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Batu Güneysu Hydrogen type stability problems on nonparabolic 3-manifolds



Introduction
Coulomb potentials on Riemannian manifolds

The main result

Review of the Euclidean R3

κ ≥ 0, y ∈ R3, β ∈ Ω1
R(R3) and G (x , y) = 1/|x − y |

Under
∫
R3 |dβ|2 dx <∞, there is a unique self-adjoint

realization H(β, y , κ) of 1
2

(∑
j σ

j(∂j + iβj)1
)2
− κG (•, y)1

in L2(R3,C2)
→ Nonr. Hamilton operator of an atom with one electron
(spin!) and a nucleus (fixed in y) with ∼ κ protons, in
magnetic field dβ

Classic result (Fröhlich/Lieb/Loss, 1986):
There are C , κ0 > 0 such that for all 0 ≤ κ ≤ κ0 and all β, y
as above one has

H(β, y , κ) +
1

8π

∫
R3

|dβ|2 dx ≥ −Cκ2
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Problem

Which topological and Riemann geometric properties of the
Euclidean R3 guarantee the formulation and the proof of this
stability problem?

M: Riemannian 3-manifold, with

vol(dx): Riemannian volume measure

∆ = −d†d: Laplace-Beltrami operator

pt(x , y): minimal positive heat kernel

∇TM : Levi-Civita connection
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Nonparabolicity I

Definition

a) G̃ : M ×M → [−∞,∞] is called a Green’s function on M, if
G̃ (x , y) = G̃ (y , x), G̃ (x , •) ∈ L1

loc(M) and

−∆G̃ (x , •) = δx for all x , y ∈ M.

b) M is called nonparabolic, if there is a positive Green’s function
on M.

Green’s functions exist on M, if and only if M is noncompact

M is nonparabolic ⇔ Brownian motions on M are transient
⇔
∫∞
0 pt(x , y)dt <∞ for some/all x 6= y . Then

G (x , y) :=
∫∞
0 pt(x , y)dt is the minimal positive Green’s

function on M
→ G is our Coulomb potential !
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Nonparabolicity II

Theorem (ess. Varopoulos 1985; B.G.)

Let M be complete and assume that there is C1 > 0 such that for
all t > 0, x ∈ M one has the Gauss type upper bound

pt(x , x) ≤ C1t−
3
2 (G ).

a) M is nonparabolic and one has G (•, y) ∈ K(M) for all y ∈ M,
with K(M) the probabilistic Kato class of M.
b) There is a C2 > 0 such that for any h ∈ H1,2(M) one has(∫

M
|h|6 dvol

) 1
3

≤ C2

∫
M

∣∣∣∇TMh
∣∣∣2 dvol (S )

→ Geometric conditions for validity of (G ) are well-known
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Pauli-Dirac structures

A Pauli-Dirac structure on the Riemannian manifold M is a
rank-2-Dirac structure (c,∇) on M, that is, c is a Clifford
multiplication, ∇ is a Clifford connection, and these date live
on a complex Hermitian vector bundle over M with fiber
dimension 2
→ P(c,∇) := D(c ,∇)2 is our Pauli operator

The Riemannian manifold M admits Pauli-Dirac structures, if
and only if the topological manifold M is spinC

If (c ,∇) is a Pauli-Dirac structure on M, then
tr[∇2]/i ∈ Ω2(M) is a magnetic field and

P(c ,∇) = ∇†∇+
1

4
scal(•)1 +

1

2

∑
i<j

tr
[
∇2
]

(ei , ej)c(e∗i )c(e∗j )
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The Hamiltonians under consideration I: Definition

We set

V [c,∇] :=
1

4
scal(•)1 +

1

2

∑
i<j

tr
[
∇2
]

(ei , ej)c(e∗i )c(e∗j )

S [c ,∇] :=

∫
M

∣∣∣V [c,∇]
∣∣∣2
HS

dvol.

In R3, S [c,∇] is just the magnetic energy!

Theorem (B.G.; also B.G. & O. Post )

Let M be complete with (G ). Then for any Pauli-Dirac structure
(c ,∇) on M with S [c ,∇] <∞ and any y ∈ M, the operator
P − κG (•, y)1 is essentially self-adjoint on smooth compactly
supported sections. The closure H(c ,∇;κ, y) is bounded from
below.
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The Hamiltonians under consideration II: Path integrals

Theorem (B.G.)

Let M be complete with (G ). Then

e−tH(...;κ,y)f (x) = E
[
eκ

∫ t
0 G(Bs(x),y)dsV x

t //
x ,−1
t f (Bt(x))1{t<ζx}

]
,

where

B(x) is a Brownian motion on M with lifetime ζx ,

//x is the stochastic parallel transport along B(x),

V x is the unique (pathwise weak) solution of

d

dt
V x
t = −V x

t //
x ,−1
t V (Bt(x))//xt , V x

0 = 1.

→ leads to L2 → Lp bounds, smoothing properties, etc.
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The stabilty result

Theorem (B.G.)

Let M be complete with (G ). Then there are constants C , κ0 > 0
such that for all Pauli-Dirac structures (c ,∇) on M with
S [c,∇] <∞ and all Λ > 0, 0 ≤ κ ≤ κ0Λ2, y ∈ M one has

H(c ,∇;κ, y) + ΛS [c ,∇] ≥ −Cκ2.

Proof uses Kato property of G (•, y) (for uniformity in y),
generalized Kato’s inequality (for uniformity in ∇) and (S )
(for uniformity in V [c ,∇]) → We only use Dirichlet space
methods (so no curvature estimates etc.) !
The better the constants in (G ) and (S ) are, the bigger
becomes κ0
Open: Multi-particle case under (G ) (essentially ⇔
electrostatic inequality for G (x , y))
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Thank you!
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