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Abstract

We show that the N = 1/2 supersymmetric path integral on a closed even dimen-

sional Riemannian spin manifold, realized via Chen forms and recent results from

noncommutative geometry, induces a di�erential topological invariant (which does

not depend on the Riemannian metric).

1 Motivation

Let X be a compact even dimensional topological spin manifold1. The �xed topological
spin structure induces an orientation (cf. Corollary E in [16]) on the Fréchet manifold
LX of smooth loops γ : T → X, whose tangent space TγLX at a �xed loop γ ∈ LX is
given by the space of vector �elds on X along γ, that is, smooth maps A : T→ TX with
γ̇(s) ∈ Tγ(t)X for all s ∈ T. Given a Riemannian metric g on X let Eg ∈ C∞(LX) and
ωg ∈ Ω2(LX) denote the energy functional and, respectively, the presymplectic form

Eg
γ :=

ˆ
T
g(γ̇,γ̇), ωgγ(A,B) :=

ˆ
T
g(∇γ̇A,B),

where we will occasionally identify T = [0,1]/ ∼. The following N = 1/2 supersymmetric
path integral plays a crucial role in the context of Duistermaat-Heckman localization on
LX: with

Ω̂(LX) :=
∞∏
j=0

Ωj(LX)
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the space smooth di�erential forms o LX, one formally sets

Jg : Ω̂(LX) −→ C, Jg[α] :=

ˆ
LX

e−E
g+ωg ∧ α. (1.1)

Note that even though LX is oriented, as it stands, the de�nition of Ig does not make
sense for (at least) the following reasons:

• there exists no in�nite dimensional Lebesgue measure;

• the integral of an inhomogeneous di�erential form (which are the ones of interest)
should by de�nition be the integral of its top degree part, however, LX is in�nite
dimensional;

• LX is noncompact, so even if one �nds a natural way to integrate di�erential forms
on LX, some care has to be taken concerning the question of �nding a class of
'integrable' (smooth) di�erential forms.

As we are going to explain in a moment, the mathematical solution of these problems
is tied together and manifests itself in a construction of Jg via Chen integrals and the
di�erential graded Chern character on (M,g). However, in order to motivate our main
results, let us continue with our heuristic observations for the moment.
With ι the contraction by the vector �eld A on LX given by γ 7→ γ̇, which generates the
natural T-action on LX given by rotating loops, and

Ω̂T(LX) := {α ∈ Ω̂(LX) : LAα = 0}

the space of T-invariant di�erential forms, there is a supercomplex

· · · d+ι−−→ Ω̂+
T (LX)

d+ι−−→ Ω̂−T (LX)
d+ι−−→ Ω̂+

T (LX)
d+ι−−→ · · · , (1.2)

and (with a slight abuse of notation) the dual supercomplex

· · · d+ι−−→ Ω̂T
+(LX)

d+ι−−→ Ω̂T
−(LX)

d+ι−−→ Ω̂T
+(LX)

d+ι−−→ · · · . (1.3)

Note that these complexes are actually well-de�ned within the di�erential calculus of
Fréchet manifolds. Now, supersymmetry takes the form

Jg[(d+ ι)α] = 0 for all α ∈ Ω̂(LX).

Moreover, Jg is an even current, as LX is formally even-dimensional, so that Jg determines
an even homology class in the homology of (1.3). Finally, one can derive the following
in�nite dimensional analogue of the Duistermaat-Heckman localization formula,

Jg[α] =

ˆ
X

Â(M,g) ∧ α|X for all α ∈ Ω̂(LX) with (d+ ι)α = 0,
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which leads to a simple and di�erential geometric 'proof' of the Atiyah-Singer index
theorem [3, 2, 1], and which was in fact, the main motivation that lead to the discovery
of Jg.

The aim of this paper is to examine the dependence of Jg on g. To this end, let g• =
(gt)t∈[0,1] be a smooth family of Riemannian metrics on X and de�ne for every �xed
t ∈ [0,1] a di�erential form

βg•t ∈ Ω1(LX), βg•t,γ(A) := −1

2

ˆ
T
gt(γ̇,A),

and the induced odd current

Cg•t : Ω̂(LX) −→ C, Cg•t (α) := Igt(βg•t ∧ α).

In the appendix, we are going to derive the formula

(d/dt)Jgt = (d+ ι)Cg•t for all t ∈ [0,1]. (1.4)

This equality has an important consequence: de�ning the (odd) Chern-Simons current
Cg• by

Cg• :=

ˆ 1

0

Cg•t dt : Ω̂(LX) −→ C,

one gets the transgression formula

Jg1 − Jg0 = (d+ ι)Cg• ,

so that the homology class induced by Jg in the homology of (1.3) does not depend on
a particular choice of a Riemannian metric g on X. These heuristic considerations show
that any mathematically rigorous de�nition of the supersymmetric current Jg should lead
to a di�erential topologic invariant of X.

2 Main results

Let us explain now how these heuristic considerations can be veri�ed in a mathematically
rigorous way. To this end, we �rst explain the natural class of (smooth) integrable di�er-
ential forms on LX: we turn Ω̂(LX) into a complete locally convex Hausdor� space by
equipping Ωj(LX) with the family of seminorms νf (α) := ν(f ∗α), where f is a smooth
map from a �nite dimensional manifold Y to LX, and ν is a continuous seminorm on
the Fréchet space Ωj(Y ), and by equipping Ω̂(LX) with the product topology. Given
α ∈ Ω(X) and t ∈ T one de�nes α(t) ∈ Ω(LX) to be the pullback of α with respect to
the evaluation γ 7→ γ(t).
Consider the Fréchet space of T-invariant di�erential forms ΩT(X ×T) on X ×T, with T
acting on the second slot. With ϑT ∈ Ω(T) the volume form, any θ ∈ ΩT(X × T) can be
uniquely written in the form θ = θ′ + ϑT ∧ θ′′ with θ′,θ′′ ∈ Ω(X).
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Associated to this construction, there is the space of entire chains CεT(X) which is de�ned
as the completion of

CT(X) :=
∞⊕
N=0

ΩT(X × T)⊗ ΩT(X × T)⊗N ,

with
ΩT(X × T)⊗N := ΩT(X × T)⊗N/(C · 1)

and where CT(X) is equipped with the following family of seminorms: given any contin-
uous seminorm ν on ΩT(X × T), one gets the induced projective tensor norm

πν,N on ΩT(X × T)⊗ ΩT(X × T)⊗N ,

and then a seminorm εν on CT(X) by setting

εν(c) :=
∞∑
N=0

πν,N(cN)

bN/2c!
, (2.1)

if

c =
∞∑
N=0

cN ∈ CT(X), with cN ∈ ΩT(X × T)⊗ ΩT(X × T)⊗N for all N .

The required family of seminorms is now given by εν , where ν is a continuous seminorm
on ΩT(X × T).
There exists a uniquely determined continuous map [6], the equivariant Chen iterated
integral map,

Ψ : CεT(X) −→ Ω̂(LX).

such that for all N ∈ N≥0, θ0, . . . ,θN ∈ θ ∈ ΩT(X × T), one has

Ψ(θ0 ⊗ · · · ⊗ θN) (2.2)

=

ˆ
{0≤t1≤···≤tN≤1}

θ0(0) ∧ (ιθ′1(t1)− θ′′1(t1)) ∧ · · · ∧ (ιθ′N(tN)− θ′′N(tN)) dt1 · · · dtN . (2.3)

De�nition 2.1. The space of integrable Chen forms Ω̃(LX) ⊂ Ω̂(LX) is de�ned as the
image of Ψ.

Set
Ω̃T(LX) := Ω̃(LX) ∩ Ω̂T(LX).

The following result follows essentially from calculations made in [6]. A detailed proof
will be given in Section 3

Proposition 2.2. There is a well-de�ned supercomplex

· · · d+ι−−→ Ω̃+
T (LX)

d+ι−−→ Ω̃−T (LX)
d+ι−−→ Ω̃+

T (LX)
d+ι−−→ · · · . (2.4)
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The associated dual supercomplex will be denoted with

· · · d+ι−−→ Ω̃T
+(LX)

d+ι−−→ Ω̃T
−(LX)

d+ι−−→ Ω̃T
+(LX)

d+ι−−→ · · · . (2.5)

Let us now give the formula for Jg. Recall that we have �xed a topologic spin structure
on X. Consider the spinor bundle Σg → X induced by g, with its (essentially self-adjoint)
Dirac operator Dg on the super-Hilbert-space of L2-spinors ΓL2(X,Σg), and the (natural
extension to di�erential forms of all degrees of the) Cli�ord multiplication

cg : Ω(X) −→ ΓC∞(X,End(Σg)).

Given any N ∈ N≥1 and any tupel (θ1, . . . ,θN) of elements of ΩT(X × T), de�ne a di�er-
ential operator Fg(θ1, . . . ,θN) in Σg → X as follows,

Fg(θ) = cg(dθ
′)− [Dg, cg(θ

′)]− cg(θ′′)
Fg(θ1, θ2) = (−1)|θ

′
1|
(
cg(θ

′
1θ
′
2)− cg(θ′1)cg(θ

′
2)
)
,

Fg(θ1, . . . ,θN) = 0, if N ≥ 3,

where here and in the sequel all commutators are super-commutators. ForM ≤ N denote
with PM,N all tuples I = (I1, . . . , IM) of subsets of {1 . . . , N} with I1∪· · ·∪IM = {1 . . . , N}
and with each element of Ia smaller than each element of Ib whenever a < b. Given

θ1, . . . ,θN ∈ ΩT(X × T), I = (I1, . . . , IM) ∈ PM,N , 1 ≤ a ≤M,

set
θIa := (θi+1, . . . , θi+m), if Ia = {j | i < j ≤ i+m} for some i,m.

With these preparations, the following is the main result of [7]:

Theorem 2.3. There exists a uniquely determined current Jg : Ω̃(LX) → C such that
for all N ∈ N≥0, θ0, . . . ,θN ∈ ΩT(X × T) one has

Jg
[ˆ
{0≤t1≤···≤tN≤1}

θ0(0) ∧ (ιθ′1(t1)− θ′′1(t1)) ∧ · · · ∧ (ιθ′N(tN)− θ′′N(tN)) dt1 · · · dtN
]
(2.6)

=
N∑

M=1

(−1)M
∑

I∈PM,N

ˆ
{0≤t1≤···≤tM≤1}

Strg

(
cg(θ0)e−t1D

2
gFg(θI1)×

×e−(t2−t1)D2
gFg(θI2) · · · e−(tM−tM−1)D2

gFg(θIM )e−(1−tM )D2
g

)
dt1 · · · dtM ,

where Strg denotes the supertrace in ΓL2(X,Σg). Moreover, Jg is even and (d+ ι)Jg = 0,
so that Jg de�nes an even homology class in the homology of (2.5), and one has the
localization formula

Jg[α] =

ˆ
X

Â(M,g) ∧ α|X for all α ∈ Ω̃(LX) with (d+ ι)α = 0.
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That this de�nition of Jg is natural, in the sense that it really serves as an implementation
of the right hand side of (1.1), has been indicated in [9] using the Pfa�an line bundle. A
probabilistic representation of Jg has been derived in [10], generalizing the earlier result
from [5] for N = 1 to all orders.
Here comes the main result of this note:

Theorem 2.4. Assume g• = (gt)t∈[0,1] is a smooth family of Riemannian metrics on X.

Then there exists a canonically given odd current Cg• : Ω̃(LX) → C with Jg1 − Jg0 =
(d + ι)Cg•; in particular, the homology class induced by Jg in the homology of (2.5) does
not depend on a particular choice of a Riemannian metric g on X.

Our main result yields a new di�erential topological invariant:

Corollary 2.5. Let M and N be compact even-dimensional, oriented spin manifolds with
�xed topological spin-structures. Assume there exists a di�eomorphism f : M → N pre-
serving orientations and topological spin-structures. Then, for any choice of Riemannian
metrics g and h on M resp. on N , the homology class induced by JgM in the homology of
(2.5) equals the homology class of f ∗JhN .

Proof. Setting g1 := f ∗h, the di�eomorphism f becomes an orientation and metric spin-
structure preserving isometry f : (M,g1)→ (N,h) furnishing unitary equivalences between
Cli�ord multiplications and Dirac operators on (M,g1) and (N,h). Formula (2.6) shows
that Jg1M and f ∗JhN are equal, and Theorem 2.4 establishes the claim. �

3 Proof of Proposition 2.2

We have to show that d+ ι maps

Ω̃T(LX) = Ω̃(LX) ∩ Ω̂T(LX)

to itself. We give ΩT(X × T) the Z-grading

θ′ + ϑT ∧ θ′′ ∈ ΩT(X × T)j ⇔ θ′ ∈ Ωj(X), θ′′ ∈ Ωj+1(X)

and turn it into a locally convex DGA using the di�erential d + ι∂T with ∂T the canonic
vector �eld on T. Then CT(X) inherits the Z-grading induced by

CT(X) =
∞⊕
N=0

ΩT(X × T)⊗ ΩT(X × T)[1]⊗N ,

where ΩT(X × T)[1] denotes ΩT(X × T) as a set with the shifted grading

ΩT(X × T)[1]j := ΩT(X × T)j+1.

With b the Hochschild di�erential and B the Connes di�erential in the Z-graded category,
the space CT(X) becomes a supercomplex with the di�erential d+ι∂T+b+B. By continuity,
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the same holds true for CεT(X).
Let

A : Ω̂(LX) −→ Ω̂(LX)

be the idempotent linear operator obtained by averaging the T-action on LX. Then as
shown in [6] one has the formulae

Ψ(d+ ι∂T + b) = dΨ, ΨB + AΨι∂T = AιΨ,

noting that in the notation of [6] one has ρ = AΨ. Note also that A commutes with d
and ι, so that

AΨ(d+ ι∂T + b+B) = (d+ ι)AΨ.

Assume that α ∈ Ω̃(LX) is T-invariant. This means that α = Ψ(θ) for some θ ∈ CεT(X)

and that AΨ(θ) = Ψ(θ). Clearly, (d + ι)α = (d + ι)Ψ(θ), so that (d + ι)α is in Ω̃(LX),
furthermore,

(d+ ι)α = (d+ ι)AΨ(θ) = AΨ((d+ ι∂T + b+B)θ),

which shows that (d+ ι)α is T-invariant. This completes the proof.

4 Proof of Theorem 2.4

We brie�y recall the Bourguignion-Gauduchon machinery for metric changes of the Dirac
operator [4]. For any t ∈ [0,1], de�ne a section At of End(TX) by

g0(u,v) = gt(Atu,v) for all x ∈ X, u,v ∈ TxX .

Then At is strictly positive w.r.t. gt and g0 and A−1/2
t is a pointwise isometry (TX,gt)→

(TX,g0). It therefore lifts canonically to an SO(n)-equivariant bundle map

bt : SO(X,gt) −→ SO(X,g0) ,

where SO(X,gt) denotes the bundle of oriented orthonormal frames of X w.r.t. the Rie-
mannian metric gt.
Now recall that we have �xed a topological spin structure. This implies that every Rie-
mannian metric gt canonically induces a Riemannian spin structure on X, i.e., a Spin(n)-
principal �bre bundle Pt over X together with a ξ-equivariant map πt : Pt → SO(X,gt)
such that (Pt,πt) is a ξ-reduction of SO(X,gt). Here, ξ : Spin(n) → SO(n) is the canon-
ically given double cover. Furthermore, (Pt, πt) being associated with a �xed topological
spin structure, the map bt lifts to an equivariant bundle map b̃t : Pt → P0 and through
the associated vector bundle construction, we obtain a �brewise isometric vector bundle
isomorphism

βt : Σgt −→ Σg0 ,

which moreover satis�es

βt(cgt(θ)(ϕ)) = cg0(A′
1/2
t (θ))(βt(ϕ)) for all x ∈ X, θ ∈ T ∗xX,ϕ ∈ (Σgt)x ,
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where A′ ∈ End(T ∗X) is the transpose of A. With

0 < ρt = dµg0/dµgt ∈ C∞(X)

the Radon-Nikodym density of µg0 w.r.t. µgt , we obtain the canonically given unitary
operator

Ut : ΓL2(X,Σgt) −→ ΓL2(X,Σg0)

Utϕ(x) = ρ
−1/2
t βt(ϕ(x)) ,

which we use to de�ne a family of ϑ-summable Fredholm modules Mg• over Ω(X) in the
sense of De�nition 2.1 in [7], by

M
g•
t := (ΓL2(X,Σg0),c

t, Qt) := (ΓL2(X,Σg0), UtcgtU
∗
t , UtDgtU

∗
t ) ,

whereDgt is the Dirac operator acting on L
2-sections of Σgt . Consider the Chern character

Chgt : CεT(X) −→ C,

whose value at
θ0 ⊗ · · · ⊗ θN ∈ CεT(X)

is given by the RHS of (2.6) for g = gt. Then Chgt vanishes on the kernel of Ψ and this
de�nes Jgt . If we can show that Mg• satis�es the axioms of De�nition 6.1 in [7], then
(using that Chern characters are invariant under unitary transformations) it follows that
the (odd) Chern-Simons form

CS(Mg•
T ) : CεT(X) −→ C

constructed on page 31 in [7] satis�es

Chg1 − Chg0 = (d+ ι∂T + b+B)CS(Mg•
T )

and vanishes on the kernel of Ψ, too. It follows that

Cg•(Ψ(θ)) := CS(Mg•
T )(θ), θ ∈ CεT(X),

is well-de�ned and, being invariant under A (which follows from its very construction),
has the desired properties, in view of

AΨ(d+ ι∂T + b+B) = (d+ ι)AΨ.

It remains to show (H1) and (H2) from De�nition 6.1 in [7], where (H1) is the condition

sup
t∈[0,1]

tr
(
e−Q

2
t

)
<∞,
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and (H2) is the condition

sup
t∈[0,1]

∥∥∥Q̇t(Q
2
t + 1)−1/2

∥∥∥+ sup
t∈[0,1]

∥∥∥(Q2
t + 1)−1/2Q̇t

∥∥∥ <∞.
Here, (H1) can be seen as follows: one can appeal to the Lichnerowicz formula for D2

t and
semigroup domination (cf. Theorem 3.1 in [11]) to get

tr
(
e−Q

2
t

)
≤ rank(Σ0)e−minx∈X(1/4)scalgt (x)tr

(
e−∆gt

)
,

which entails (H1), as t 7→ minx∈X(1/4)scalgt(x) is clearly continuous, and t 7→ tr
(
e−∆gt

)
is smooth by Proposition 6.1 from [13].
To see (H2) note that from elliptic regularity, each Qt := UgtDgtU

∗
gt has the same domain

of de�nition W 1,2(X). Furthermore, Q̇t := (d/dt)Qt is a �rst order di�erential operator,
which we consider as acting on smooth spinors. The proof of (H2) is based on the following
lemma, which is a modi�cation of Lemma 4.17 in [8]:

Lemma 4.1. Let S be a densely de�ned, closed linear operator from a Hilbert space H1 to
a Hilbert space H2, and let T be a self-adjoint bounded linear operator in H1 with T ≥ −λ
for some λ ≥ 0. Assume that S∗S + T ≥ 0. Then one has

‖S(S∗S + T + 1)−1/2‖ ≤
√
λ+ 1 .

Proof. By assumption we have

S∗S + 1 ≤ S∗S + T + λ+ 1 ,

which means

‖(S∗S + 1)1/2f‖ ≤ ‖(S∗S + T + λ+ 1)1/2f‖ for all f ∈ dom(S∗S)1/2 .

From this we obtain

‖(S∗S + 1)1/2(S∗S + T + 1)−1/2h‖ ≤ ‖(S∗S + T + λ+ 1)1/2(S∗S + T + 1)−1/2h‖

for all h ∈ H1. Using the functional calculus associated with the operator S∗S + T , we
calculate the norm of the operator appearing on the right hand side to be

‖(S∗S + T + λ+ 1)1/2(S∗S + T + 1)−1/2‖ ≤ sup
t≥0

√
t+ λ+ 1

t+ 1
=
√
λ+ 1 ,

which implies
‖(S∗S + 1)1/2(S∗S + T + 1)−1/2‖ ≤

√
λ+ 1 .
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Now we can estimate

‖S(S∗S + T + 1)−1/2‖ = ‖S(S∗S + 1)−1/2(S∗S + 1)1/2(S∗S + T + 1)−1/2‖
≤
√
λ+ 1‖S(S∗S + 1)−1/2‖

≤
√
λ+ 1‖(S∗S)1/2(S∗S + 1)−1/2‖

≤
√
λ+ 1 sup

t≥0

√
t

t+ 1

≤
√
λ+ 1 ,

where we have used the polar decomposition S = U(S∗S)1/2 with a partial isometry U on
the third line and the functional calculus associated with the operator S∗S on the fourth
line. �

Using this lemma, we are going to prove that one has (H2): �rst of all, note that Qt acting
on ΓC∞(X,Σg0) is a �rst order di�erential operator whose coe�cients depend smoothly
on t ∈ [0,1]. Since X is compact, it follows that〈

Q̇tϕ,ψ
〉

= (d/dt) 〈Qtϕ,ψ〉 = (d/dt) 〈ϕ,Qtψ〉 =
〈
ϕ,Q̇tψ

〉
for all ϕ,ψ ∈ ΓC∞(X,Σg0), i.e., Q̇t is symmetric.
Secondly, the operator Q2

t + 1 being elliptic, it follows from a classical result of Seeley [14]
that (Q2

t + 1)−1/2 is a pseudo-di�erential operator. In particular, it maps ΓC∞(X,Σg0) to
itself.
Turning to operator norms, note that Q̇t(Q

2
t + 1)−1/2 is bounded if and only if

sup
{∣∣∣〈Q̇t(Q

2
t + 1)−1/2ϕ,ϕ

〉∣∣∣ : ϕ ∈ ΓC∞(X,Σg0)
}
<∞ .

The operators Q̇t and (Q2
t + 1)−1/2 being symmetric this, in turn, is equivalent to (Q2

t +
1)−1/2Q̇t being bounded. Hence, it su�ces to show that

sup
t∈[0,1]

∥∥∥Q̇t(Q
2
t + 1)−1/2

∥∥∥ <∞ . (4.1)

To this end, we �rst use the unitary invariance of the functional calculus to compute∥∥∥Q̇t(Q
2
t + 1)−1/2

∥∥∥ =
∥∥∥Q̇t((UtDgtU

∗
t )2 + 1)−1/2

∥∥∥ =
∥∥∥Q̇tUt(D

2
gt + 1)−1/2U∗t

∥∥∥
=
∥∥∥U∗t Q̇tUt(D

2
gt + 1)−1/2

∥∥∥ .
Next, we decompose

U∗t Q̇tUt = σt ◦ ∇t + τt,

with ∇t the spinor connection of Σgt , and

σt ∈ ΓC∞(X,Hom(T ∗X ⊗ Σgt ,Σgt)), τt ∈ ΓC∞(X,End(Σgt)),
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so that by the Lichnerowicz formula we have

U∗t Q̇tUt(D
2
gt + 1)−1/2 = σt∇

(
∇∗∇+ 1

4
scalgt + 1

)−1/2
+ τt

(
D2
gt + 1

)−1/2
. (4.2)

Because ‖(D2
gt + 1)−1/2‖ ≤ 1, the operator norm of the second term on the right hand

side is bounded by ‖τt‖, which is continuous in t. Hence,

sup
t∈[0,1]

‖τt
(
D2
gt + 1

)−1/2 ‖ <∞ .

Regarding the �rst term on the right hand side of (4.2), we appeal to the above lemma
with

S = ∇, T = (1/4)scalgt , λt := (1/4) max
x∈X
|scalgt(x)|,

to see that
‖σt∇

(
∇∗∇+ 1

4
scalgt + 1

)−1/2 ‖ ≤ ‖σt‖
√
λt + 1 ,

which is also continuous in t, thereby completing the proof of (4.1) and hence also of
Theorem 2.4.

Appendix: formal proof of formula (1.4)

We start by calculating the derivative of Igt w.r.t. t,

(d/dt)Igt [α] =

ˆ
LX

(d/dt)e−E
gt+ωgt ∧ α =

ˆ
LX

e−E
gt+ωgt ∧ (d/dt) (−Egt + ωgt) ∧ α .

Let ∇(t) denote the Levi-Civita connection for gt, and let γ ∈ LX, X,Y ∈ TγLX. The
t-derivative appearing in the integrand on the right-hand side is

(d/dt)
(
−Egt

γ + ωgtγ
)

(Y,Z) = −1

2

ˆ
T
g′t(γ̇,γ̇) +

ˆ
T
g′t(Y,∇(t)γ̇Z) +

ˆ
T
gt(Y,∇(t)′γ̇Z) , (4.3)

where we have used primes to denote derivatives w.r.t. t and dots to denote derivatives
w.r.t. the loop parameter.
Using that the covariant derivative commutes with every contraction, the second integral
in (4.3) is equal to

1

2

ˆ
T
g′t(Y,∇(t)γ̇Z) +

1

2

ˆ
T
{γ̇g′t(Y,Z)−∇(t)γ̇(g

′
t(Y, · ))(Z)}

=
1

2

ˆ
T
g′t(Y,∇(t)γ̇Z)− 1

2

ˆ
T
∇(t)γ̇(g

′
t(Y, · ))(Z)

=
1

2

ˆ
T
{g′t(Y,∇(t)γ̇Z)− g′t(Z,∇(t)γ̇Y )} − 1

2

ˆ
T
(∇(t)γ̇g

′
t)(Y,Z) .
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For the third term on the right-hand side of (4.3), we use the well-known formula (see,
e.g., [15, Proposition 2.3.1]) for the time derivative of the Levi-Civita connection,
ˆ
T
gt(Y,∇(t)′γ̇Z) =

1

2

ˆ
T
{(∇(t)Zg

′(t))(Y,γ̇) + (∇(t)γ̇g
′
t)(Y,Z)− (∇(t)Y g

′
t)(Z,γ̇)} .

Putting the above together, we obtain

(d/dt)
(
−Egt

γ + ωgtγ
)

(Y,Z) = −1

2

ˆ
T
g′t(γ̇,γ̇) +

1

2

ˆ
T
{g′t(Y,∇(t)γ̇Z)− g′t(Z,∇(t)γ̇Y )}

− 1

2

ˆ
T
{(∇(t)Y g

′
t)(γ̇,Z)− (∇(t)Zg

′
t)(γ̇,Y )} . (4.4)

On the other hand, de�ning the 1-form σt on LX by

(σt)γ(Y ) = −1

2

ˆ
T
g′t(γ̇, Y ) ,

its exterior derivative dσt is de�ned by the Cartan formula,

d(σt)γ(Y,Z) = Y σt(Z̃)− Zσt(Ỹ )− σt([Ỹ ,Z̃]) ,

where Ỹ and Z̃ are local extensions of Y,Z, i.e., vector �elds de�ned on a neighborhood
of γ ∈ LX with Ỹγ = Y and Z̃γ = Z (this de�nition is independent of the extensions
Ỹ , Z̃). Using 1- and 2-parameter variations of γ with variation vector �elds X and Y
respectively and formula (4.4), one easily computes

d(σt)γ(Y,Z) = (d/dt)
(
−Egt

γ + ωgtγ
)

(Y,Z)− ισt .

Hence, for any di�erential form α on LX we have

(d/dt)Igt [α] =

ˆ
LX

e−E
gt+ωgt ∧ (d+ ι)σt ∧ α =

ˆ
LX

e−E
gt+ωgt ∧ σt ∧ (d+ ι)α ,

where the last equality follows from

(d+ ι)Igt [α] = Igt [(d+ ι)α] = 0.

De�ning

Cg•t (α) :=

ˆ
LX

e−E
gt+ωgt ∧ σt ∧ α ,

we end up with
(d/dt)Igt = (d+ ι)Cg•t ,

formally proving (1.4).
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