uniform square-integrability

sup
xPM

E
“

1ttăζxu|Vx∇ptq|2
‰

ă 8 for all t ą 0

(so that by Cauchy-Schwarz the Feynman-Kac formula holds [G12] for all f P ΓL2pM ,E q) is
given by |V ´| P KpM q, the Kato class of M (cf. De�nition 2.4). Since bounded functions are
always Kato, and since it is possible to �nd large (possibly weighted) Lp ` L8-type subspaces
of KpM q under very weak assumptions on the geometry of M (cf. Proposition 2.5), the Kato
class becomes very convenient in the context of Feynman-Kac formulae and their applications.

In contrast to the self-adjoint case, very little seems to be known concerning Feynman-
Kac formulae in the situation where one replaces the self-adjoint zeroth order operator V
by an arbitrary di�erential operator Q of order ď 1, a situation that naturally leads to a
non self-adjoint theory. The aim of this paper is to provide a systematic treatement of this
problem, dealing with all probabilistic and functional analytic problems that arise naturally in
this context, mainly from the noncompactness of M . Our essential insight here, which allows to
detect the new probabilistic pieces of the Feynman-Kac formula explicitly and which allows to
deal with some of the functional analytic problems using perturbation theory, is to decompose
Q canonically in the form

Q “ Q∇ ` σ1pQq∇,
where

σ1pQq P ΓC8
`

M ,HompT ˚M b E ,E q
˘

denotes the �rst order principal symbol of Q, so that Q∇ :“ Q ´ σ1pQq is zeroth order. Since
now ∇:∇ ` Q will typically not be symmetric in ΓL2pM ,E q, we cannot use the Friedrichs
construction to get a self-adjoint operator. Instead, we use Kato's theory of sectorial forms
and operators (cf. appendix for the basics of sectorial forms/operators and holomorphic semi-
groups): to this end, we assume that ∇:∇{2 ` Q is sectorial. It then follows from abstract
results that this operator canonically induces a sectorial operator H∇

Q which generates a semi-

group of bounded operators e´zH
∇
Q in ΓL2pM ,E q which is holomorphic for z running through
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some sector of the complex plane which contains r0,8q. For �xed x P M let now Qx
∇ denote

the solution to the Itô equation

dQx
∇ptq “ ´Qx

∇ptq{{
x
∇ptq

´1
`

σ1pQq
5
pdbxt q `Q∇pb

x
t qdt

˘

{{
x
∇ptq, Qx

∇p0q “ 1,

noting that one can give sense to the underlying Itô di�erential σ1pQq
5pdbxt q using the Levi-

Civita connection on M (cf. Section 2). With these preparations, our main result, Theorem
2.2 below, reads as follows:

Let ∇:∇`Q be sectorial and let

sup
xPK

E
“

1ttăζxu|Qx
∇ptq|

2
‰

ă 8 for all K Ă M compact, t ą 0.(1.2)

Then for all t ą 0, Ψ P ΓL2pM ,E q, x P M , one has

e´tH
∇
QΨpxq “ E

“

1ttăζxuQx
∇ptq{{

x
∇ptq

´1Ψpbxt q
‰

.(1.3)

Let us note that the locally uniform L2-assumption (1.2) serves two purposes: �rstly, it
decouples the validity of the Feynman-Kac formula from Ψ (as in the above self-adjoint Kato
situation). Secondly and more importantly, it allows us to conclude that the smooth representa-

tive of e´tH
∇
QΨ, which exists by local parabolic regularity, is in fact pointwise equal to the right

hand side of (1.3), and not only almost everywhere. This is achieved by �rst proving the formula
on relatively compact subsets of M using Itô-calculus, and then letting these local formulae
run through an exhaustion of M , using a recent result for monotone convergence of nondensely
de�ned sectorial forms (this procedure is, up to additional technical di�culties, somewhat anal-
ogous to the self-adjoint case) with a parabolic maximum principle for the heat equation (the
use of which in this form being new even in the self-adjoint case). To the best of our knowledge,
this pointwise identi�cation of the smooth representative is new for stochastically incomplete
M 's even in the self-adjoint case.

Making contact with Kato type assumptions, in Proposition 2.6 we prove:

Assume either

‚ |<pσ1pQqq| P L
8pM q,

‚ <pQ∇q is bounded from below by a constant κ P R,
‚ |=pQ∇q| P KpM q,

or

‚ σ1pQq is anti-selfadjoint and |σ1pQq| P L
8pM q,

‚ |<pQ∇q
´| P KpM q,

‚ |=pQ∇q| P KpM q.

Then ∇:∇`Q is sectorial, and one has

sup
xPM

E
“

1ttăζxu|Qx
∇ptq|

2
‰

ă 8 for all t ą 0.(1.4)

In particular, (1.3) holds true.

Note that above <pAq and =pAq denote, respectively, the �berwise de�ned real part and
imaginary part of any zeroth order operator. Since these are self-adjoint zeroth order operators,
one can de�ne their positive/negative parts using the spectral calculus �berwise. Note that,
while in the self-adjoint case one can control |Qx

∇ptq| pathwise using Gronwall's inequality, in
the situation of Theorem 2.2 and Proposition 2.6 one has to estimate the solution of a covariant
Itô-equation, which in combination with the noncompactness of M leads to several technical
di�culties. Although the present formulation of Proposition 2.6 should cover most applications,
it would be natural to replace any (lower) boundedness assumption in Proposition 2.6 with an
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appropriate Kato-type assumption. Although we tried hard, we have not been able to do that.
It would also be very interesting to obtain non self-adjoint variants of semigroup domination
[B86, BD01, O99, IS97] (also called 'Kato-Simon inequality' in [G17]) using the Feynman-
Kac formula in the above setting, keeping in mind that such estimates play a crucial role in
geometric analysis (see e.g. [GP15, BG20]) and in mathematical physics (where they are called
'diamagnetic inequalities' [S77, BHL00]). In the self-adjoint case these estimates take the form

|e´tH
∇
V Ψpxq| ď e´tHv |Ψ|pxq,

where v : M Ñ R is any scalar potential such that for all x P M every eigenvalue of V pxq is
ě vpxq.
It should also be noted that, if one ignores functional analytic problems, it is somewhat natural

that some probabilistic representation of e´tH
∇
Q must exist: ∇:∇`Q has a scalar second order

principal symbol, and any such operator can be uniquely written in the form r∇:
r∇` rQ, where r∇

is another connection and rQ is of zeroth order. However, the assignment p∇, Qq ÞÑ pr∇, rQq is by
no means explicit (cf. Proposition 2.5 in [BGV92]), and r∇ need not be metric, even if even ∇
is so. From this point of view, we believe that our formulation of the Feynman-Kac formula is
optimal from the point of view of explicitness and accessibility to perturbation theoretic results
such as Proposition 2.6.

Our next main result is the following trace formula (cf. Theorem 2.9):

Assume M is compact, and let P be of order ď 1, and let V, rV be of zeroth order. Then for
all t ą 0 one has

Tr

ˆ

rV

ż t

0

e´sH
∇
V P e´pt´sqH

∇
V ds

˙

(1.5)

“ ´

ż

M

rV pxqe´tHpx, xqEx,xt
„

Vx∇ptq
ż t

0

{{
x
∇psq

´1
`

σ1pP q
5
pdbxsq ` P∇pb

x
sqds

˘

{{
x
∇psq{{

x
∇ptq

´1



dµpxq,

where e´tHpx, yq denotes the integral kernel of the Friedrichs realization of ∆ (in other words,
the heat kernel on M ), and Ex,xt denotes the exppectation with respect to the Brownian bridge
starting in x and ending in x at the time t.

The proof of this result is in fact reduced to (1.3) using Berezin integration, a trick which
has been communicated to the authors by Shu Shen. It would be very interesting to see, if
at least for certain P 's it is possible to obtain (1.5) using the very general Bismut derivative
formulae from [BD01] in combination with the Markov property of Brownian motion. We have
not worked into this direction.

Finally, we use (1.5) together with a new commutation formula for spin-Dirac operators (cf.
formula (3.4) below) to establish a probabilistic formula for the '�rst order' part of the equi-
variant Chern-Character ChTpM q of a compact even-dimensional Riemannian spin manifold
M , where T :“ S1. We refer the reader to Section 3 for the de�nition of ChTpM q and con-
centrate here only the probabilistic side of the formula: to this end, note that every element α
of the space ΩTpM q of T-invariant di�erential forms on M ˆT can be uniquely written in the
form α “ α1 ` α2dt with dt the volume form on T. Then ChTpM q becomes a complex linear
functional on the space

CTpM q :“
8
à

N“0

ΩTpM q
bpN`1q.

In Theorem 3.1 we prove:
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For all α0, α1 P ΩTpM q, t ą 0 one has

ChTpM qpα0 b α1q

“

ż

M
e´tHpx, xqStrx

ˆ

cpα10qpxqE
x,x
t

„

e´p1{8q
şt
0 scalpbxs qds

ż t

0
{{x∇psq

´1
´

2cp˚dbxs {α11q ´ cpα
2
1qpb

x
s qds

¯

{{x∇psq{{
x
∇ptq

´1



|t“2

˙

dµpxq,

where

‚ Strx denotes the Z2-graded trace on EndpSxq, with S Ñ M the spin bundle,
‚ {{x∇ denotes the stochastic parallel transport S Ñ M ,
‚ c : ΩC8pM q Ñ ΓC8pM ,EndpS qq denotes Cli�ord multiplication,
‚ cp˚dbxs {αq denotes a Stratonovic di�erential with respect to the EndpS q-valued 1-form
v ÞÑ cpv{αq,

‚ Ex,xt denotes the expectation with respect to the Brownian bridge starting x and ending
at the time t in x.

We remark that ChTpM q has been introduced in [GL19] in the abstract setting of ϑ-summable
Fredholm modules over locally convex di�erential graded algebras and is in fact a di�erential-
graded re�nement of the JLO-cocycle [JLO88] for ungraded algebras. When applied to a
compact even dimensional Riemannian spin-manifold, this construction provides via Chen in-
tegrals an algebraic model for Duistermaat-Heckman localization on the space of smooth loops,
allowing a proof of the Atiyah-Singer index theorem for twisted spin-Dirac operators in the
spirit of Atiyah [A83] and Bismut [B85]. We refer the reader to the introduction of [GL19] for
a detailed explanation of these results. Obtaining a probabilistic formula for the higher order
pieces of the equivarant Chern character remains an open problem at this point.

Acknowledgements: The authors would like to thank Shu Shen for a very helpful discussion
that lead to the proof of Theorem 2.9.

2. Main results

Let M be a connected Riemannian manifold of dimension m, where we work exclusively in
the catogory of smooth manifolds without boundary. As such it is equipped with its Levi-Civita
connection and its volume measure µ. We denote the open geodesic balls with Bpx, rq Ă M .
Any �berwise metric on a vector bundle will simply be denoted with p‚, ‚q, with |‚ | :“

a

p‚, ‚q.
If E Ñ M is a metric vector bundle and p P r1,8s, then the norm on the complex Banach
space of Lp-sections is denoted with

}Ψ}p :“

ˆ
ż

|Ψ|pdµ

˙1{p

.

(with the obvious replacement for p “ 8). The scalar product in the Hilbert space ΓL2pM ,E q
is denoted by

xΨ1,Ψ2y “

ż

pΨ1,Ψ2qdµ.

- Given another metric vector bundle F Ñ M and a di�erential operator

P : ΓC8pM ,E q ÝÑ ΓC8pM ,F q

of order ď k with smooth coe�cients, its formal adjoint

P : : ΓC8pM ,E q ÝÑ ΓC8pM ,F q

is the uniquely determined di�erential operator of order ď k with smooth coe�cients, which
satis�es

xPΨ1,Ψ2y “
@

Ψ1, P
:Ψ2

D

for all Ψ1 P ΓC8c pM ,E q, Ψ2 P ΓC8c pM ,E q.
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Assume from now on that E Ñ M is a metric vector bundle with a smooth metric connection

∇ : ΓC8pM ,E q ÝÑ ΓC8pM , T ˚M b E q

Given a di�erential operator

Q : ΓC8pM ,E q ÝÑ ΓC8pM ,E q

of order ď 1, then with its �rst order principal symbol

σ1pQq P ΓC8
`

M ,HompT ˚M ,EndpE qq
˘

“ ΓC8
`

M ,HompT ˚M b E ,E q
˘

,

the operator
Q∇ :“ Q´ σ1pQq∇ is zeroth order,

thus
Q∇ P ΓC8pM ,EndpE qq, Q “ Q∇ ` σ1pQq∇.

Assume that for every x P M we are given a maximally de�ned Brownian motion

bx : r0, ζxq ˆ Ω ÝÑ M

on M with starting point x and explosion time ζx ą 0, which is de�ned on a �xed �ltered
probability space pΩ,F ,F˚,Pq that satis�es the usual assumptions. Let

{{
x
∇ : r0, ζxq ˆ Ω ÝÑ E b E :

be the corresponding stochastic parallel transport with respect to the �xed metric connection,
where E b E : Ñ M ˆM denotes the vector bundle whose �ber at pa, bq is HompEa,Ebq. This
is the uniquely determined continuous semimartingale such that [N92] for all t P r0, ζxq,

‚ one has {{x∇ptq : Ex Ñ Ebtpxq unitarily,
‚ for all Ψ P ΓC8pM ,E q one has

{{
x
∇ptq

´1Ψpbxt q “ {{
x
∇ptq

´1∇p˚dbxt qΨpbxt q, {{
x
∇p0q “ 1.(2.1)

Above and in the sequel, ˚d stands for Stratonovic integration, while d will denote Itô inte-
gration. Note that one can integrate 1-forms in the Stratonovic sense on any manifold along
any continuous semimartingale, while one can integrate 1-forms on M along bx also in the Itô
sense, using the Levi-Civita connection on M .
De�ne the process

Qx
∇ : r0, ζxq ˆ Ω ÝÑ EndpExq

as the unique solution to the Itô equation

dQx
∇ptq “ ´Qx

∇ptq{{
x
∇ptq

´1
`

σ1pQq
5
pdbxt q `Q∇pb

x
t qdt

˘

{{
x
∇ptq, Qx

∇p0q “ 1.

Written out explicitly, the above equation means that for all t ě 0 one has

Qx
∇ptq “ 1´

ż t

0

Qx
∇psq{{

x
∇psq

´1σ1pQq
5
pUx

s ejq{{
x
∇psqdW

x,j
s `

ż t

0

{{
x
∇psq

´1Q∇pb
x
sq{{

x
∇psqds,

a.s. on tt ă ζxu, where e1, . . . , em is the standard basis of Rm,

Ux : r0, ζxq ˆ Ω ÝÑ OpM q “
ď

xPM

OpRm, TxM q

is a horizontal lift of bx with respect to the Levi-Civita connection on M to the principal �ber
bundle of orthonormal frames OpM q Ñ M , and

W x :“

ż ‚

0

$p˚dUx
s q : r0, ζxq ˆ Ω ÝÑ Rm

is the Rm-representation of bx (in particular, W x is a Euclidean Brownian motion), with

$ P Ω1
C8pOpM q,Rm

q, $upAq :“ u´1
pTπpAuqq, Au P TuOpM q, u P OpM q,
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the solder 1-form of π : OpM q Ñ M . These constructions do not depend on the initial value
Ux

0 P OpRm, TxM q.

It is often useful to know for estimates that the processes of the form Qx
∇ factor as follows:

Remark 2.1. Let α P Ω1
C8pM ,EndpE qq, V,W P ΓC8pM ,EndpE qq and let

C : r0, ζxq ˆ Ω ÝÑ EndpExq

be the solution to

dCptq “ ´Cptq{{x∇ptq
´1
`

V pbxt q ` αpdb
x
t q `W pb

x
t qdt

˘

{{
x
∇ptq, Cp0q “ 1.

Such a C factors as follows: let

A : r0, ζxq ˆ Ω ÝÑ EndpExq

be the solution to

dAptq “ ´Aptq{{x∇ptq
´1
`

αpdbxt q `W pb
x
t qdt

˘

{{
x
∇ptq, Ap0q “ 1.

Then A is invertible and
A´1 : r0, ζxq ˆ Ω ÝÑ EndpExq

is the solution to

dAptq´1
“ {{

x
∇ptq

´1
`

αpdbxt q `W pb
x
t qdt

˘

{{
x
∇ptqAptq

´1, Ap0q´1
“ 1.

Let B be the solution to

dBptq “ ´BptqAptq{{x∇ptq
´1V pbxt q{{

x
∇ptqAptq

´1dt, Bp0q “ 1.

Then by the Itô product rule we have

dpBptqAptqq “ pdBptqqAptq `BptqdAptq ` dBptqdAptq

“ ´BptqAptq{{x∇ptq
´1V pbxt q{{

x
∇ptqAptq

´1dtAptq

´BptqAptq{{x∇ptq
´1
`

αpdbxt q `W pb
x
t qdt

˘

{{
x
∇ptq

` summands containing dt and dbxt , or dt and dt,

so that by uniqueness C “ AB.

b) As a particular case of the above situation, Let

Qx
1,∇ : r0, ζxq ˆ Ω ÝÑ EndpExq

be the solution to

dQx
1,∇ptq “ ´Qx

1,∇ptq{{
x
∇ptq

´1σ1pQq
5
pdbxt q{{

x
∇ptq, Qx

1,∇p0q “ 1,

and let Qx
2,∇ be the solution to

dQx
2,∇ptq “ ´Qx

2,∇ptqQx
1,∇ptq{{

x
∇ptq

´1Q∇pb
x
t q{{

x
∇ptqQx

1,∇ptq
´1dt, Qx

2,∇ptq “ 1.

Then we have

Qx
∇ptq “ Qx

2,∇ptqQx
1,∇ptq.(2.2)

Any di�erential operator

Q : ΓC8pM ,E q ÝÑ ΓC8pM ,E q

induces a densely de�ned sesqui-linear form

ΓC8c pM ,E q ˆ ΓC8c pM ,E q Q pΨ1,Ψ2q ÞÝÑ h∇QpΨ1,Ψ2q :“
@

p∇:∇{2`QqΨ1,Ψ2

D

P C(2.3)

in ΓL2pM ,E q. In case this form is sectorial it is automatically closable (stemming from a
sectorial operator), and we denote the closed operator in ΓL2pM ,E q induced by the closure of
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h∇Q with H∇
Q in the sense of Theorem A.2 from the appendix. It follows that H∇

Q generates a
holomorphic semigroup (cf. appendix)

pe´zH
∇
Q qzPΣ0,β

Ă L pΓL2pM ,E qq,

which is de�ned on some sector of the form

Σ0,β “ tre
?
´1α : r ě 0, α P p´β, βqu for some β P p0, π{2s.

In the situation of a trivial complex line bundle with its trivial connection (identifying sections
with functions) we will ommit the dependence on the connection in the notation. In particular,
H ě 0 stands for the Friedrichs realization of the scalar Laplace-Beltrami operator ∆{2 in
L2pM q.

Theorem 2.2. Let
Q : ΓC8pM ,E q ÝÑ ΓC8pM ,E q

be a di�erential operator of order ď 1. Assume that h∇Q is sectorial and that

sup
xPK

E
“

1ttăζxu|Qx
∇ptq|

2
‰

ă 8 for all K Ă M compact, t ą 0.(2.4)

Then for all t ą 0, Ψ P ΓL2pM ,E q, x P M , one has

e´tH
∇
QΨpxq “ E

“

1ttăζxuQx
∇ptq{{

x
∇ptq

´1Ψpbxt q
‰

.(2.5)

Remark 2.3. By local parabolic regularity, the time dependent section pt, xq ÞÑ e´tH
∇
QΨpxq

has a representative which is smooth on p0,8q ˆM , and (2.5) means that the RHS of this
equation is precisely this smooth representative. This pointwise identi�cation, which is based
on the locally uniform integrability assumption (2.4), is highly nontrivial in the stochastically
incomplete case and even slightly improves the existing results in the 'usual' Feynman-Kac
setting (σ1pQq “ 0 and Q∇ self-adjoint), where so far only an µ-almost everywhere equality has
been established.

Proof of Theorem 2.2: We omit the dependence on ∇ of several data in the notation, whenever
there is no danger of confusion. Fix x P M , t ą 0 and pick an exhaustion pUlqlPN of M with
open connected relatively compact subsets having a smooth boundary. Let HQ,l be de�ned with
M replaced by Ul (note that this corresponds to Dirichlet boundary conditions). It su�ces to
show that (with an obvious notation) for all Ψ P ΓC8c pM ,E q and all l large enough such that
Ψ is supported in Ul one has

e´tHQ,lΨpxq “ E
“

1ttăζlxuQ
x
ptq{{xptq´1Ψpbxt q

‰

.(2.6)

Indeed, we have

lim
lÑ8

›

›e´tHQ,lΨ´ e´tHQΨ
›

›

2
“ 0(2.7)

by an abstract monotone convergence theorem for nondensely de�ned sectorial forms (Theorem
3.7 in [CtE18]), and furthermore for every compact set K Ă M with x P K we have

sup
yPK

ˇ

ˇ

ˇ
E
”

p1ttăζyu ´ 1ttăζyl uqQ
y
ptq{{yptq´1Ψpbyt q

ı
ˇ

ˇ

ˇ

ď sup
yPK

}Ψ}
8
E
”

1ttăζyu ´ 1ttăζyl u

ı1{2

E
“

1ttăζyu|Qy
ptq|2

‰1{2

ď sup
yPK

E
“

1ttăζyu|Qy
ptq|2

‰1{2
21{2 sup

yPK
}Ψ}

8
pe´tH1pyq ´ e´tHl1pyqq1{2.

The latter expression converges to zero as l Ñ 8 by a maximum principle for the heat equation
of Dodziuk [D83], which shows that the RHS of (2.5) is continuous in x, and that in view of
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(2.7) one has (2.5) for µ-a.e x P M . A posteriori this equality holds for all x, as both sides are
continuous in x. If Ψ is only square integrable, we can pick a sequence of smooth compactly
supported sections pΨnqnPN with }Ψn ´Ψ}2 Ñ 0. Given an open relatively compact subset
U Ă M with x P U , we have

e´tHQ,l : ΓL2pM ,E q ÝÑ ΓCbpU,E q

algebraically by elliptic regularity (where ΓCbpU,E q denotes the Banach space of continuous
bounded sections of E |U Ñ U equipped with the uniform norm), and a posteriori continuously
by the closed graph theorem, we then have

lim
nÑ8

e´tHQΨnpxq “ e´tHQΨpxq,

and

ˇ

ˇE
“

1ttăζxuQx
ptq{{xptq´1

pΨnpb
x
t q ´Ψpbxt qq

‰
ˇ

ˇ

ď E
“

1ttăζxu|Qx
ptq|2

‰1{2 E
“

1ttăζxu|Ψnpb
x
t q ´Ψpbxt q|

2
‰1{2

“ E
“

1ttăζxu|Qx
ptq|2

‰1{2

ˆ
ż

e´tHpx, yq|Ψnpyq ´Ψpyq|2dµpyq

˙1{2

ď E
“

1ttăζxu|Qx
ptq|2

‰1{2

ˆ

sup
yPM

e´tHpx, yq

˙1{2

}Ψn ´Ψ}2 ,

which tends to 0 as nÑ 8 and proves (2.5) again.
It remains to show (2.6): By parabolic regularity, the time dependent section

Ψspyq :“ e´pt´sqHQ,lΨpyq

of E |Ul Ñ Ul extends smoothly to r0, ts ˆ Ul and Ψs vanishes in BUl for all s P r0, tq. De�ne a
continuous semimartingale by

N : r0, t^ ζxl s ˆ Ω ÝÑ Ex, Ns :“ Qx
psq{{xpsq´1Ψspb

x
sq.
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Then we have

dNs “ pdQx
psqq{{xpsq´1Ψspb

x
sq `Qx

psqd{{xpsq´1Ψspb
x
sq ` dQx

psqd{{xpsq´1Ψspb
x
sq

“ ´Qx
psq{{xpsq´1

`

σ1pQq
5
pdbxsq `Q∇pb

x
sqds

˘

Ψspb
x
sq

`Qx
psq

`

{{
x
psq´1∇Ψsp˚db

x
sqpb

x
sq ` {{

x
psq´1

BsΨspb
x
sqds

˘

´Qx
psq{{xpsq´1

`

σ1pQq
5
pdbxsq `Q∇pb

x
sqds

˘

{{
x
psq

ˆ
`

{{
x
psq´1∇Ψsp˚db

x
sqpb

x
sq ` {{

x
psq´1

BsΨspb
x
sqds

˘

” ´Qx
psq{{xpsq´1

`

Q∇pb
x
sqds

˘

Ψspb
x
sq

`Qx
psq

ˆ

{{
x
psq´1∇Ψsp˚db

x
sqpb

x
sq ´

1

2
{{
x
psq´1∇:∇Ψspb

x
sqds` {{

x
psq´1

BsΨspb
x
sqds

˙

´Qx
psq{{xpsq´1

`

σ1pQq
5
pdbxsq `Q∇pb

x
sqds

˘

{{
x
psq

ˆ

ˆ

{{
x
psq´1∇Ψsp˚db

x
sqpb

x
sq `

1

2
{{
x
psq´1∇:∇Ψspb

x
sqds` {{

x
psq´1

BsΨspb
x
sqds

˙

” ´Qx
psq{{xpsq´1Q∇pb

x
sqdsΨspb

x
sq `Qx

psq

ˆ

´1

2
{{
x
psq´1∇:∇Ψspb

x
sqds` {{

x
psq´1

BsΨspb
x
sqds

˙

´Qx
psq{{xpsq´1

`

σ1pQq
5
pdbxsq `Q∇pb

x
sqds

˘

{{
x
psq

ˆ

ˆ

{{
x
psq´1∇Ψsp˚db

x
sqpb

x
sq `

´1

2
{{
x
psq´1∇:∇Ψspb

x
sqds` {{

x
psq´1

BsΨspb
x
sqds

˙

“ ´Qx
psq{{xpsq´1Q∇pb

x
sqdsΨspb

x
sq `Qx

psq

ˆ

´1

2
{{
x
psq´1∇:∇Ψspb

x
sq ` {{

x
psq´1

BsΨspb
x
sqds

˙

´Qx
psq{{xpsq´1σ1pQq

5
pdbxsq∇Ψsp˚db

x
sqpb

x
sq

“ ´Qx
psq{{xpsq´1Q∇pb

x
sqdsΨspb

x
sq `Qx

psq

ˆ

´1

2
{{
x
psq´1∇:∇Ψspb

x
sq ` {{

x
psq´1

BsΨspb
x
sqds

˙

´Qx
psq{{xpsq´1σ1pQq∇Ψspb

x
sq

“ 0,

where ” stands for equality up to continuous local martingales. In the above calculation, we
have used the Itô product rule, the di�erential equation for Qx, the formula

d{{xpsq´1Ψspb
x
sq “ {{

x
psq´1∇Ψsp˚db

x
sqpb

x
sq ` {{

x
psq´1

s BsΨspb
x
sq,

which follows from applying (2.1) to the metric connection π˚∇ on the metric vector bundle
π˚E Ñ M ˆ r0,8q with the projection π : M ˆ r0,8q Ñ M , the covariant Stratonovic-to-Itô
formula

{{
x
psq´1∇Ψsp˚db

x
sqpb

x
sq “ {{

x
psq´1∇Ψsp˚db

x
sqpb

x
sq `

1

2
{{
x
psq´1∇:∇Ψspb

x
sqds,

and

BsΨs “ pp1{2q∇:∇` σ1pQq∇`Q∇qΨs.

This shows that N is a continuous local martingale. Since Ul is relatively compact, N is in fact
a martingale: indeed, a.s., for all s ą 0 we have in ts ă ζxu from the di�erential equation for
Qx and Jenÿen's inequality

|Qx
psq|2 ď C ` C

ˇ

ˇ

ˇ

ˇ

ż s

0

Qx
prq{{xprq´1σ1pQq

5
pdbxr q{{

x
prq

ˇ

ˇ

ˇ

ˇ

2

` Cs

ż s

0

|Qx
prq|2|Qpbxr q|

2dr,
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so that by the Burkholder-Davis-Gundy inequality, with

ϑn :“ inftr ě 0 : |Qx
prq| ą nu, n P N,

one has

E
”

sup
sďt^ζxl

|Qx
ps^ ϑnq|

2
ı

ď C 1 ` C 1E
„
ż t^ζxl

0

|Qx
pr ^ ϑnq|

2
|σ1pQq

5
pbxr q|

2dr



` tE
„
ż t^ζxl

0

|Qx
pr ^ ϑnq|

2
|Q∇pb

x
r q|

2dr



ď C 1 ` C 1
ˆ

sup
yPUl

|σ1pQq
5
pyq|2

˙

E
„
ż t^ζxl

0

|Qx
pr ^ ϑnq|

2dr



` t

ˆ

sup
yPUl

|Q∇pyq|
2

˙

E
„
ż t^ζxl

0

|Qx
pr ^ ϑnq|

2dr



ď CQ,l ` pCQ,l ` tCQ,lqE
„
ż t^ζxl

0

|Qx
pr ^ ϑnq|

2dr



ď CQ,l ` pCQ,l ` tCQ,lqE

«

ż t

0

sup
sďr^ζxl

|Qx
ps^ ϑnq|

2dr

ff

,

where C, C 1 are universal constants, and CQ,l depends only on }Q∇|Ul}8 and }σ1pQq|Ul}8. As
a consequence, for all T ą 0 with t ď T , Gronwall's inequality gives

E

«

sup
sďt^ζxl

|Qx
ps^ ϑnq|

2

ff

ď CQ,le
CQ,l,T t,

where CQ,l,T only depends on Q, l, T , and so

E

«

sup
sďt^ζxl

|Qx
psq|2

ff

“ E
„

max
sďt^ζxl

|Qx
psq|2



“ E
„

lim
n

max
sďt^ζxl

|Qx
ps^ ϑnq|

2



(2.8)

ď lim inf
n

E

«

sup
sďt^ζxl

|Qx
ps^ ϑnq|

2

ff

ď CQ,le
CQ,l,T t ă 8(2.9)

by Fatou's lemma. We arrive at

E

«

sup
sďt^ζxl

|Ns|
2

ff

ď

˜

sup
sPr0,ts,yPUl

|Ψspyq|
2

¸

E

«

sup
sďt^ζxl

|Qx
psq|2

ff

ă 8,

so that

E

«

sup
sďt^ζxl

|Ns|

ff

ď E

«

sup
sďt^ζxl

|Ns|
2

ff1{2

ă 8,
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which shows that N is a martingale, as claimed.
We thus have

e´tH
l
QΨpxq “ ErN0s “ ErNt^ζxl

s

“ E
”

Qx
pt^ ζxl q{{

x
pt^ ζxl q

´1Ψt^ζxl
pbxt^ζxl q

ı

“ E
”

p1ttăζlxu ` 1ttěζlxuqQ
x
pt^ ζxl q{{

x
pt^ ζxl q

´1Ψt^ζxl
pbxt^ζxl q

ı

“ E
“

1ttăζlxuQ
x
ptq{{xptq´1Ψt^ζxl

pbxt q
‰

` E
”

1ttěζlxuQ
x
pζxl q{{

x
pζxl q

´1Ψt^ζxl
pbxζxl q

ı

“ E
“

1ttăζlxuQ
x
ptq{{xptq´1Ψpbxt q

‰

.

This completes the proof. �

In order to evaluate the somewhat abstract assumptions from Theorem 2.2, we recall the
de�nition of the Kato class (referring the reader to [G17, SV96, AS, S82, G12, S93] and the
refernces therein for some fundamental results concerning this class):

De�nition 2.4. A Borel function w : M Ñ R is said to be in the Kato class KpM q of M , if

lim
tÑ0`

sup
xPM

ż t

0

E
“

1tsăζxu|wpb
x
sq|

‰

ds “ 0.

By Khashminskii's lemma [G17], w P KpM q implies

sup
xPM

E
”

1ttăζxue
p
şt
0 |wpb

x
s q|ds

ı

ă 8 for all t ą 0, p P r1,8q.

One trivially always has L8pM q Ă KpM q, and under a mild control on the geometry one has
Lp ` L8-type subspaces of the Kato class. For example, one has (cf. Chapter VI in [G17] and
the appendix of [BrG]):

Proposition 2.5. a) Assuming there exists of a Borel function θ : M Ñ p0,8q with

sup
xPM

e´tHpx, yq ď θpyqt´m{2 for all 0 ă t ă 1, y P M .

Then one has

LpθpM q ` L8pM q Ă KpM q, for all p ě 1 if m “ 1, and all p ą m{2 if m ě 2,

where LpθpM q denotes the weighted Lp-space of all equivalence classes of Borel functions f on
M such that

ş

|f |pθdµ ă 8.
b) If M is geodesically complete and quasi-isometric to a Riemannian manifold with Ricci
curvature bounded from below by a constant, then one has

Lp1{µpBp¨,1qqpM q ` L8pM q Ă KpM q, for all p ě 1 if m “ 1, and all p ą m{2 if m ě 2.

Given an endomorphism A on a metric vector bundle, we denote with

<pAq :“ p1{2qpA` A:q

its real part and with

=pAq :“ ´
?
´1pA´ <pAqq

its imaginary part, so that A “ <pAq `
?
´1=pAq, where <pAq and =pAq are self-adjoint (and

then, for example, the positive and negative parts <pAq˘ ě 0 are de�ned via the �berwise
spectral calculus, giving <pAq “ <pAq` ´ <pAq´). Note also that <pAq “ <pA:q, and that
<pAq “ U<pBqU : if A “ UBU : for some unitary U . .
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Proposition 2.6. Let

Q : ΓC8pM ,E q ÝÑ ΓC8pM ,E q

be a di�erential operator of order ď 1.
a) Assume

‚ |<pσ1pQqq| P L
8pM q,

‚ <pQ∇q is bounded from below by a constant κ P R,
‚ |=pQ∇q| P KpM q.

Then h∇Q is sectorial and

sup
xPM

E
“

1ttăζxu|Qx
∇ptq|

2
‰

ă 8 for all t ą 0,(2.10)

in particular, (2.5) holds true.
b) Assume

‚ σ1pQq is anti-selfadjoint and |σ1pQq| P L
8pM q,

‚ |<pQ∇q
´| P KpM q,

‚ |=pQ∇q| P KpM q.

Then h∇Q is sectorial and one has (2.10), in particular, (2.5) holds true.

Proof : We have

h∇Q “ ha ` hb ` hc ` hd ` he,

where

hapΨ1,Ψ2q :“ p1{2q x∇Ψ1,∇Ψ2y , hbpΨ1,Ψ2q :“ xσ1pQq∇Ψ1,Ψ2y ,

hcpΨ1,Ψ2q :“
@

<pQ∇q
`Ψ1,Ψ2

D

, hdpΨ1,Ψ2q :“
@

<pQ∇q
´Ψ1,Ψ2

D

,

hepΨ1,Ψ2q :“ x=pQ∇qΨ1,Ψ2y .

a) We have

|hbpΨ,Ψq| ď }σ1pQq}8 }∇Ψ} }Ψ} ď }σ1pQq}8
`

Cε }Ψ}
2
` εhapΨ,Ψq

˘

,(2.11)

and (as Kato perturbations of Bochner-Laplacians are in�nitesimally form small; cf. Lemma
VII.4 in [G17])

|hepΨ,Ψq| ď
`

Cε }Ψ}
2
` εhapΨ,Ψq

˘

,

which shows that ha ` hb ` he is sectorial, as ha is so (cf. Theorem A.1 in the appendix).
Moreover,

hcpΨ,Ψq ` hdpΨ,Ψq “ x<pQ∇qΨ,Ψy

is bounded from below, so that the sum

h “ ha ` hb ` he ` hc ` hd
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of sectorial forms is sectorial, too.
Let v P Ex. Almost surely, for all s ą 0, we have in ts ă ζxu by the Itô product rule,

d
ˇ

ˇQx
∇psq

:v
ˇ

ˇ

2
“ 2<

`

dQx
∇psq

:v,Qx
∇psq

:v
˘

`
`

dQx
∇psq

:v, dQx
∇psq

:v
˘

ď ´2
`

{{
x
∇psq

´1<pσ1pQq
5
pdbxsqq{{

x
∇ptqQx

∇psq
:v,Qx

∇psq
:v
˘

´ 2
`

{{
x
∇psq

´1<pQ∇pb
x
sqq{{

x
∇psqQx

∇psq
:v,Qx

∇psq
:v
˘

ds

` |σ1pQq
5
pbxsq|

2
|Q∇psq

:v|2ds

ď ´2
`

{{
x
∇psq

´1<pσ1pQq
5
pdbxsqq{{

x
∇psqQx

∇psqv,Q∇psq
:v
˘

´ 2κ|Qx
∇psq

:v|2ds

` }<pσ1pQqq}
2
8
|Qx

∇psq
:v|2ds.

With the sequences of stopping times ϑn and ζ
x
l as in the proof of Theorem 2.2, the Itô isometry

an Jenÿen's inequality imply that for all t ą 0,

E
”

ˇ

ˇQx
∇pt^ ϑn ^ ζ

x
l q
:v
ˇ

ˇ

2
ı

ď 1` 2E

«

ˇ

ˇ

ˇ

ˇ

ż t

0

`

{{
x
∇prq

´1<pσ1pQq
5
pdbxr qq{{

x
∇prqQx

∇prq
:v,Qx

∇prq
:v
˘

ˇ

ˇ

ˇ

ˇ

2 1
2

|r“s^ϑn^ζxl

ff

´ 2κ

ż t

0

E
“

|Qx
∇ps^ ϑn ^ ζ

x
l q
:v|2

‰

ds` }<pσ1pQqq}
2
8

ż t

0

E
“

|Qx
∇ps^ ϑn ^ ζ

x
l q
:v|2

‰

ds

ď 1` 2 }<pσ1pQqq}8 E
„
ż t

0

|Qx
∇ps^ ϑn ^ ζ

x
l q
:v|2ds



1
2

´ 2κ

ż t

0

E
“

|Qx
∇ps^ ϑn ^ ζ

x
l q
:v|2

‰

ds` }<pσ1pQqq}
2
8

ż t

0

E
“

|Qx
∇ps^ ϑn ^ ζ

x
l q
:v|2

‰

ds

ď 1` 2 }<pσ1pQqq}8

ˆ

E
„
ż t

0

|Qx
∇ps^ ϑn ^ ζ

x
l q
:v|2ds



` 1

˙

´ 2κ

ż t

0

E
“

|Qx
∇ps^ ϑn ^ ζ

x
l q
:v|2

‰

ds` }<pσ1pQqq}
2
8

ż t

0

E
“

|Qx
∇ps^ ϑn ^ ζ

x
l q
:v|2

‰

ds

ď 1` 2 }<pσ1pQqq}8 ` 2 }<pσ1pQqq}8 E
„
ż t

0

|Qx
∇ps^ ϑn ^ ζ

x
l q
:v|2ds



´ 2κ

ż t

0

E
“

|Qx
∇ps^ ϑn ^ ζ

x
l q
:v|2

‰

ds` }<pσ1pQqq}
2
8

ż t

0

E
“

|Qx
∇ps^ ϑn ^ ζ

x
l q
:v|2

‰

ds.

By Gronwall's lemma and Fatou's lemma, this estimate implies

E
”

1ttăζxu
ˇ

ˇQx
∇ptq

:v
ˇ

ˇ

2
ı

ď lim
l
E
”

1ttăζxl u
ˇ

ˇQx
∇ptq

:v
ˇ

ˇ

2
ı

“ lim
l
E
”

1ttăζxl u
ˇ

ˇQx
∇pt^ ζ

x
l q
:v
ˇ

ˇ

2
ı

ď lim
l

lim
n

E
”

1ttăζxl u
ˇ

ˇQx
∇pt^ ϑn ^ ζ

x
l q
:v
ˇ

ˇ

2
ı

ď CQetCQ ă 8,

uniformly in x P M .

b) As in the proof of part a),

|hbpΨ,Ψq| ď }σ1pQq}8
`

Cε }Ψ}
2
` εhapΨ,Ψq

˘

,
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and

|hdpΨ,Ψq| ď
`

Cε }Ψ}
2
` εhapΨ,Ψq

˘

,

|hepΨ,Ψq| ď
`

Cε }Ψ}
2
` εhapΨ,Ψq

˘

,

which shows that ha ` hb ` hd ` he is sectorial, and hc is nonnegative so that h is sectorial.
In the notation of Remark 2.1, a.s., for all s ą 0 we have in ts ă ζxu,

dQx
1,∇psq

´1
“ {{

x
∇psq

´1σ1pQq
5
pdbxsq{{

x
∇psqQx

1,∇psq
´1, Qx

1,∇p0q
´1
“ 1,

and
dQx

1,∇psq
˚
“ ´{{

x
∇psq

´1σ1pQq
5
pdbxsq

:
{{
x
∇psqQx

1,∇psq
˚, Qx

1,∇p0q
˚
“ 1,

which shows that Qx
1,∇psq is unitary, if σ1pQq is anti-selfadjoint. Thus we have

|Qx
∇psq| “ |Qx

2,∇psqQx
1,∇psq| ď |Qx

2,∇psq|.

For all v P Ex (as both Qx
1,∇psq and the parallel transport are unitary),

pd{dsq
ˇ

ˇQx
2,∇psq

:v
ˇ

ˇ

2
“ 2<

´

pd{dsqQx
2,∇psq

:v,Qx
2,∇psq

:v
¯

“ ´2<
´

Qx
1,∇psq{{

x
∇psq

´1Q∇pb
x
sq
:
{{
x
∇psqQx

1,∇psq
´1Qx

2,∇psq
:v,Qx

2,∇psq
:v
¯

“ ´2
´

Qx
1,∇psq{{

x
∇psq

´1<pQ∇pb
x
sqq{{

x
∇psqQx

1,∇psq
´1Qx

2,∇psq
:v,Qx

2,∇psq
:v
¯

ď 2|<pQ∇pb
x
sqq

´
||Qx

2,∇psq
:v|2

and so by Gronwall, a.s., for all t ą 0 we have in tt ă ζxu,

|Qx
2,∇ptq|

2
“ |Qx

2,∇ptq
:
|
2
ď e2

şt
0 |<pQ∇pb

x
s qq

´|ds

and �nally

sup
xPM

E
”

1ttăζxue
2
şt
0 |<pQ∇pb

x
s qq

´|ds
ı

ă 8

by Khashiminskii's lemma. �

Given x P M , let pPx,yt qtą0,yPM be the bridge measures associated with bpxq: for all t ą 0,
y P M , the measure Px,yt is the uniquely determined probability measure (cf. [P03], p. 36) on

tt ă ζxu equipped with the sigma-algebra F
bx|ttăζxu
t such that

Px,yt pAq “ E
„

1A
ppt´ s, bxs , yq

ppt, x, yq



for all 0 ă s ă t, A P F
bx|tsăζxu
s .

This provides a pointwise disintegration of Brownian motion, in the sense that for all t ą 0,
x, y P M one has

PpAq “
ż

e´tHpx, yqPx,yt pAqdµpyq for all A P F bx

t X tt ă ζxu,

Px,yt pbxt “ yq “ 1.

We remark that one has to locally complete these probability spaces so that Qx
∇ptq and {{

x
∇ptq

become F
bx|ttăζxu
t -measurable (cf. p. 250 in [HT94] for a precise treatment of this issue.)

We immediately get the following consequence of Theorem 2.2:

Corollary 2.7. In the situation of Theorem 2.2, for all t ą 0, x, y P M one has

e´tH
∇
Q px, yq “

ż

M

e´tHpx, yqEx,yt
“

Qx
∇ptq{{

x
∇ptq

´1
‰

.(2.12)



16 SEBASTIAN BOLDT AND BATU GÜNEYSU

Remark 2.8. The precise meaning of this result is as follows: there exists a unique jointly
smooth map

p0,8q ˆM ˆM Q pt, x, yq ÞÝÑ e´tH
∇
Q px, yq P HompEy,Exq P E b E :

such that for all t ą 0, x P M , Ψ P ΓL2pM ,E q one has
ż

|e´tH
∇
Q px, yq|2dµpyq ă 8, e´tH

∇
QΨpxq “

ż

e´tH
∇
Q px, yqΨpyqdµpyq,

(this follows from the proof of Theorem II.1 in [G17], where the required self-adjointness and
semiboundedness of the operator P̃ is only used to get a semigroup which is holomorphic in
a sector of the complex plane which contains p0,8q), and Corollary 2.7 states this map is
pointwise equal to the RHS of (2.12).

In the following result we assume for simplicity that M is compact, in order to not obscure
the algebraic machinery behind its proof, and to guarantee the required trace class property:

Theorem 2.9. Assume M is compact. Let V P ΓC8pM ,EndpE qq (considered as a di�erential
operator of order ď 1 in E Ñ M q and let

P : ΓC8pM ,E q ÝÑ ΓC8pM ,E q

be a di�erential operator of order ď 1 and denote its closure in ΓL2pM ,E q, de�ned a priori on
ΓC8pM ,E q, with P again. Then for all t ą 0 the operator

ż t

0

e´sH
∇
V P e´pt´sqH

∇
V ds P L pΓL2pM ,E qq,(2.13)

is given for all x, y P M by
ż t

0

e´sH
∇
V P e´pt´sqH

∇
V ds px, yq(2.14)

“ ´e´tHpx, yqEx,yt
„

Vx∇ptq
ż t

0

{{
x
∇psq

´1
`

σ1pP q
5
pdbxsq ` P∇pb

x
sqds

˘

{{
x
∇psq{{

x
∇ptq

´1



,

in particular, for every rV P ΓC8pM ,EndpE qq one has

Tr

ˆ

rV

ż t

0

e´sH
∇
V P e´pt´sqH

∇
V ds

˙

“ ´

ż

M

rV pxqe´tHpx, xqEx,xt
„

Vx∇ptq
ż t

0

{{
x
∇psq

´1
`

σ1pP q
5
pdbxsq ` P∇pb

x
sqds

˘

{{
x
∇psq{{

x
∇ptq

´1



dµpxq.

This result has to read as follows: By elliptic regularity, for all t ą 0, the function

r0, ts Q s ÞÝÑ e´sH
∇
V P e´pt´sqH

∇
V Ψ P ΓL2pM ,E q

is well-de�ned and continuous, so
ż t

0

e´sH
∇
V P e´pt´sqH

∇
V Ψds

is well-de�ned in the sense of ΓL2pM ,E q-valued Riemann integrals. Furthermore,

ΓL2pM ,E q Q Ψ ÞÝÑ

ż t

0

e´sH
∇
V P e´pt´sqH

∇
V Ψds P ΓL2pM ,E q

is bounded, and our proof shows that
ş‚

0
e´sH

∇
V P e´p‚´sqH

∇
V ds has a jointly smooth integral kernel

in the sense of Remark 2.8, and that this smooth representative is pointwise equal to the RHS
of (2.14). The asserted trace formula then follows from the fact that if an operator A1 in
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ΓL2pM ,E q has a smooth integral kernel and A2 is zeroth order, then A2A1 has the smooth
integral kernel rA2A1spx, yq “ A2pxqA1px, yq and A2A1 is trace class (as M is compact) with

Tr pA2A1q “

ż

M

TrxpA2pxqA1px, xqqdµpxq,

where Trx denotes the �nite dimensional trace on EndpExq.

Proof of Theorem 2.9: Denote with ΛpRq “ R ‘ Λ1pRq the Grassmann algebra over R, which
is generated by 1 P R and θ P Λ1pRq. In particular, we have θ2 “ 0. Given a linear space A ,
the Berezin integral is the linear map

ż

ΛpRq
: A b ΛpRq ÝÑ A , a` bθ ÞÝÑ

ż

ΛpRq
pa` bθqdθ :“ b, a, b P A ,

which picks the θ-coe�cient. Note that if A is an associative algebra, then so is A b ΛpRq.
With the di�erential operator

V ` P θ :“ V ` θP : ΓC8pM ,E b ΛpRqq “ ΓC8pM ,E q b ΛpRq ÝÑ ΓC8pM ,E b ΛpRqq,
of order ď 1, the operator H∇

V`P θ
in

ΓL2pM ,E b ΛpRqq “ ΓL2pM ,E q b ΛpRq
is well-de�ned and in fact equal to the operator sum H∇

V ` P θ (as M is compact). The
perturbation series

e
´tH∇

V`Pθ “ 1`
8
ÿ

j“1

ż

t0ăt1ă¨¨¨ătjătu

e´t1H
∇
V P θe´pt2´t1qH

∇
V P θ

¨ ¨ ¨ e´pt´tjqH
∇
V dt1 ¨ ¨ ¨ dtn

cancels after j ě 2 because of θ2 “ 0, and we have
ż

ΛpRq
e
´tH∇

V`Pθdθ “

ż t

0

e´sH
∇
V P e´pt´sqH

∇
V ds,(2.15)

in particular,
ş‚

0
e´sH

∇
V P e´p‚´sqH

∇
V ds has a jointly smooth integral kernel in the sense of Remark

2.8. By Corollary 2.7 and Remark 2.1 we have

e
´tH∇

V`Pθ px, yq “ e´tHpx, yqEx,yt
“

Vx∇ptqPx
θ,∇ptq{{

x
∇ptq

´1
‰

,

where
Px
θ,∇ : r0, ζxq ˆ Ω ÝÑ EndpEx b ΛpRqq

denotes the unique solution of

dPx
θ,∇ptq “ ´Px

θ,∇ptq{{
x
∇ptq

´1
`

σ1pP
θ
q
5
pdbxt q ` P

θ
∇pb

x
t qdt

˘

{{
x
∇ptq, Px

θ,∇p0q “ 1.

Because of θ2 “ 0 the time ordered exponential series

Px
θ,∇ptq “ 1`

8
ÿ

j“1

ż

t0ďt1ď¨¨¨ďtjďtu

j
ź

i“1

θ
´

´ {{
x
∇ptiq

´1
`

σ1pP q
5
pdbxtiq ` P∇pb

x
ti
qdti

˘

{{
x
∇ptiq

¯

has only two summands, giving
ż

ΛpRq
e
´tH∇

V`Pθ px, yqdθ

“ ´e´tHpx, yqEx,yt
„

Vx∇ptq
ż t

0

{{
x
∇psq

´1
`

σ1pP q
5
pdbxsq ` P∇pb

x
sqds

˘

{{
x
∇psq{{

x
∇ptq

´1



,

which in view of (2.15) is the claimed formula. �
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3. Applications to noncommutative geometry

In this section we present an application of Theorem 2.9 to recent results concerning an
algebraic model given in [GL19] for Duistermaat-Heckman localization on the space of smooth
loops in a compact Riemannian spin manifold. We refer the reader to [LM89] for details on
spin geometry (noting that a brief introduction can also be found in [H02]).

Assume M is a compact Riemannian spin manifold of even dimension, with S Ñ M its spin
bundle, which is naturally Z2-graded by an endomorphism γ P ΓC8pM ,EndpE qq. The vector
bundle S Ñ M inherits a metric and a metric connection ∇ from the Riemannian metric and
the Levi-Civita connection on M . Let

D : ΓC8pM ,S q ÝÑ ΓC8pM ,S q

denote the induced Dirac operator and let

c : ΩC8pMq ÝÑ ΓC8pM ,EndpS qq, cpα1 ^ ¨ ¨ ¨ ^ αpqΨ :“
1

p!
α1 ¨ ¨ ¨αp ¨Ψ,

α1, . . . , αp P Ω1
C8pMq, Ψ P ΓC8pM ,S q,

denote the natural extension of the (dual) Cli�ord multiplication

Ω1
C8pMq ÝÑ ΓC8pM ,EndpS qq, α ÞÝÑ pΨ ÞÝÑ α ¨Ψq

from 1-forms to arbitrary di�erential forms. The operator D (de�ned a priori on ΓC8pM ,S q)
is essentially self-adjoint in ΓL2pM ,S q, and its unique self-adjoint realization will be denoted
with the same symbol again. With T :“ S1 let

ΩTpM q :“ ΩC8pM ˆ TqT

denote the space of T-invariant di�erential forms on M ˆT. Each element α of ΩTpM q can be
uniquely written in the form α “ α1 ` α2dt with dt the volume form on T. De�ne a complex
linear space by

CTpM q :“
8
à

N“0

ΩTpM q
bpN`1q.

Since, M is compact, e´tD
2
is trace class for all t ą 0. In this situation, the Chern Character

ChTpM q is a linear functional2

ChTpM q : CTpM q ÝÑ C,

that has been introduced in [GL19]. The formula for ChTpM q is given as follows: de�ne

FT : CTpM q ÝÑ tdi�erential operators of order ď 2 in S Ñ M u

by

FTpα0q “ cpdα10q ´ rD, cpα
1
0qs ´ cpα

2
0q

FTpα0 b α1q “ p´1q|α
1
0|
`

cpα10 ^ α
1
1q ´ cpα

1
0qcpα

1
1q
˘

,

FTpα0 b ¨ ¨ ¨ b αNq “ 0 for all N ě 3.

Above, rD, cpαqs denotes a Z2-graded commutator (where di�erential forms are Z2-graded
through even/odd form degrees). Explicitly, one has

rD, cpαqs “ Dcpαq ´ p´1qpcpαqD, if α P Ωp
C8pM q.

2In fact, ChTpM q extends continuously to a certain completion of CTpM q, but we shall not be concerned
with this fact here.
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For natural numbers L ď N denote with PL,N all tuples I “ pI1, . . . , ILq of subsets of
t1 . . . , Nu with

I1 Y ¨ ¨ ¨ Y IL “ t1 . . . , Nu

and with each element of Ia smaller than each element of Ib whenever a ă b. Given

‚ α1 b ¨ ¨ ¨ b αN P ΩTpM qbN ,
‚ I “ pI1, . . . , ILq P PL,N ,
‚ 1 ď a ď L,

we set
αIa :“ αi`1 b ¨ ¨ ¨ b αi`l, if Ia “ tj | i ă j ď i` lu for some i, l.

Then with Strp‚q :“ Trpγ‚q the Z2-graded trace on L pΓL2pM ,S qq, one has

ChTpM qpα0 b ¨ ¨ ¨ b αNq :“
N
ÿ

L“1

p´1qL
ÿ

IPPL,N

ż

t0ďs1ď¨¨¨ďsLď1u

Str
´

cpα0qe
´s1D2

FTpαI1qˆ

ˆe´ps2´s1qD
2

FTpαI2q ¨ ¨ ¨ e
´psL´sL´1qD

2

FTpαILqe
´p1´sLqD

2
¯

ds1 ¨ ¨ ¨ dsL.

By de�nition we the N “ 0 part of the Chern character is given explicitly by

ChTpM qpα0q “ Str
´

cpα10qe
´D2

¯

,(3.1)

and the N “ 1 part is given explicitly by

ChTpM qpα0 b α1q “ ´Str

ˆ
ż 1

0

cpα10qe
´sD2

FTpα1qe
´p1´sqD2

ds

˙

.(3.2)

By the Lichnerowicz formula we have

D2
“ ∇:∇` p1{4qscal,(3.3)

so that the N “ 0 piece of ChTpM q is given by the probabilistic expression

ChTpM qpα0q “

ż

M

e´tHpx, xqStrx

´

cpα10qpxqE
x,x
t

”

e´p1{8q
şt
0 scalpbxs qds{{

x
∇ptq

´1
ı

|t“2

¯

dµpxq,

with Strx the Z2-graded trace on EndpSxq. We are going to use Theorem 2.9 to deduce a
probabilistic representation for the N “ 1 piece of ChTpM q:

Theorem 3.1. Let M be a compact even dimensional Riemannian spin manifold. Then for
all α0, α1 P ΩTpM q one has

ChTpM qpα0 b α1q

“

ż

M
e´tHpx, xqStrx

ˆ

cpα10qpxqE
x,x
t

„

e´p1{8q
şt
0 scalpbxs qds

ż t

0
{{x∇psq

´1
´

2cp˚dbxs {α11q ´ cpα
2
1qpb

x
s qds

¯

{{x∇psq{{
x
∇ptq

´1



|t“2

˙

dµpxq.

Proof : Applying Theorem 2.9 with V :“ p1{8qscal, Ṽ :“ γ and P :“ FTpα1q, and noting that
by (3.3) one has H∇

V “ D2, for all x, y P M , we immediately get

Str

ˆ
ż 1

0
e´sD

2
FTpα1qe

´p1´sqD2
ds

˙

“

ż

M
e´tHpx, xqEx,yt

„

e´p1{8q
şt
0 scalpbxs qds

ż t

0
{{x∇psq

´1
`

σ1pF pα1qq
5pdbxs q ` F pα1q∇pb

x
s qds

˘

{{x∇psq{{
x
∇ptq

´1



|t“2dµpxq.

With the product

‹ : ΓC8pM , TM bS q b ΩC8pM q ÝÑ ΓC8pM ,S q, pX b ϕq ‹ α :“ cpX{αqϕ,

where X{α denotes the contraction of the form α by the vector �eld X, we are going to prove
in a moment the formula

rD, cpαqsϕ “ cppd` d:qαqϕ´ 2p∇ϕq7bId
‹ α, α P ΩC8pM q, ϕ P ΓC8pM ,S q.(3.4)
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Given this identity, we �nd

σ1pFTpα1qq
5
pXq “ 2cpX{α11q for all vector �elds X on M ,

and furthermore

FTpα1q∇ “ ´cpd
:α11q ´ cpα

2
1q,

so that the above is

“

ż

M
e´tHpx, xqEx,xt

„

e´p1{8q
şt
0 scalpbxs qds

ż t

0
{{x∇psq

´1
´

2cpdbxs {α11q ´ cpd
:α11qpb

x
s q ´ cpα

2
1qpb

x
s qds

¯

{{x∇psq{{
x
∇ptq

´1



|t“2dµpxq.

Using the Itô-to-Stratonovic rule

cpdbxs {α1q “ cp˚dbxs {α1q `
1

2
cpd:α1qpbxsqds,

we arrive at

Str

ˆ
ż 1

0
e´D

2
FTpα1qe

´p1´sqD2
ds

˙

“

ż

M
e´tHpx, xqEx,yt

„

e´p1{8q
şt
0 scalpbxs qds

ż t

0
{{x∇psq

´1
´

2cp˚dbxs {α11q ´ cpα
2
1qpb

x
s qds

¯

{{x∇psq{{
x
∇ptq

´1



|t“2dµpxq,

which is the claimed formula.
It remains to prove (3.4). To this end, denote with ClpM q Ñ M the Cli�ord bundle and with

˜: ΩC8pM q ÝÑ ΓC8pM ,ClpM qq

the natural isomorphism. Then we have

Čpd` d:qα “ DClpMqα̃

(cf. [LM89], Chapter II, Thm. 5.12), with DClpMq the natural Dirac operator on ClpM q Ñ M .
Assume now α P ΩppM q and pick a local orthonormal frame pe1, . . . , emq. Write α “

ř

I αIe
˚
i1
^

. . .^ e˚ip with some increasingly ordered multi-index I “ pi1, . . . , ipq. One has

rD, cpαqsϕ “ Dcpαqϕ´ p´1qpcpαqϕ

(3.5)

“

n
ÿ

j“1

ÿ

I

`

ej ¨∇ejpαIei1 ¨ ¨ ¨ eip ¨ ϕq ` p´1qp`1αIei1 ¨ ¨ ¨ eip ¨ ej ¨∇ejϕ
˘

“

n
ÿ

j“1

ÿ

I

´

ej ¨∇ClpM q
ej

pαIei1 ¨ ¨ ¨ eipq ¨ ϕ` ej ¨ αIei1 ¨ ¨ ¨ eip∇ejϕ` p´1qp`1αIei1 ¨ ¨ ¨ eip ¨ ej ¨∇ejϕ
¯

“

n
ÿ

j“1

ÿ

I

´

ej ¨∇ClpM q
ej

pαIei1 ¨ ¨ ¨ eipq ¨ ϕ` αIpej ¨ ei1 ¨ ¨ ¨ eip ` p´1qp`1ei1 ¨ ¨ ¨ eip ¨ ejq ¨∇ejϕ
¯

“ pDClpM qα̃q ¨ ϕ`
n
ÿ

j“1

ÿ

I

`

αIpej ¨ ei1 ¨ ¨ ¨ eip ` p´1qp`1ei1 ¨ ¨ ¨ eip ¨ ejq ¨∇ejϕ
˘

.

(3.6)

Fix now I and j. In case j ‰ ik for all k “ 1, . . . , p, one has

ej ¨ ei1 ¨ ¨ ¨ eip “ p´1qpei1 ¨ ¨ ¨ eip ¨ ej .

In case j “ ik for some 1 ď k ď p, one has

ej ¨ ei1 ¨ ¨ ¨ eip “ eik ¨ ei1 ¨ ¨ ¨ eip “ p´1qk´1ei1 ¨ ¨ ¨ eik ¨ eik ¨ ¨ ¨ eip “ p´1qkei1 ¨ ¨ ¨xeik ¨ ¨ ¨ eip
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and

p´1qp`1ei1 ¨ ¨ ¨ eip ¨ ej “ p´1qp`1ei1 ¨ ¨ ¨ eip ¨ eik “ p´1qp`1`p´kei1 ¨ ¨ ¨ eik ¨ eik ¨ ¨ ¨ eip

“ p´1q2p`2´kei1 ¨ ¨ ¨xeik ¨ ¨ ¨ eip “ p´1qkei1 ¨ ¨ ¨xeik ¨ ¨ ¨ eip .

So the RHS of (3.6) equals

cppd` d:qαqϕ´ 2
ÿ

I

p
ÿ

k“1

p´1qk´1αIei1 ¨ ¨ ¨xeik ¨ ¨ ¨ eip ¨∇eik
ϕ .(3.7)

Assume again I and j are �xed and that j “ ik for some k. Then by the de�nition of the
product ‹,

pej b∇ejϕq ‹ αIe
˚
i1
^ . . .^ e˚ip “ cpej{αIe

˚
i1
^ . . .^ e˚ipq∇ejϕ

“ cpp´1qk´1αIe
˚
i1
^ . . .^xeik ^ . . .^ e

˚
ipq∇eik

ϕ

“ p´1qk´1αIei1 ¨ ¨ ¨xeik ¨ ¨ ¨ eip ¨∇eik
.

As one has p∇ϕq7bd “
řn
j“1 ej b∇ejϕ, (3.7) equals

cppd` d:qαqϕ´ 2
ÿ

I

n
ÿ

j“1

pej b∇ejϕq ‹ αIe
˚
i1
^ ¨ ¨ ¨ ^ e˚ip “ cppd` d:qαqϕ´ 2p∇ϕq7bd

‹ α ,

completing the proof. �

Appendix A. Facts on sectorial forms and operators

In this appendix, we have collected some de�nitions and facts on sectorial forms and opera-
tors, following the presentation from section VI in [K].
A densely de�ned sesqui-linear form h in a Hilbert space H is called sectorial, if there exist
numbers β P r0, π{2q, γ P R such that

thpΨ,Ψq : Ψ P Domphq, }Ψ} “ 1u Ă tz P C : |argpz ´ γq| ď βu.

Above, γ is called a vertex of h and β an angle of h.

A sectorial form h in H is called h is called closed if for all Ψ P H which admit a sequence
pΨnq Ă Domphq with

}Ψn ´Ψ} Ñ 0, hpψn ´ ψl, ψn ´ ψlq Ñ 0 as n, l Ñ 8,

and h is called closable if it has a closed extension; in this case h has a smallest closed extension
h, called the closure of h. Sums of sectorial forms are sectorial, and sums of closed forms are
closed (on their natural domain of de�nition; Theorem 131 p. 319 in [K]).

An densely de�ned operator S in H is called sectorial, if the form hS given by DomphSq “
DompSq and hSpΨ1,Ψ2q “ xSΨ1,Ψ2y is sectorial. If a form h in H is induced by a sectorial
operator S in H , in the sense that h “ hS, then h is closable (Theorem 1.27 p. 318 in [K]).

Theorem A.1. If h is sectorial and the form h1 satis�es Domphq Ă Domph1q and admits
constants a P r0,8q, b P r0, 1q such that

|h1pΨ,Ψq| ď a }Ψ}2 ` b|hpΨ,Ψq| for all Ψ P Domphq,

then the form h` h1 is

‚ sectorial,
‚ closed if and only if h is closed,
‚ closable if and only if h is closable; and then Domph` h1q “ Domphq.
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Proof : This is Theorem 1.33 p. 320 in [K]. �

Given β P p0, π{2s set

Σβ “ tre
?
´1α : r ą 0, α P p´β, βqu

and
Σ0,β :“ Σβ Y t0u “ tre

?
´1α : r ě 0, α P p´β, βqu.

A family of bounded operators pTzqzPΣ0,β
in H , with some β P p0, π{2s, is called a holomorphic

semigroup, if

‚ z ÞÑ Tz is holomorphic3 in z P Σβ,
‚ Tz`z1 “ TzTz1 for all z, z

1 P Σ0,β,
‚ z ÞÑ Tz is strongly continuous in z “ 0 and T p0q “ 1.

It follows that the restriction of T to r0,8q is a strongly continuous semigroup, and if S is
the generator of this semigroup, then for every Ψ0 P H , the function

r0,8q Q t ÞÝÑ T ptqΨ0 P H

is the uniquely determined strongly continuous function Ψ : r0,8q Ñ ΓL2pM ,E q which is
strongly di�erentiable on p0,8q taking values in DompSq thereon, such that

pd{dtqΨptq “ SΨptq, t ą 0, Ψp0q “ Ψ0.

Thus, one essential property of holomorphic semigroups is that the above initial value problem
has a unique solution for every initial value in H , rather than just for initial values in the
domain of the generator (cf. Remark 1.22 on p. 492 in [K]).

Finally, there is the following representation theorem:

Theorem A.2. For every closed sectorial form h in H there exists a unique densely de�ned,
closed, and sectorial operator S in H such that DompSq Ă Domphq and

hpΨ1,Ψ2q “ xSΨ1,Ψ2y for all Ψ1 P DompSq,Ψ2 P Domphq.(A.1)

Moreover, ´S generates a holomorphic semigroup in H , to be denoted with z ÞÑ e´zS.

Proof : The existence of a densely de�ned, closed, and sectorial S satisfying (A.1) is the state-
ment of Theorem 2.1 on p. 322 in [K]. In fact, it is stated there that S is actually m-sectorial,
which by Theorem 1.24 on p. 492 in [K] implies that ´S generates a holomorphic semigroup, as
for some r P R, the form induced by S`r has a vertex 0 (see also Theorem 1.14 in ([A86])). �
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