Introduction to

Analytic Number Theory

Selected Topics
Lecture Notes

Winter 2019/2020

Alois Pichler

TECHNISCHE UNIVERSITÄT
CHEMNITZ
Faculty of Mathematics

DRAFT
Version as of December 22, 2019
Figure 1: Wizard of Evergreen Terrace: Fermat’s last theorem wrong.
Contents

1 Introduction ... 7

2 Definitions ... 9
 2.1 Elementary properties .. 9
 2.2 Fundamental theorem of arithmetic 12
 2.3 Properties of primes .. 13
 2.4 Chinese remainder theorem ... 14
 2.5 Problems ... 16

3 Elementary number theory ... 19
 3.1 Euler’s totient function ... 19
 3.2 Euler’s theorem .. 21
 3.3 Fermat Primality test ... 23
 3.4 AKS Primality test .. 23
 3.5 Problems ... 24

4 Continued fractions ... 25
 4.1 Generalized continued fraction 25
 4.2 Regular continued fraction ... 27
 4.3 Elementary properties ... 29
 4.4 Problems ... 29

5 Bernoulli numbers and polynomials 31
 5.1 Definitions .. 31
 5.2 Summation and multiplication theorem 32
 5.3 Fourier series ... 33
 5.4 Umbral calculus ... 34

6 Gamma function .. 35
 6.1 Equivalent definitions ... 35
 6.2 Euler’s reflection formula .. 36
 6.3 Duplication formula .. 38

7 Euler–Maclaurin formula .. 39
 7.1 Euler–Mascheroni constant .. 40
 7.2 Stirling formula ... 40

8 Summability methods ... 43
 8.1 Silverman–Toeplitz theorem .. 43
 8.2 Cesàro summation .. 44
 8.3 Euler’s series transformation 44
 8.4 Summation by parts .. 45
 8.4.1 Abel summation .. 46
CONTENTS

16 The prime number theorem 101
 16.1 Zeta function on $\Re(\cdot) = 1$.. 101
 16.2 The prime number theorem 103
 16.3 Consequences of the prime number theorem 104

17 Riemann’s approach by employing the zeta function 107
 17.1 Mertens’ function .. 107
 17.2 Chebyshev summatory function ψ 107
 17.3 Riemann prime counting function 108
 17.4 Prime counting function π 108

18 Further results .. 111
 18.1 Results .. 111
 18.2 Open problems .. 112

Bibliography .. 112

Version: December 22, 2019
Introduction

Even before I had begun my more detailed investigations into higher arithmetic, one of my first projects was to turn my attention to the decreasing frequency of primes, to which end I counted primes in several chiliads. I soon recognized that behind all of its fluctuations, this frequency is on average inversely proportional to the logarithm.

Gauß, letter to Encke, Dec. 1849

For an introduction, see Zagier [21]. Hardy and Wright [10] and Davenport [5], as well as Apostol [2] are benchmarks for analytic number theory. Everything about the Riemann ζ function can be found in Titchmarsh [18, 19] and Edwards [7]. Other useful references include Ivaniec and Kowalski [12] and Borwein et al. [4].

Some parts here follow the nice and recommended lecture notes Forster [8] or Sander [17]. This lecture note covers a complete proof of the prime number theorem (Section 16), which is based on a new, nice and short proof by Newman, cf. Newman [14], Zagier [22].

Please report mistakes, errors, violations of copyrights, improvements or necessary completions. Updated version of these lecture notes: https://www.tu-chemnitz.de/mathematik/fima/public/NumberTheory.pdf

Conjecture (Frank Morgan’s math chat). *Suppose that there is a nice probability function $P(x)$ that a large integer x is prime. As x increases by $\Delta x = 1$, the new potential divisor x is prime with probability $P(x)$ and divides future numbers with probability $1/x$. Hence P gets multiplied by $(1 - P/x)$, so that $\Delta P = (1 - P/x)P - P = -P^2/x$, or roughly

$$P' = -P^2/x.$$*

The general solution to this differential equation is

$$P(x) = \frac{1}{c + \log x} \sim \frac{1}{\log x}.$$
Figure 1.1: Gauss’ 1849 conjecture in his letter to the astronomer Johann Franz Encke, https://gauss.adw-goe.de/handle/gauss/199. Notably, all numbers π(·) are wrong in this letter: π(500 000) = 41 538, e.g.
Definitions

Before creation, God did just pure mathematics. Then he thought it would be a pleasant change to do some applied.

John Edensor Littlewood, 1885–1977

\(\mathbb{N} = \{1, 2, 3, \ldots \} \) the natural numbers
\(\mathbb{P} = \{2, 3, 5, \ldots \} \) the prime numbers
\(\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, 3 \ldots \} \) the integers
\(\text{lcm} \): least common multiple, \(\text{lcm}(6, 15) = 30 \); sometimes also \([m, n] = \text{lcm}(m, n) \)
\(\text{gcd} \): greatest common divisor, \(\text{gcd}(6, 15) = 3 \). We shall also write \((6, 15) = 3 \).
\(m \perp n \): the numbers \(m \) and \(n \) are co-prime, i.e., \((m, n) = 1 \)
\(f \sim g \): the functions \(f \) and \(g \) satisfy \(\lim_{x \to \infty} \frac{f(x)}{g(x)} = 1 \).

2.1 ELEMENTARY PROPERTIES

In number theory, the fundamental theorem of arithmetic, also called the unique factorization theorem or the unique-prime-factorization theorem, states that every integer greater than 1 either is prime itself or is the product of prime numbers, and that this product is unique, up to the order of the factors.

Theorem 2.1 (Euclidean division\(^1\)). Given two integers \(a, b \in \mathbb{Z} \) with \(b \neq 0 \), there exist unique integers \(q \) and \(r \) such that

\[
a = bq + r \quad \text{and} \quad 0 \leq r < |b|.
\]

Proof. Assume that \(b > 0 \). Let \(r > 0 \) be such that \(a = bq + r \) (for example \(q = 0, r = a \)). If \(r < b \), then we are done.

Otherwise, \(q_2 := q_1 + 1 \) and \(r_2 := r_1 - b \) (with \(q_1 := q, r_1 := r \)) satisfy \(a = bq_2 + r_2 \) and \(0 \leq r_2 < r_1 \). Repeating this process one gets eventually \(q = q_k \) and \(r = r_k \) such that \(a = bq + r \) and \(0 \leq r < b \).

If \(b < 0 \), then set \(b' := -b > 0 \) and \(a = b'q' + r \) with some \(0 \leq r < b' = |b| \). With \(q := -q' \) it holds that \(a = b'q' + r = bq + r \) and hence the result.

Uniqueness: suppose that \(a = bq + r = bq' + r' \) with \(0 \leq r, r' < |b| \). Adding \(0 \leq r < |b| \) and \(-|b| < -r' \leq 0 \) gives \(-|b| < r - r' \leq |b| \), that is \(|r - r'| \leq |b| \). Subtracting the two equations yields \(b(q' - q) = r - r' \). If \(|r - r'| \neq 0 \), then \(|b| < |r - r'| \), a contradiction. Hence \(r = r' \) and \(b(q' - q) = 0 \). As \(b \neq 0 \) it follows that \(q' = q \), proving uniqueness. \(\square \)

\(^1\)Euclid, 300 bc
DEFINITIONS

Definition 2.2. If \(m \) and \(n \) are integers, and more generally, elements of an integral domain, it is said that \(m \) divides \(n \), \(m \) is a divisor of \(n \), or \(n \) is a multiple of \(m \), written as

\[
m \mid n,
\]

if there exists an integer \(k \in \mathbb{Z} \) such that \(m \cdot k = n \).

Remark 2.3. The following hold true.

(i) \(m \mid 0 \) for all \(m \in \mathbb{Z} \);
(ii) \(0 \mid n \implies n = 0 \);
(iii) \(1 \mid n \) and \(-1 \mid n \) for all \(n \in \mathbb{Z} \);
(iv) if \(m \mid 1 \), then \(m = \pm 1 \);
(v) transitivity: if \(a \mid b \) and \(b \mid c \), then \(a \mid b \cdot c \);
(vi) if \(a \mid b \) and \(b \mid a \), then \(a = b \) or \(a = -b \);
(vii) if \(a \mid b \) and \(a \mid c \), then \(a \mid b + c \) and \(a \mid b - c \).

Definition 2.4. A natural number \(n \in \mathbb{N} \) is composite if \(n = k \cdot \ell \) for \(k, \ell \in \mathbb{N} \) and \(k > 1, \ell > 1 \).

A natural number \(n > 1 \) which is not composite is called prime.

Composite numbers are \(\{4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, \ldots \} \), prime numbers are \(\mathbb{P} = \{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 39, 41, 43, 47, 51, \ldots \} \).

Remark 2.5. Note that a number \(n \in \mathbb{N} \) is either composite, prime or the unit, \(n = 1 \).

Definition 2.6. The greatest common divisor of the integers \(a_1, \ldots, a_n \) is the largest natural number that divides all \(a_i \), i.e.,

\[
\gcd(a_1, \ldots, a_n) = \max \{m \geq 1 : m \mid a_1, \ldots, m \mid a_n\}.
\]

We shall also write \((a, b) := \gcd(a, b) \).

Definition 2.7. The numbers \(a \) and \(b \) are coprime, relatively prime or mutually prime if \((a, b) = 1 \).

We shall also write \(a \perp b \).

Lemma 2.8 (Bézout’s identity). For every \(a, b \in \mathbb{Z} \) there exist integers \(x \) and \(y \in \mathbb{Z} \) such that

\[
a x + b y = \gcd(a, b);
\]

more generally, \(\{a x + b y : x, y \in \mathbb{Z} \} = \{z \cdot d : z \in \mathbb{Z} \} \), where \(d = \gcd(a, b) \).

Proof. Given \(a \neq 0 \) and \(b \neq 0 \), \(a, b \in \mathbb{Z} \), define \(S := \{ax + by : x \in \mathbb{Z}, y \in \mathbb{Z} \text{ and } ax + by > 0 \} \). The set is not empty, as \(a \in S \) or \(-a \in S \) (indeed, choose \(x = \pm 1 \) and \(y = 0 \)). By the well-ordering principle, there is a minimum element \(d := \min \{d' : d' \in S\} = a s + b t \in S \). We shall show that \(d = \gcd(a, b) \).

By Euclidean division we have that \(a = d q + r \) with \(0 \leq r < d \). It holds that

\[
r = a - d q = a - (a s + b t)q = a(1 - s q) - b(t q),
\]

\footnote{Étienne Bézout, 1730–1783, proved the statement for polynomials.}
and thus \(r \in S \cup \{0\} \). As \(r < d = \min S \), it follows that \(r = 0 \), i.e., \(d \mid a \); similarly, \(d \mid b \) and thus \(d \leq \gcd(a, b) \).

Now let \(c \) be any divisor of \(a \) and \(b \), that is, \(a = cu \) and \(b = cv \). Hence

\[
d = as + bt = cs + cvt = c(us + vt),
\]

that is \(c \mid d \) and therefore \(c \leq d \), i.e., \(d \geq \gcd(a, b) \). Hence the result. \(\square \)

Corollary 2.9. There are integers \(x_1, \ldots, x_n \) so that

\[
\gcd(a_1, \ldots, a_n) = x_1 a_1 + \cdots + x_n a_n.
\]

Corollary 2.10. It holds that \(a \) and \(b \) are coprime,

\[
(a, b) = 1 \iff as + bt = 1 \quad (2.2)
\]

for some \(s, t \in \mathbb{Z} \).

Proof. It remains to verify “\(\iff \)”:

suppose that \(as + bt = 1 \) and \(d \) is a divisor of \(a \) and \(b \), i.e., \(a = ud \) and \(b = vd \). Then \(1 = uds + vdt = d(us + vt) \), that is, \(d \mid 1 \), thus \(d = 1 \) and consequently \((a, b) = 1 \). \(\square \)

Lemma 2.11 (Euclid’s lemma). If \(p \in \mathbb{P} \) is prime and \(a \cdot p \) a product of integers, then

\[
p \mid (a \cdot b) \iff p \mid a \text{ or } p \mid b.
\]

Theorem 2.12 (Generalization of Euclid’s lemma). If

\[
n \mid (a \cdot b) \text{ and } (n, a) = 1, \text{ then } n \mid b.
\]

Proof. We have from (2.2) that \(r n + sa = 1 \) for some \(r, s \in \mathbb{Z} \). It follows that \(rnb + sab = b \). The first term is divisible by \(n \). By assumption, \(n \) divides the second term as well, and hence \(n \mid b \). \(\square \)

The extended Euclidean algorithm (Algorithm 1) computes the \(\gcd \) of two numbers and the coefficients in Bezout’s identity (2.1).

```plaintext
input : two integers \( a \) and \( b \)
output : \( \gcd(a, b) \) and the coefficients of Bézout’s identity (2.1)

set \( (d, s, t, d', s', t') = (a, 1, 0, b, 0, 1) \);
initialize

while \( d' \neq 0 \) do

set \( q := d \div d' \) \quad integer division

set \( (d, s, t, d', s', t') = (d', s', t', d - q \cdot d', s - q \cdot s', t - q \cdot t') \)

end

return \( (d, s, t) \)

*it holds that \( d = \gcd(a, b) = as + bt \)*

Algorithm 1: Extended Euclidean algorithm
```

Table 2.1 displays the results of the Euclidean algorithm for \(a = 2490 \) and \(b = 558 \); it holds that \(13 \cdot 2490 - 58 \cdot 558 = 6 = \gcd(a, b) \).
2.2 FUNDAMENTAL THEOREM OF ARITHMETIC

The fundamental theorem of arithmetic, also called the unique factorization theorem or the unique-prime-factorization theorem, states that every integer greater than 1 either is a prime number itself or can be represented as the product of prime numbers and that, moreover, this representation is unique, up to the order of factors.

Theorem 2.13 (Canonical representation of integers). *Every integer* \(n > 1 \) *has the unique representation*

\[
 n = p_1^{\alpha_1} \cdots p_\omega^{\alpha_\omega},
\]

where \(p_1 < p_2 < \cdots < p_\omega \) *and* \(\alpha_i = 1, 2, \ldots \) \((\alpha_i > 0)\).

Proof. We need to show that every integer is prime or a product of primes. For the base case, \(n = 2 \) is prime. Assume the assertion is true for all numbers \(< n \). If \(n \) is prime, there is nothing more to prove. Otherwise, \(n \) is composite and there are integers so that \(n = ab \) and \(1 < a \leq b < n \).

By induction hypothesis, \(a = p_1 \cdots p_j \) and \(b = q_1 \cdots q_k \), but then \(n = p_1 \cdots p_j \cdot q_1 \cdots q_k \) is a product of primes.

Uniqueness: suppose that \(n \) is a product of primes which is not unique, i.e.,

\[
 n = p_1 \cdots p_j
 = q_1 \cdots q_k.
\]

Apparently, \(p_1 \mid n \). By Euclid’s lemma (Lemma 2.11) we have that \(p_1 \) divides one of the \(q_i \)s, \(q_1 \), say. But \(q_1 \) is prime, thus \(q_1 = p_1 \). Now repeat the reasoning to

\[
 n/p_1 = p_2 \cdots p_j \text{ and } q_2 \cdots q_k,
\]

so that \(q_2 = p_2 \), etc. \(\square \)

Theorem 2.14 (Euclid’s theorem). *There exist infinity many primes.*

Proof. Assume to the contrary that there are only finitely many primes, \(n \), say, primes, which are \(p_1 = 2, p_2 = 3, \ldots, p_n \). Consider the natural number

\[
 q := p_1 \cdot p_2 \cdot \ldots \cdot p_n.
\]

If \(q + 1 \) is prime, then the initial list of primes was not complete.

If \(q + 1 \) is not prime, then \(p \mid (q + 1) \) for some prime number \(p \). But \(p \mid q \), and hence, by Remark 2.3 (iv), it follows that \(p \mid 1 \). But no prime number \(p \) satisfies \(p \mid 1 \) and hence \(q + 1 \) is prime, but not in the list. \(\square \)

<table>
<thead>
<tr>
<th>(q)</th>
<th>(d)</th>
<th>(s)</th>
<th>(t)</th>
<th>(d')</th>
<th>(s')</th>
<th>(t')</th>
</tr>
</thead>
<tbody>
<tr>
<td>2490</td>
<td>1</td>
<td>0</td>
<td>558</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>558</td>
<td>0</td>
<td>1</td>
<td>258</td>
<td>1</td>
<td>(-4)</td>
</tr>
<tr>
<td>2</td>
<td>258</td>
<td>1</td>
<td>(-4)</td>
<td>42</td>
<td>(-2)</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>42</td>
<td>(-2)</td>
<td>9</td>
<td>6</td>
<td>13</td>
<td>(-58)</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>13</td>
<td>(-58)</td>
<td>0</td>
<td>(-93)</td>
<td>415</td>
</tr>
</tbody>
</table>

\(2490/558 = 4 + 258/558 \)

\(558/258 = 2 + 42/258 \)

\(258/42 = 6 + 6/42 \)

\(42/6 = 7 + 0 \)

Table 2.1: Results of Algorithm 1 for \(a = 2490 \) and \(b = 558 \)
2.3 PROPERTIES OF PRIMES

Theorem 2.15. Let \(p_1 := 2, p_2 := 3, \) etc. be the primes in increasing order. It holds that \(p_n < 6^{2^{n-1}} \) for \(n \geq 3 \).

Proof. The assertion is true for \(n = 3 \). It follows from the proof of Theorem 2.14 that \(p_{n+1} < p_1 \cdots p_n \), thus \(p_{n+1} < 2 \cdot 3 \cdot 6^2 \cdot 6^3 \cdots 6^{2^{n-1}} = 6^{2^{n-1}} \), the result. \(\square \)

2.3 PROPERTIES OF PRIMES

Definition 2.16 (Prime gap). The \(n \)-th prime gap is \(g_n := p_{n+1} - p_n \). (i.e., \(p_n = 2 + \sum_{i=1}^{n-1} g_i \))

There exist prime gaps of arbitrary length.

Theorem 2.17 (Prime gap). For every \(g \in \mathbb{N} \) there exist \(n \in \mathbb{N} \) so that all \(n + 1, \ldots, n + g \) are not prime, i.e., there is an \(m \in \mathbb{N} \) so that \(p_m + g \).

Proof. Define \(n := (g + 1)! \), then \(d \mid (n + d) \) for every \(d \in \{2, \ldots, g + 1\} \).

Remark 2.18. Alternatively, one may choose \(n := \text{lcm}(1, 2, 3, \ldots, g + 1) \) in the preceding proof.

Definition 2.19 (Prime gaps). Let \(p \in \mathbb{P} \);

(i) if \(p + 2 \in \mathbb{P} \), then they are called twin primes;

(ii) if \(p + 4 \in \mathbb{P} \), they are called cousin primes;

(iii) if \(p + 6 \in \mathbb{P} \), then they are called sexy primes.\(^3\)

Note that every prime \(p \in \mathbb{P} \) is either \(p = 2 \), or \(p = 4k + 1 \) or \(p = 4k + 3 \).

Theorem 2.20. There are infinity many primes of the form \(4k + 3 \).

Proof. Observe that

\[
\begin{align*}
(4k + 1) \cdot (4\ell + 1) &= 4(4k\ell + k + \ell) + 1 \quad \text{(2.4)} \\
(4k + 3) \cdot (4\ell + 3) &= 4(4k\ell + 3k + 3\ell + 2) + 1. \quad \text{(2.5)}
\end{align*}
\]

By reductio ad absurdum, suppose that there are only finitely many primes in

\[\mathbb{P}_3 := \{p \in \mathbb{P} : p = 4k + 3 \text{ for some } k \in \mathbb{N}\} = \{3, 7, 11, 19, \ldots\} = \{p_4, \ldots, p_s\}.\]

Consider \(N := p_4^2 \cdots p_s^2 + 2 \). By (2.5) and (2.4), \(N = 4k + 3 \) and thus \(2 \nmid N \). Let \(q_1, \ldots, q_r = N \) be the prime factors of \(N \). As \(2 \nmid N \), we have that \(q_i = 4k_i + 1 \) or \(q_i = 4k_i + 3 \). If all factors were of the form \(q_i = 4k_i + 1 \), then \(N = 4k + 1 \) by (2.4), but \(N = 4k + 3 \). Hence there is some \(q_i \in \mathbb{P}_3 \) for some \(i \). But \(q_i \mid N \) and \(q_i \mid p_4^2 \cdots p_s^2 \) (these are all primes in \(\mathbb{P}_3 \)), thus \(q_i \mid (N - p_4^2 \cdots p_s^2) \), i.e., \(q_i \mid 2 \) and this is a contradiction. \(\square \)

The following theorem represents the beginning of rigorous analytic number theory.

Theorem 2.21 (Dirichlet’s theorem on arithmetic progressions, 1837). For any two positive co-prime integers \(a, b \) there are infinity many primes of the form \(a + nb, n \in \mathbb{N} \).

Proposition 2.22. The following hold true:

\(^3\)because 6 = sex in Latin

Version: December 22, 2019
\((i) \) if \(2^n - 1 \in \mathbb{P} \), then \(n \in \mathbb{P} \);
\((ii) \) if \(2^n + 1 \in \mathbb{P} \), then \(n = 2^k \) for some \(k \in \mathbb{N} \).

Proof. Suppose that \(n \notin \mathbb{P} \), thus \(n = j \cdot \ell \) with \(1 < j, \ell < n \). Recall that \(x^\ell - y^\ell = (x-y) \sum_{i=0}^{\ell-1} x^i y^{\ell-i-1} \), thus
\[
2^n - 1 = (2^\ell)^\ell - 1^\ell = (2^\ell - 1) \cdot \sum_{i=0}^{\ell-1} 2^i \cdot i.
\]
and thus \(2^\ell - 1 \div 2^n - 1 \). But \(2^n - 1 \in \mathbb{P} \) by assumption and so this contradicts the assertion \((ii) \), as \(1 < j < n \).

As for \((ii) \) suppose that \(n \neq 2^k \), then \(n = j \cdot \ell \), with \(\ell \) being odd and \(\ell > 0 \). As above,
\[
2^n + 1 = (2^\ell)^\ell - (-1)^\ell = (2^\ell - (-1)) \cdot \sum_{i=0}^{\ell-1} (-1)^{\ell-i-1} 2^i \cdot i
\]
and hence \(2^\ell + 1 \div 2^n + 1 \). The result follows by reductio ad absurdum, as \(2^n + 1 \in \mathbb{P} \) by assumption and \(2 \leq j < n \). \(\square \)

Definition 2.23 (Fermat\(^4\) prime). The Fermat numbers are \(F_n := 2^{2^n} + 1 \). \(F_n \) is a Fermat prime, if \(F_n \) is prime.

As of 2019, the only known Fermat primes are \(F_0 = 3 \), \(F_1 = 5 \), \(F_2 = 17 \), \(F_3 = 257 \) and \(F_4 = 65,537 \). The factors of \(F_5, \ldots, F_{11} \) are known.

Theorem 2.24 (Gauss–Wantzel\(^5\) theorem). An \(n \)-sided regular polygon can be constructed with compass and straighedge if and only if \(n \) is the product of a power of 2 and distinct Fermat primes: in other words, if and only if \(n \) is of the form \(n = 2^k \cdot p_1 \cdot p_2 \cdot \ldots \cdot p_l \), where \(k \) is a nonnegative integer and the \(p_i \) are distinct Fermat primes.

Definition 2.25 (Mersenne\(^6\) prime). Mersenne primes are prime numbers of the form \(M_n := 2^n - 1 \).

Some Mersenne primes include \(M_2 = 3 \), \(M_3 = 7 \), \(M_5 = 31 \), \(M_7 = 127 \), \(M_{11} = 8191 \). As of 2018, 51 Mersenne primes are known.

Proposition 2.26. It holds that
\[
\text{lcm}(a, b) \, \ast \, \text{gcd}(a, b) = a \, \ast \, b.
\]

2.4 CHINESE REMAINDER THEOREM

Definition 2.27. For \(m \neq 0 \) we shall say
\[
a = b \mod m
\]
if \(m \div (a-b) \).

\(^4\)Pierre de Fermat, 1607–1665

\(^5\)Pierre Wantzel, 1814–1848, French mathematician

\(^6\)Marin Mersenne, 1588–1648, a French Minim friar
Remark 2.28. By Definition 2.2 we have that
\[a = b \mod m \iff a = b + k \cdot m \]
for some \(k \in \mathbb{Z} \).

Proposition 2.29. It holds that
(i) Reflexivity: \(a = a \mod m \) for all \(a \in \mathbb{Z} \);
(ii) Symmetry: \(a = b \mod m \), then \(b = a \mod m \) for all \(a, b \in \mathbb{Z} \);
(iii) Transitivity: \(a = b \mod m \) and \(b = c \mod m \), then \(a = c \mod m \);
(iv) \(a \pm b = a' \pm b' \mod m \);
v) \(a b = a'b' \mod m \);
(vi) \(c a \equiv c a' \mod m \) for all \(c \in \mathbb{Z} \);
(vii) \(\text{(compatibility with exponentiation)} \ a^k = a'^k \mod m \) for all \(k \in \mathbb{N} \);
(viii) \(p(a) = p(a') \mod m \) for all polynomials \(p(\cdot) \) with integer coefficients;

Proposition 2.30. If \(\gcd(a,m) \mid c \), then the problem \(a \cdot x = c \mod m \) has a solution (this is a possible converse to (vi)).

Proof. From (2.1) we have that \(d := \gcd(a,m) = a s + m t \) and hence \(c = a \frac{c}{d} + m \frac{c}{d} t \). By assumption we have that \(c = a x + m \cdot \frac{c}{d} t \), that is, \(ax = \frac{c}{d} \mod m \).

Remark 2.31. Suppose that \(0 < a < \ell \) for a prime \(\ell \). Then \(1 = \gcd(a,\ell) \mid 1 \) and hence the problem \(a \cdot x = 1 \mod \ell \) has a solution, irrespective of \(a \). Algorithm 1 provides numbers with \(1 = a x + \ell t \), that is \(a^{-1} = x \mod \ell \).

Theorem 2.32 (Chinese remainder theorem). Suppose that \(n_1, \ldots, n_k \) are all pairwise coprime and \(0 \leq a_i < n_i \) for every \(i \). Then there is exactly one integer with \(x \geq 0 \) and \(x < n_1 \cdot \cdots \cdot n_k =: N \) with
\[x = a_1 \mod n_1, \]
\[\vdots \]
\[x = a_k \mod n_k. \]

Proof. The numbers \(n_i \) and \(N_i : = N/n_i \) are coprime. Bézout's identity provides integers \(M_i \) and \(m_i \) such that \(M_i N_i + m_i n_i = 1 \). Set \(x := \sum_{j=1}^{k} a_j N_j \). Recall that \(n_i \mid N_j \) whenever \(i \neq j \). Hence \(x = a_i M_i N_j = a_i (1 - m_i n_i) = a_i - a_i m_i n_i \mod n_j \) and thus \(x \) solves (2.6)–(2.7).

Suppose there were two solutions \(x \) and \(y \) of (2.6)–(2.7). Then \(n_i \mid x - y \) and, as the \(n_i \) are all coprime, it follows that \(N \mid x - y \). Hence \(x = y \), as it is required that \(0 \leq x, y < N \).

Theorem 2.33 (Lucas's theorem†). For integers \(n, k \) and \(p \) prime it holds that
\[\left(\frac{n}{k} \right) \equiv \prod_{i=0}^{\ell} \left(\frac{n_i}{k_i} \right) \mod p, \]
where \(n = n_{\ell} p^\ell + n_{\ell-1} p^{\ell-1} + \cdots + n_0 \) and \(k = k_{\ell} p^\ell + k_{\ell-1} p^{\ell-1} + \cdots + k_0 \) are the base \(p \) expansions with \(0 \leq n_i, k_i < p \).

†Édouard Lucas, 1842–1891, French mathematician
Proof. If \(p \) is prime and \(1 < n < p \) an integer, then \(p \) divides the numerator of \(\binom{n}{k} \), but not the denominator. Hence \(\binom{n}{k} \equiv 0 \mod p \). It follows that \((1 + x)^p \equiv 1 + x^p \mod p \).

Even more, \(p \mid \binom{p^i}{k} \) for every \(0 < k < p^i \). Indeed, for \(p^i \leq k < p^{i+1} \) it holds that
\[
\binom{p^i}{k} = \frac{p^i \cdots (p^i - p) \cdots (p^i - p^2) \cdots (p^i - p^i) \cdots (p^i - k + 1)}{1 \cdot 2 \cdot p^1 \cdots p^2 \cdots p \cdots k}.
\]
The power of \(p \) in the denominator are \(1 + 2 + \cdots + j \), the power of \(p \) in the numerator is \(i + 1 + 2 + \cdots + j \) and thus \(p \mid \binom{p^i}{k} \). It follows that \((1 + x)^{p^i} \equiv 1 + x^{p^i} \mod p \).

It follows that
\[
\sum_{k=0}^{m} \binom{m}{k} x^k = (1 + x)^m = \prod_{i=0}^{\ell} (1 + x^{p^i})^{m_i} = \prod_{i=0}^{\ell} \prod_{k=0}^{m_i} \binom{m_i}{k_i} x^{k_i p^i} = \prod_{i=0}^{\ell} \sum_{k=0}^{m_i} \binom{m_i}{k_i} x^{k_i p^i} = \sum_{k=0}^{m} \binom{m}{k} x^k \mod p
\]
where in the final product, \(k_i \) is the \(i \)th digit in the base \(p \) representation of \(k \). The statement of the theorem follows by comparing the coefficients in the polynomial above. \(\square \)

Proposition 2.34. It holds that
\[
n \text{is prime} \iff \binom{n}{k} \equiv 0 \mod n \text{ for all } k = 1, 2, \ldots, n - 1.
\]

Proof. If \(n = p \) is prime, then \(\binom{n}{k} = \binom{1}{k} = 0 \) by Lucas’ theorem, as \(n = 1 \cdot p \).

Suppose that \(n \) is composite and \(k \mid n \) is the smallest divisor. Then \(\binom{n-1}{k-1} \) is not an integer. Hence \(\binom{n}{k} = n \cdot \binom{n-1}{k-1} / k \neq 0 \mod n \) and thus the equivalence. \(\square \)

2.5 PROBLEMS

Exercise 2.1. Verify the output \(-3 \cdot 12 + 1 \cdot 42 = 6 = \gcd(12, 42)\) of Algorithm 1.

Exercise 2.2. Show that \(2^{-1} = 4 \), \(3^{-1} = 5 \), \(3^{-1} = 5 \), \(4^{-1} = 2 \), \(5^{-1} = 3 \) and \(6^{-1} = 6 \mod 7 \).

Exercise 2.3. Show that the set \(\{3k + 2 : k \in \mathbb{Z}\} \) contains infinity many primes.

Exercise 2.4. Show that \(\{6k + 5 : k \in \mathbb{Z}\} \) contains infinity many primes.

Exercise 2.5. If \(a^k - 1 \) is prime \((k > 1) \), then \(a = 2 \).

Exercise 2.6. If \(a^k + 1 \) is prime \((a, b > 1) \), then \(a \) is even and \(k = 2^n \) for some \(n \geq 1 \).

Exercise 2.7. Show that \(F_n = (F_{n-1} - 1)^2 + 1 \) and
\[
(i) \quad F_n = F_{n-1} + 2^{2^n-1} F_0 \cdots F_{n-2},
(ii) \quad F_n = F_{n-1}^2 - 2(F_{n-2} - 1)^2,
\]

rough draft: do not distribute
(iii) $F_n = F_0 \cdots F_{n-1} + 2$.

Exercise 2.8 (Goldbach’s theorem). *No two Fermat numbers share a common integer factor greater than 1.* (Hint: use (iii) in the preceding exercise.)

Exercise 2.9. Solve this riddle, https://www.spiegel.de/karriere/das-rotierende-fuenfeck-raetsel-der-woche-a-1276765.html.
3.1 EULER’S TOTIENT FUNCTION

Definition 3.1 (Euler’s totient function\footnote{Eulersche Phi-Funktion, eulersche Funktion}). Euler’s totient function is
\[
\varphi(n) := \sum_{\substack{m \in \{1, \ldots, n\} \mid (m, n) = 1}} 1 = \left| \{ m \in \{1, \ldots, n\} : (m, n) = 1 \} \right|.
\] (3.1)

See Table 3.1 for some explicit values.

Theorem 3.2 (\(\varphi\) is multiplicative). It holds that
\[
\varphi(m \cdot n) = \varphi(m) \cdot \varphi(n) \text{ if } (m, n) = 1.
\]

Proof. Let \(A_n := \{ i \in \mathbb{N} : i < n \text{ and } (i, n) = 1 \} \). The Chinese remainder theorem (Theorem 2.32) provides a bijection \(A_n \times A_m \rightarrow A_{n \cdot m}\). Hence the result. \(\square\)

Theorem 3.3. For \(p\) prime it holds that
\[
\varphi(p^k) = p^k - p^{k-1} = p^k \left(1 - \frac{1}{p} \right).
\]

Proof. The numbers \(m \leq p^k\) which satisfy \(\gcd(p^k, m) > 1\) are precisely \(m = p, 2 \cdot p, \ldots, p^{k-1} \cdot p\), in total \(p^{k-1}\) numbers. Hence \(\varphi(p^k) = p^k - p^{k-1}\), the result. \(\square\)

Theorem 3.4 (Euler’s product formula). It holds that
\[
\varphi(n) = n \cdot \prod_{\substack{p|n \mid p \neq n}} \left(1 - \frac{1}{p} \right),
\]
in particular
\[
\varphi(p) = p - 1. \quad (3.2)
\]

Proof. The fundamental theorem of arithmetic (Theorem 2.13) states that \(n = p_1^{\alpha_1} \cdots p_\omega^{\alpha_\omega}\). Now
\[
\varphi(n) = \prod_{i=1}^{\omega} \varphi(p_i^{\alpha_i}) = \prod_{i=1}^{\omega} p_i^{\alpha_i} \left(1 - \frac{1}{p_i} \right) = n \prod_{i=1}^{\omega} \left(1 - \frac{1}{p_i} \right). \quad \square
\]
\[\begin{array}{cccccccccc} n & \tau & \sigma & \varphi & \lambda & \mu & \omega & \Omega & \lambda & \pi & B_n \\ \hline \quad 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 2 & 3 & 1 & 1 & -1 & 1 & 1 & -1 & 1 & -1 \\ 2 & 3 & 2 & 2 & 2 & 1 & 1 & -1 & 2 & 0 & \frac{1}{5} \\ 3 & 3 & 7 & 2 & 2 & 0 & 1 & 2 & 1 & 2 & -\frac{1}{3} \\ 4 & 2 & 6 & 4 & 4 & -1 & 1 & 1 & -1 & 3 & 0 \\ 5 & 4 & 12 & 2 & 2 & 1 & 2 & 2 & 1 & 3 & \frac{1}{12} \\ 6 & 2 & 8 & 6 & 6 & -1 & 1 & 1 & -1 & 4 & 0 \\ 7 & 4 & 15 & 4 & 2 & 0 & 1 & 3 & -1 & 4 & -\frac{1}{5} \\ 8 & 9 & 13 & 6 & 6 & 0 & 1 & 2 & 1 & 4 & 0 \\ 9 & 10 & 4 & 18 & 4 & 4 & 1 & 2 & 2 & 1 & 4 & \frac{5}{11} \\ 10 & 11 & 2 & 12 & 10 & -1 & 1 & 1 & -1 & 5 & 0 \\ 11 & 12 & 6 & 28 & 4 & 2 & 0 & 2 & 3 & -1 & 5 & -\frac{691}{2730} \\ 12 & 13 & 2 & 14 & 12 & -1 & 1 & 1 & -1 & 6 & 0 \\ 13 & 14 & 4 & 24 & 6 & 6 & 1 & 2 & 2 & 1 & 6 & \frac{7}{8} \\ 14 & 15 & 4 & 24 & 8 & 4 & 1 & 2 & 2 & 1 & 6 & 0 \\ 15 & 16 & 5 & 31 & 8 & 4 & 0 & 1 & 4 & 1 & 6 & -\frac{3617}{510} \\ 16 & 17 & 2 & 18 & 16 & -1 & 1 & 1 & -1 & 7 & 0 \\ 17 & 18 & 6 & 39 & 6 & 6 & 0 & 2 & 3 & -1 & 7 & \frac{43867}{798} \\ 18 & 19 & 2 & 20 & 18 & -1 & 1 & 1 & -1 & 8 & 0 \\ 19 & 20 & 6 & 42 & 8 & 4 & 0 & 2 & 3 & -1 & 8 & -\frac{174611}{330} \\ 20 & 21 & 4 & 32 & 12 & 6 & 1 & 2 & 2 & 1 & 8 & 0 \\ 21 & 22 & 4 & 36 & 10 & 10 & 1 & 2 & 2 & 1 & 8 & \frac{854513}{138} \\ 22 & 23 & 2 & 24 & 22 & -1 & 1 & 1 & -1 & 9 & 0 \\ 23 & 24 & 8 & 60 & 8 & 2 & 0 & 2 & 4 & 1 & 9 & -\frac{23636491}{2730} \\ 24 & 25 & 3 & 31 & 20 & 20 & 0 & 1 & 2 & 1 & 9 & 0 \\ 25 & 26 & 4 & 42 & 12 & 12 & 1 & 2 & 2 & 1 & 9 & \frac{8553103}{140} \\ 26 & 27 & 4 & 40 & 18 & 18 & 0 & 1 & 3 & -1 & 9 & 0 \\ 27 & 28 & 6 & 56 & 12 & 6 & 0 & 2 & 3 & -1 & 9 & -\frac{23749461029}{870} \\ 28 & 29 & 2 & 30 & 28 & 28 & -1 & 1 & 1 & -1 & 10 & 0 \\ 29 & 30 & 8 & 72 & 8 & 4 & -1 & 3 & 3 & -1 & 10 & \frac{861544176605}{14322} \\ 30 & 31 & 2 & 32 & 30 & 30 & -1 & 1 & 1 & -1 & 11 & 0 \\ \end{array} \]

Table 3.1: Arithmetic functions
3.2 Euler’s Theorem

Theorem 3.5 (Gauss). It holds that
\[\sum_{d \mid n} \varphi(d) = n. \]

Proof. Consider the fractions \(\frac{1}{m}, \frac{1}{n}, \frac{3}{m}, \frac{1}{n}, \frac{5}{m}, \frac{3}{n}, \frac{7}{m}, \frac{2}{n}, \frac{9}{m}, \frac{11}{n}, \frac{13}{m}, \frac{7}{n}, \frac{3}{n}, \frac{4}{n}, \frac{17}{m}, \frac{9}{n}, \frac{19}{m}, \frac{1}{n}. \) The fractions with denominator \(n = 20 \) are precisely those with nominator coprime to 20, that is \(\varphi(20) = 8 \) in total. There are \(\varphi(10) = 4 \) fractions with denominator 10, and \(\varphi(5) = 4 \) fractions with denominator 5, \(\varphi(4) = 2, \varphi(2) = 1 \) and \(\varphi(1) = 1. \) In total, there are \(n = 20 \) fractions, and thus \(n = \sum_{d \mid n} \varphi(d). \)

3.2 Euler’s Theorem

The multiplicative group of modulo \(n \) is \((\mathbb{Z}/n\mathbb{Z})^\times := \{[a]_n : \gcd(a, n) = 1\}. \)

Proposition 3.6. It holds that \(|(\mathbb{Z}/n\mathbb{Z})^\times| = \varphi(n). \)

Proof. Suppose that \(n = p_1^{\alpha_1} \cdots p_\omega^{\alpha_\omega} \). By the Chinese remainder theorem (Theorem 2.32) we have that
\[\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}/p_1^{\alpha_1}\mathbb{Z} \times \cdots \times \mathbb{Z}/p_\omega^{\alpha_\omega}\mathbb{Z}. \]

Similarly,
\[(\mathbb{Z}/n\mathbb{Z})^\times \cong (\mathbb{Z}/p_1^{\alpha_1}\mathbb{Z})^\times \times \cdots \times (\mathbb{Z}/p_\omega^{\alpha_\omega}\mathbb{Z})^\times. \]

But \(|(\mathbb{Z}/p_i^{\alpha_i}\mathbb{Z})^\times| = p_i^{\alpha_i} - p_i^{\alpha_i - 1} = \varphi(p_i^{\alpha_i}) \) and thus the result.

Theorem 3.7 (Lagrange’s theorem). Let \((G, \cdot) \) be a finite group. The order (number of elements) of every subgroup \(H \) of \(G \) divides the order of \(G \).

Proof. For \(a \in G \) define the (left) cosets \(aH := \{ah : h \in H\}. \) For the functions
\[f_{a, b}: aH \to bH \quad x \mapsto ba^{-1}x \]
it holds that \(f_{a, b}^{-1} = f_{b, a} \): the functions are invertible and bijective and thus the number of elements of \(aH \) and \(bH \) coincide for all \(a, b \in G \). It follows that the order of \(G \) is the order of \(H \times \) the number of distinct cosets.

Theorem 3.8 (Euler). It holds that
\[a^{\varphi(n)} = 1 \mod n \iff \gcd(a, n) = 1. \] (3.3)

Proof. It holds that \(\{a, a^2, \ldots, a^k = 1 \mod n\} \) is a subgroup of \((\mathbb{Z}/n\mathbb{Z})^\times \). By Lagrange’s theorem we have that \(k \mid \varphi(n) \), i.e., \(kM = \varphi(n) \). It follows that
\[a^{\varphi(n)} = a^{kM} = (a^k)^M = 1^M = 1 \mod n \]
and thus the result.

Corollary 3.9. If \(p \) is prime and \(p \nmid a \), then
\[a^{p-1} = 1 \mod p. \] (3.4)

Version: December 22, 2019
Proof. Apply (3.3) with (3.2).

Corollary 3.10 (Fermat's little theorem). If p is prime, then

$$a^p = a \mod p.$$

Proof. If $p \mid a$, then $a = 0 \mod p$ and the assertion is immediate; if $p \nmid a$, then the assertion follows from (3.4). □

Corollary 3.11 (Attributed to Euler). If p is an odd prime, it holds that

$$a^{p-1} = \pm 1 \mod p,$$

(3.5)

provided that $(a,p) = 1$.

Proof. Indeed, it holds that $(a^{p-1} - 1) (a^{p-1} + 1) = a^{p-1} - 1 = 0 \mod p$. Hence, $p \mid a^{p-1} - 1$ or $p \mid a^{p-1} + 1$ and thus the result. □

Definition 3.12 (Legendre symbol). Let p be an odd prime and a an integer. The Legendre symbol is

$$\left(\frac{a}{p} \right) := a^{(p-1)/2} \mod p \text{ and } \left(\frac{a}{p} \right) \in \{-1,0,1\}.$$

Definition 3.13 (Jacobi symbol). Let n be any integer and a an integer. The Jacobi symbol is

$$\left(\frac{a}{p_1^{\alpha_1} \cdots p_\omega^{\alpha_\omega}} \right) = \left(\frac{a}{p_1} \right)^{\alpha_1} \cdots \left(\frac{a}{p_\omega} \right)^{\alpha_\omega},$$

where $n = p_1^{\alpha_1} \cdots p_\omega^{\alpha_\omega}$ as in (2.3).

Definition 3.14 (Multiplicative order). The *multiplicative order of $a \in \mathbb{Z}$ modulo n* is the smallest positive integer $k = \text{ord}_n(a)$ with

$$a^k = 1 \mod n.$$

Example 3.15. It holds that $\text{ord}_7(3) = 4$, as $4^1 = 4 \mod 7$, $4^2 = 2 \mod 7$, but $4^3 = 64 = 1 \mod 7$.

Definition 3.16 (Carmichael function). The function $\lambda(n)$, the smallest positive integer so that

$$a^{\lambda(n)} = 1 \mod n$$

for all a with $(a,n) = 1$ (cf. (3.3) and Table 3.1), is called *Carmichael function*.²

Corollary 3.17 (Carmichael). For $n = p_1^{\alpha_1} \cdots p_\omega^{\alpha_\omega}$ define

$$\lambda(n) := \text{lcm} \left((p_1 - 1)p_1^{\alpha_1 - 1}, \ldots, (p_\omega - 1)p_\omega^{\alpha_\omega - 1} \right)$$

then $a^{\lambda(n)} = 1 \mod n$.

Proof. By Euler's theorem, $a^{\phi(p_i^{\alpha_i})} = 1 \mod p_i^{\alpha_i}$. Note, that $\phi(p_i^{\alpha_i}) \mid \lambda(n)$ by definition. It follows that $a^{\lambda(n)} = 1 \mod p_i^{\alpha_i}$ for all i and thus $a^{\lambda(n)} = 1 \mod n$. □

²Robert Daniel Carmichael, 1879–1967, American mathematician

rough draft: do not distribute
Proposition 3.18. For all \(n \) and \(a \) it holds that
\[
\text{ord}_n(a) \mid \lambda(n) \text{ and } \lambda(n) \mid \varphi(n).
\]

Theorem 3.19 (Wilson’s theorem\(^*\)). It holds that
\[
(n-1)! = -1 \mod n \text{ if and only if } n \text{ is prime}.
\]

Proof. The statement is clear for \(n = 2, 3 \) and 4.

Suppose that \(n \) is composite, \(n = ab \) with \(a < b \), then \(a \mid (n-1)! \) and \(b \mid (n-1)! \) and thus \((n-1)! = 0 \mod n\). If \(n = a^2 \), then \(q \mid 1 \cdot 2 \cdots q \cdots 2q \cdots (n-1) \) and thus \((n-1)! = 0 \mod n\).

Suppose now that \(n = p \) is prime. Note that \((p-1)^{-1} = p-1 = -1 \mod p \) (indeed, \((p-1)^2 = p^2 - 2p + 1 = 1 \mod p\)). Further, the product \(2 \cdots (p-2) \) has even factors and for each \(r \in \{2, \ldots, p-2\} \) it holds that \(r^{-1} \in \{2, \ldots, p-2\} \). Thus Wilson’s theorem. \(\square \)

3.3 FERMAT PRIMALITY TEST

By (3.5) we have that \(a^{n-1} \equiv 1 \mod p \) if \((a,p) = 1 \). Note as well that the equation \(a^{n-1} \equiv 1 \mod n \) trivially holds true for \(a = 1 \) and it is also trivial for \(a = n-1 = -1 \mod n \) and \(n \) odd.

Definition 3.20 (Fermat pseudoprime). Suppose that \(a \in \{2,3,\ldots, p-2\} \). If \(a^{n-1} \equiv 1 \mod n \) when \(n \) is composite, then \(a \) is known as a Fermat liar. In this case \(n \) is called a Fermat pseudoprime to base \(a \).

Definition 3.21 (Carmichael number). A composite number \(n \) is a Carmichael number if \(a^{n-1} \equiv 1 \mod n \) for all integers \(a \).

Example 3.22. The first Carmichael number was given by Carmichael in 1910. The first are \(561 = 3 \cdot 11 \cdot 17 \), \(1105 = 5 \cdot 13 \cdot 17 \), \(1729 = 7 \cdot 13 \cdot 19 \), \(2465 = 5 \cdot 17 \cdot 29 \), \(2821 = 7 \cdot 13 \cdot 31 \), \(6601 = 7 \cdot 23 \cdot 41 \), \(8911 = 7 \cdot 19 \cdot 67 \).

Theorem 3.23. There are infinitely many Carmichael numbers.

Theorem 3.24 (Korselt’s criterion\(^4\) 1899). A positive composite integer \(n \) is a Carmichael number iff \(n \) is square–free and for all prime divisors \(p \) of \(n \), it is true that \(p-1 \mid n-1 \).

3.4 AKS PRIMALITY TEST

A starting point for the AKS primality test\(^5\) (Algorithm 2) is the following theorem.

Theorem 3.25 (AKS). It holds that
\[
n \text{ is prime } \iff (x + a)^n \equiv x^n + a \mod n
\]
for all \((a, n) = 1\).

Proof. Proposition 2.34 together with Fermat’s little theorem. \(\square \)

Remark 3.26 (Primes is P). The AKS algorithm was the first to determine whether any given number is prime or composite within polynomial time.

\(^1\)John Wilson, 1741–1793, British mathematician
\(^2\)Alwin Reinhold Korselt, 1864 (Mittelherwigsdorf)–1947 (Plauen)
\(^3\)Also known as Agrawal–Kayal–Saxena primality test; published by Manindra Agrawal, Neeraj Kayal and Nitin Saxena in 2002.
Algorithm 2: AKS primality test

Exercise 3.1. Show that the function \(\omega \) is additive (in the sense of Definition 9.2 below), while \(\Omega \) is completely additive.

Exercise 3.2. Discuss additivity/multiplicativity for the other arithmetic functions introduced in this section.

Exercise 3.3. Show that \(\sum_{k=1}^n \tau(k) = \sum_{k=1}^n \left\lfloor \frac{n}{k} \right\rfloor \) and \(\sum_{k=1}^n \sigma(k) = \sum_{k=1}^n k \left\lfloor \frac{n}{k} \right\rfloor \).
Continued fractions

\[
\begin{align*}
80 \, 435 \, 758 \, 145 \, 817 \, 515^3 - \\
80 \, 538 \, 738 \, 812 \, 075 \, 974^3 + \\
12 \, 602 \, 123 \, 297 \, 335 \, 631^3 = 42.
\end{align*}
\]

For the standard theory see Wall [20] or Duverney [6]; for the relation to orthogonal polynomials see Khrushchev [13].

4.1 GENERALIZED CONTINUED FRACTION

Definition 4.1 (Continued fraction). Different notations for the (generalized) continued fraction

\[
r_n := b_0 + \frac{a_1}{b_1 + \frac{a_2}{b_2 + \cdots + \frac{a_n}{b_n}}} (4.1)
\]

include

\[
r_n = b_0 + \sum_{i=1}^{n} \frac{a_i}{b_i} = b_0 + \frac{a_1}{b_1} + \frac{a_2}{b_2} + \cdots + \frac{a_n}{b_n} = \frac{p_0}{q_0}
\]

Theorem 4.2. For every \(n \geq 0 \) we have that \(r_n = \frac{p_n}{q_n} \), where

\[
\begin{align*}
p_{-1} &= 1, & p_0 &= b_0, & p_n &= b_np_{n-1} + a_np_{n-2}, \\
q_{-1} &= 0, & q_0 &= 1, & q_n &= b_nq_{n-1} + a_nq_{n-2}. \quad (4.2)
\end{align*}
\]

Proof. Observe first that \(r_0 = b_0 = \frac{p_0}{q_0} \) and \(r_1 = b_0 + \frac{a_1}{b_1} = \frac{b_0b_1+a_1}{b_1} = \frac{p_1}{q_1} \). For \(n = 2 \) we obtain \(r_2 = b_0 + \frac{a_1}{b_1 + \frac{a_1}{b_1}} = \frac{b_0(b_1b_0+a_1)+a_1b_0}{b_1b_0+a_2} = \frac{p_2}{q_2} \). We continue by induction. It holds that

\[
r_n = b_0 + \frac{a_1}{b_1 + \frac{\cdots}{b_n + \frac{a_{n-1}}{b_{n-1} + \frac{a_n}{b_n + \frac{a_{n+1}}{b_{n+1}}}}}} = \frac{p_n}{q_n}.
\]
Replacing \(b_n \) in (4.1) by \(b_n + \frac{a_{n+1}}{b_{n+1}} \) we obtain by the induction hypothesis that

\[
p_n' = \left(b_n + \frac{a_{n+1}}{b_{n+1}} \right) p_{n-1} + a_n p_{n-2} \quad \text{and} \quad q_n' = \left(b_n + \frac{a_{n+1}}{b_{n+1}} \right) q_{n-1} + a_n q_{n-2},
\]

which implies

\[
b_n' = b_n + \frac{a_{n+1}}{b_{n+1}} p_{n-1} + a_n p_{n-2} + a_{n+1} p_{n-1} \quad \text{and} \quad b_n q_n' = b_n q_{n-1} + a_n q_{n-2} + a_{n+1} q_{n-1},
\]

and, again by the induction hypothesis,

\[
b_n' = b_n p_{n-1} + a_n p_{n-1} \quad \text{and} \quad b_n q_n' = b_n q_{n-1} + a_n q_{n-1}.
\]

Now set \(p_{n+1} := b_n p_n' \) and \(q_{n+1} := b_n q_n' \) to get \(r_{n+1} = \frac{p_{n+1}}{q_{n+1}} \).

\[\square \]

Theorem 4.3 (Determinant formula). For every \(n \geq 1 \) it holds that

\[
p_{n-1} q_n - p_n q_{n-1} = (-1)^n a_1 a_2 \ldots a_n \quad \text{and} \quad (4.3)
\]

\[
r_n - r_{n-1} = (-1)^{n-1} a_1 a_2 \ldots a_{n-1} \cdot b_n \quad \text{if} \quad q_n q_{n-1} \neq 0;
\]

further it holds that

\[
p_{n-2} q_n - p_n q_{n-2} = (-1)^{n-1} a_1 a_2 \ldots a_{n-1} \cdot b_n \quad \text{and} \quad (4.3)
\]

\[
r_n - r_{n-2} = (-1)^{n-2} a_1 a_2 \ldots a_{n-2} \cdot b_n \quad \text{if} \quad q_n q_{n-2} \neq 0.
\]

Proof. For \(n = 0 \), the statement reads \(1 \cdot 1 - b_0 \cdot 0 = 1 \), which is the assertion. By induction and (4.2),

\[
p_{n-1} q_n - p_n q_{n-1} = p_{n-1} (b_n q_{n-1} + a_n q_{n-2}) - (b_n p_{n-1} + a_n p_{n-2}) q_{n-1}
\]

\[
= -a_n (p_{n-2} q_{n-1} - p_{n-1} q_{n-2}).
\]

Further we have that

\[
p_{n-2} q_n - p_n q_{n-2} = p_{n-2} (b_n q_{n-1} + a_n q_{n-2}) - (b_n p_{n-1} + a_n p_{n-2}) q_{n-2}
\]

\[
= b_n (p_{n-2} q_{n-1} - p_{n-1} q_{n-2})
\]

\[
= (-1)^{n-1} a_1 a_2 \ldots a_{n-1} \cdot b_n
\]

by (4.3).

The remaining assertions follow by dividing accordantly. \(\square \)

Corollary 4.4. It holds that \(r_n = b_0 - \sum_{k=1}^{n} (-1)^k \frac{a_1 \ldots a_k}{q_{k-1} q_k} \).
4.2 REGULAR CONTINUED FRACTION

Remark 4.5 (Equivalence transformation). For any sequence c_i with $c_i \neq 0$ it holds that
\[
 r_n = b_0 + \frac{a_1}{b_1 + \frac{a_2}{b_2 + \frac{a_3}{b_3 + \ldots}}} = b_0 + \frac{c_1 a_1}{c_1 b_1 + \frac{c_2 a_2}{c_2 b_2 + \frac{c_3 a_3}{c_3 b_3 + \ldots}}},
\]

If we choose $c_1 := \frac{1}{a_1}$, $c_2 := \frac{a_2}{a_1 a_2}$, $c_3 = \frac{a_3}{a_1 a_2 a_3}$ and generally $c_{n+1} := \frac{1}{c_n a_{n+1}}$ we get that $r_n = b_0 + \sum_{i=1}^{n} \frac{a_i}{b_i}$.

Definition 4.6 (Regular continued fraction). The continued fraction with $a_i = 1$ is called regular. The convergents of a regular continued fraction are denoted $\frac{p_n}{q_n} =: [b_0; b_1, \ldots, b_n]$.

Remark 4.7. The first convergents are $b_0, \frac{b_0 b_{n+1} + b_n}{b_0 b_{n+1} + b_n}, \frac{b_0 b_{n+1} (b_0 b_{n+1} + b_n) + b_n b_{n+1}}{b_0 b_{n+1} (b_0 b_{n+1} + b_n) + b_n b_{n+1}}$, etc.

Remark 4.8. Note that $[b_0; b_1, \ldots, b_{n-1}, b_n, 1] = [b_0; b_1, \ldots, b_{n-1}, b_n + 1]$ and the continued fraction of a rational thus is not unique.

Note that the denominators of a regular continued fraction satisfy $p_{n-1} q_n - p_n q_{n-1} = \pm 1$ by (4.3) and thus they are relatively prime, $\gcd(q_n, q_{n-1}) = 1$, by Bézout’s identity (2.1) and Corollary 2.10. By the same equality it follows that p_n and q_n are coprime as well, so $r_n = \frac{p_n}{q_n}$ is free of common factors.

Lemma 4.9 (Reciprocals). It holds that $[0; b_1, \ldots, b_n] = \frac{1}{[b_0; b_1, \ldots, b_n]}$.

Consider a real number r. Let $i := \lfloor r \rfloor$ be the integer part of r and $f := r - i$ be the fractional part of r. Then the continued fraction representation of r is $[i; a_1, a_2, \ldots]$, where $1/f = [a_1; a_2, \ldots]$ is the continued fraction representation of $1/f$.

Example 4.10 (Euclid’s algorithm). Table 2.1 displays the extended Euclidean algorithm (Algorithm 1) for $a = 2490$ and $b = 558$. The successive fractions of $-r/s$ are

4,
\[
 4 + \frac{1}{2} = 4.5,
\]
\[
 4 + \frac{1}{2 + \frac{1}{6}} = \frac{58}{13} = 4.615 \ldots,
\]
\[
 4 + \frac{1}{2 + \frac{1}{6 + \frac{1}{7}}} = \frac{415}{93} = \frac{2490}{558} = 4.4623 \ldots,
\]

which are improved approximations of $\frac{5}{2}$. The sequence of integer quotients is $b_0 = 4$, $b_1 = 2$, $b_2 = 6$ and $b_3 = 7$, cf. Table 2.1.

Remark 4.11. Euclid’s algorithm (Algorithm 1) produces for $\frac{n}{b}$ and for $\frac{ma}{nb}$ the same sequence q of integer quotients ($m \in \mathbb{Z}\setminus\{0\}$). For the reduced fraction $\frac{n}{b}$ we have that $s \frac{a + t}{b} =$
where the products \(p q / b \); thus is \(b_{n+1} = 1 \), i.e., \(a/b = [b_0; b_1, \ldots, b_{n-1}, b_n, 1] \).

Every infinite continued fraction is irrational, and every irrational number can be represented in precisely one way as an infinite continued fraction.

Example 4.12. Applying the Euclidean algorithm to \(a = \pi \) and \(b = 1 \) gives the successive approximations \(3, \frac{22}{7} = 3.142 \ldots, \frac{333}{106} = 3.14150 \ldots \) and \(\frac{355}{113} = 3.1415929 \ldots \)

Theorem 4.13 (Legendre’s best approximation I). The convergents are best approximations, i.e., for \(\alpha := \lim_{n \to \infty} \frac{p_n}{q_n} \) it holds that

\[
|q \alpha - p| < |q_n \alpha - p_n| \implies q > q_n.
\]

where \(p \in \mathbb{Z} \) and \(q \in \mathbb{N} \).

Proof. Assume, by contraposition, that

\[
|q \alpha - p| < |q_n \alpha - p_n| \quad \text{and} \quad q \leq q_n.
\]

The equations \(\begin{pmatrix} p_n & p_{n+1} \\ q_n & q_{n+1} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} p \\ q \end{pmatrix} \) have integral solution \(\begin{pmatrix} x \\ y \end{pmatrix} = \pm \begin{pmatrix} q_{n+1} \\ -q \end{pmatrix} \) \(\begin{pmatrix} p \\ q \end{pmatrix} \in \mathbb{Z}^2 \), as the determinant is \(p_n q_{n+1} - p_{n+1} q_n = \pm 1 \) by (4.3).

- If \(y = 0 \), then \(x \neq 0 \) and \(p = p_n x \) and \(q = q_n x \). It follows that \(|q \alpha - p| = |x| \cdot |q_n \alpha - p_n| \geq |q_n \alpha - p_n| \), which contradicts the assumption (4.5).
- If \(x = 0 \), then \(y \neq 0 \) and \(q = q_{n+1} y \), but from the assumption (4.5) we have that \(q \leq q_n < q_{n+1} \).

So we conclude that \(x \neq 0 \) and \(y \neq 0 \).

- If \(x < 0 \) and \(y < 0 \), then \(0 < q = q_n x + q_{n+1} y \), which cannot hold true.
- If \(x > 0 \) and \(y > 0 \), then \(q_n x + q_{n+1} y = q \leq q_n < q_{n+1} \), which cannot hold true.

Hence \(x \) and \(y \) have opposite signs. Recall from (4.3) that \(q_n \alpha - p_n \) and \(q_{n+1} \alpha - p_{n+1} \) have opposite signs as well. We further have that

\[
q \alpha - p = x (q_n \alpha - p_n) + y (q_{n+1} \alpha - p_{n+1}),
\]

where the products \(x (q_n \alpha - p_n) \) and \(y (q_{n+1} \alpha - p_{n+1}) \) have the same sign by the above reasoning. It follows that

\[
|q \alpha - p| = |x (q_n \alpha - p_n)| + |y (q_{n+1} \alpha - p_{n+1})| \\
\geq |x (q_n \alpha - p_n)| \\
\geq |q_n \alpha - p_n|,
\]

again a contradiction to (4.5). It follows that \(q > q_n \).

\[
\square
\]

Corollary 4.14 (Legendre’s best approximation II). The convergents are best approximations, i.e., with \(\alpha := \lim_{n \to \infty} \frac{p_n}{q_n} \) it holds that

\[
\left| \frac{\alpha - p}{q} \right| < \left| \alpha - \frac{p_n}{q_n} \right| \implies q > q_n.
\]

(4.6)
Proof. Assume that \(q \leq q_n \). Then we may multiply with (4.6) to obtain \(|q \alpha - p| < |q_n \alpha - p_n| \), but the preceding theorem implies \(q > q_n \). This contradicts the assumption and hence the assertion. \(\square \)

Theorem 4.15. For \(\alpha := \lim_{n \to \infty} \frac{p_n}{q_n} \) it holds that

\[
\frac{b_{n+2}}{q_n q_{n+2}} < \left| \alpha - \frac{p_n}{q_n} \right| < \frac{1}{q_n q_{n+1}} < \frac{1}{q_n^2}.
\]

Further, for \(\alpha \) irrational we have that \(\frac{p_0}{q_0} < \frac{p_2}{q_2} < \cdots < \alpha < \cdots < \frac{p_n}{q_n} < \frac{p_1}{q_1} \).

Proof. The assertion follows from (4.3), as the convergents \(r_n = \frac{p_n}{q_n} \), \(r_{n+1} \) and \(r_{n+2} \) oscillate around \(\alpha \). \(\square \)

4.3 ELEMENTARY PROPERTIES

Theorem 4.16 (Gauss’s continued fraction). Let \(f_0, f_1, f_2, \ldots \) be a sequence of functions so that \(f_{i-1}(z) - f_i(z) = k_i z f_{i+1}(z) \), then

\[
\frac{f_1(z)}{f_0(z)} = \frac{1}{1 + \frac{k_1 z}{1 + \frac{k_2 z}{1 + \cdots}}}
\]

4.4 PROBLEMS

Exercise 4.1 (Golden ratio). Show that \(\phi = \frac{1 + \sqrt{5}}{2} = [1; 1, 1, \ldots] \).

Exercise 4.2. Show that \(\sqrt{2} = [1; 2, 2, 2, \ldots] \).

Exercise 4.3. Show that \(\sqrt{3} = [2; 4, 4, 4, \ldots] \).
Bernoulli numbers and polynomials

1729 = 1^3 + 12^3 = 9^3 + 10^3.

5.1 DEFINITIONS

Definition 5.1. Bernoulli numbers B_k, $k = 0, 1, \ldots$, are defined by

\[
\frac{z}{e^z - 1} = \frac{1}{1 + \frac{z^2}{2!} + \frac{z^4}{4!} + \ldots} = \sum_{k=0}^{\infty} \frac{B_k}{k!} z^k
\]

(5.1)

Bernoulli polynomials are

\[
\frac{z}{e^z - 1} = \sum_{k=0}^{\infty} \frac{B_k(x)}{k!} z^k.
\]

(5.2)

Table 3.1 presents some explicit Bernoulli numbers and Table 5.1 below lists the first Bernoulli polynomials.

Remark 5.2. It is evident by comparing (5.1) and (5.2) that

\[
B_k = B_k(0).
\]

(5.3)

Remark 5.3. Note that $\coth z = \frac{\cosh z}{\sinh z} = \frac{e^z + e^{-z}}{e^z - e^{-z}} = \frac{e^z - 1 + 2}{e^z - 1} = \frac{2}{e^z - 1} + 1$ is an odd function, thus

\[
\frac{z}{2} \coth \frac{z}{2} = \frac{z}{e^z - 1} + \frac{z}{2} = \sum_{k=0}^{\infty} \frac{B_{2k}}{(2k)!} z^{2k}
\]

and it follows that

\[
B_{2k+1} = 0
\]

(5.4)

for $k \geq 1$ (note, however, that $B_1 = -\frac{1}{2}$).

Proposition 5.4 (Explicit formula). Bernoulli polynomials (and thus Bernoulli numbers) are given explicitly by

\[
B_k(x) = \sum_{n=0}^{k} \frac{1}{n + 1} \sum_{\ell=0}^{n} (-1)^\ell \binom{n}{\ell} (\ell + x)^k.
\]

(5.5)

\(^1\)Jacob I Bernoulli, 1654–1705
Proof. It holds that \(z = \log \left(1 - (1 - e^x) \right) = -\sum_{n=0}^{\infty} \frac{(1-e^x)^n}{n+1} \) and thus
\[
\frac{z e^x}{e^z - 1} = e^x \sum_{n=0}^{\infty} \frac{(1-e^x)^n}{n+1} = \sum_{n=0}^{\infty} \frac{1}{n+1} \sum_{\ell=0}^{n} (-1)^\ell \binom{n}{\ell} e^{(\ell+1)z} = \sum_{k=0}^{\infty} \frac{z^k}{k!} \sum_{n=0}^{\infty} \frac{1}{n+1} \sum_{\ell=0}^{n} (-1)^\ell \binom{n}{\ell} (\ell+x)^k.
\]
The sum over \(n \) in the latter display terminates at \(k \), as \(x \mapsto (\ell + x)^k \) is a polynomial of degree \(k \) and thus \(\sum_{\ell=0}^{n} (-1)^\ell \binom{n}{\ell} (\ell+x)^k = 0 \) for \(n \geq k \). The assertion follows by comparing coefficients. \(\square \)

Remark 5.5 (Translation). We have that
\[
\frac{z e^{(x+y)}}{e^z - 1} = \sum_{k=0}^{\infty} \frac{(z y)^k}{k!} e^x = \sum_{k=0}^{\infty} \frac{z^k}{k!} \sum_{\ell=0}^{k} \binom{k}{\ell} B_\ell(x) y^{k-\ell}
\]
so that
\[
B_k(x+y) = \sum_{\ell=0}^{k} \binom{k}{\ell} B_\ell(x) y^{k-\ell}
\]
by comparing with (5.2).

Remark 5.6 (Symmetry). Comparing the coefficients in the identity \(z \frac{e^{(1-x)z}}{e^z - 1} = -z \frac{e^{-xz}}{e^z - 1} \) reveals that
\[
B_k(1-x) = (-1)^k B_k(x).
\]
In particular we find that \(B_k(1) = (-1)^k B_k \).

Remark 5.7. Differentiating (5.2) with respect to \(x \) and comparing the coefficients at \(z^k \) reveals that
\[
B_\ell'(x) = k \cdot B_{k-1}(x).
\]

5.2 SUMMATION AND MULTIPLICATION THEOREM

Theorem 5.8 (Faulhaber’s formula\(^3\)). For \(p = 0, 1, 2, \ldots, x \in \mathbb{R} \) and \(n \in \mathbb{N} \) (actually \(n \in \mathbb{Z} \), if we set \(\sum_{k=a}^{b} := -\sum_{k=b+1}^{a-1} \) whenever \(b < a \)) it holds that
\[
\sum_{k=0}^{n-1} (k+x)^p = \frac{B_{p+1}(n+x) - B_{p+1}(x)}{p+1}.
\]

Proof. Set \(S_p(n) := \sum_{k=0}^{n-1} (k+x)^p \), then the generating function is
\[
\sum_{p=0}^{\infty} \frac{z^p S_p(n)}{p!} = \sum_{k=0}^{n-1} \sum_{p=0}^{\infty} \frac{(k+x)^p}{p!} z^p = \sum_{k=0}^{n-1} e^{(k+x)z} = \sum_{k=0}^{n-1} \frac{e^{(n+x)z} - e^{kz}}{e^z - 1} = \sum_{k=0}^{n-1} \frac{B_k(n+x) - B_k(x)}{k!}.
\]
from which the assertion follows by comparing the coefficients \((k = p+1)\). \(\square \)

\(^3\)Johann Faulhaber, 1580–1635
Proposition 5.9 (Multiplication theorem). For \(m \in \mathbb{N} \) holds that
\[
B_k(mx) = m^{k-1} \sum_{\ell=0}^{m-1} B_k \left(x + \frac{\ell}{m} \right).
\]

Proof. Indeed, the result follows by comparing the coefficients in the identity
\[
\sum_{\ell=0}^{m-1} \sum_{k=0}^{\infty} B_k \left(x + \frac{\ell}{m} \right) \frac{z^k}{k!} = \sum_{\ell=0}^{m-1} \frac{e^{x(x+\ell/m)} - e^{\ell/m}}{e^{\ell/m} - 1} = \frac{e^{xz}}{e^z - 1} - \frac{e^{x/m} - 1}{e^{x/m} - 1} = \frac{e^{xz}}{e^{x/m} - 1}.
\]

\[\square\]

5.3 FOURIER SERIES

In what follows we define the periodic function (with period 1)
\[
\beta_k(x) := B_k(x - \lfloor x \rfloor), \quad x \in \mathbb{R}.
\]

It follows from (5.4) and (5.6) that \(\beta_k \) is continuous for \(k \geq 2 \). Even more, by (5.7), \(\beta_k \in C^{k-2}(\mathbb{R}) \).

Theorem 5.10. The Bernoulli polynomials are given, for \(k \geq 1 \), by the Fourier series\footnote{Recall that \(\sin(x + \frac{\pi}{2}) = \cos x \) and \(\cos(x + \frac{\pi}{2}) = -\sin x \).}
\[
B_k(x) = -\frac{k!}{(2\pi i)^k} \sum_{n \in \mathbb{Z}} \frac{e^{2\pi i nx}}{n^k} = -2 \cdot k! \sum_{n=1}^{\infty} \frac{\cos\left(2\pi nx - \frac{k\pi}{2}\right)}{(2\pi n)^k}, \quad x \in (0,1). \tag{5.10}
\]

Proof. Consider the function \(x \mapsto z \frac{e^{zx}}{e^z - 1} \). Its Fourier coefficients, for \(n \in \mathbb{Z} \), are
\[
\int_0^1 e^{-2\pi i nx} \frac{z e^{zx}}{e^z - 1} \, dx = \int_0^1 e^{x(z-2\pi in)} \, dx = \frac{z}{e^z - 1} \left(e^{x(z-2\pi in)} \right)_{x=0}^{x=1} = \frac{z}{e^z - 1} \frac{e^z - 1}{z - 2\pi in} = \frac{z}{z - 2\pi in}.
\]

The Fourier series thus is
\[
\sum_{k=0}^{\infty} B_k(x) \frac{z^k}{k!} = \frac{z e^{zx}}{e^z - 1} = \sum_{n \in \mathbb{Z}} \frac{e^{2\pi i nx}}{2\pi i n} \frac{z}{z - 2\pi in}
\]
\[
= 1 - \sum_{n \neq 0} \frac{e^{2\pi i nx}}{2\pi i n} \left(1 - \frac{i}{\pi n} \right)
\]
\[
= 1 - \sum_{n \neq 0} \frac{e^{2\pi i nx}}{2\pi i n} \sum_{k=1}^{\infty} \left(\frac{z}{2\pi in} \right)^k
\]
\[
= 1 - \sum_{k=1}^{\infty} \frac{z^k}{k!} \sum_{n \neq 0} \frac{e^{2\pi i nx}}{(2\pi in)^k}.
\]

The result follows by comparing the coefficients. \[\square\]
BERNOULLI NUMBERS AND POLYNOMIALS

Polynomial $B_k(x)$	Fourier series $\beta_k(x)$
$B_0(x) = 1$ | \quad sawtooth wave (5.11)
$B_1(x) = x - \frac{1}{2}$ | \quad $-2 \cdot \sum_{n=1}^{\infty} \frac{\sin 2\pi nx}{2\pi n} \cdot \frac{1}{2}$
$B_2(x) = x^2 - x + \frac{1}{6}$ | \quad $4 \cdot \sum_{n=1}^{\infty} \frac{\cos 2\pi nx}{2\pi n^2} \cdot \frac{1}{12}$
$B_3(x) = x^3 - \frac{1}{2}x^2 + \frac{1}{2}x$ | \quad $12 \cdot \sum_{n=1}^{\infty} \frac{\sin 2\pi nx}{2\pi n^3} \cdot \frac{1}{12}$
$B_4(x) = x^4 - 2x^3 + x^2 - \frac{1}{30}$ | \quad $-48 \cdot \sum_{n=1}^{\infty} \frac{\cos 2\pi nx}{2\pi n^3} \cdot \frac{1}{12}$
$B_5(x) = x^5 - \frac{5}{2}x^4 + \frac{5}{3}x^3 - \frac{x}{6}$ | \quad $-240 \cdot \sum_{n=1}^{\infty} \frac{\sin 2\pi nx}{2\pi n^4} \cdot \frac{1}{12}$

Table 5.1: Bernoulli polynomials

5.4 UMBRAL CALCULUS

As a formal power series and interpreting B^k as B_k we have $e^{B^k} = \frac{x^k}{e^x - 1}$ and thus $e^{(B+n)x} = \frac{x^k e^{nx}}{e^x - 1}$

and also $e^{(B+n)x} - e^{Bx} = \frac{x e^{nx} - 1}{e^x - 1} = x \left(e^{0x} + e^{x} + \cdots + e^{(n-1)x} \right)$

and by comparing the coefficients of $\frac{x^{k+1}}{k+1}$ thus $\frac{(B+n)^{k+1} - B^{k+1}}{k+1} = 0^k + 1^k + \cdots + (n-1)^k$, i.e.,

$$0^k + 2^k + \cdots + (n-1)^k = \frac{1}{k+1} \left(n^{k+1} + \binom{k+1}{1} B_1 n^k + \binom{k+1}{1} B_2 n^{k-1} + \cdots + \binom{k+1}{k} B_k n \right).$$

rough draft: do not distribute
6.1 EQUIVALENT DEFINITIONS

Definition 6.1. Euler’s integral of the second kind, aka. Gamma function, is (the analytic extension) of
\[\Gamma(s) := \int_0^\infty x^{s-1}e^{-x} \, dx, \quad \Re(s) > 0. \]

Remark 6.2. By integration by parts it holds that \(\Gamma(s+1) = s \Gamma(s) \), so the analytic extension to \(\mathbb{C} \setminus \{0, -1, -2, \ldots\} \) is apparent. The derivatives are
\[\Gamma^{(k)}(s) = \int_0^\infty x^{s-1} \log^k x \, e^{-x} \, dx, \quad \Re(s) > 0. \quad (6.1) \]

Proposition 6.3 (Gauß’ definition of the \(\Gamma \)-function). It holds that
\[\Gamma(s) = \lim_{n \to \infty} \frac{n! \cdot n^s}{s(s+1) \cdots (s+n)}, \quad s \notin \{0, -1, -2, \ldots\}. \quad (6.2) \]

Proof. Recall that \((1 - \frac{x}{n})^n \to e^{-x} \) as \(n \to \infty \) for every \(x \in \mathbb{C} \). Then
\[\int_0^n \left(1 - \frac{x}{n}\right)^n x^{s-1} \, dx = \int_0^\infty f_n(x) x^{s-1} \, dx \xrightarrow{n \to \infty} \int_0^\infty e^{-x} x^{s-1} \, dx \]
for \(f_n(x) = \left(1 - \frac{x}{n}\right)^n \cdot 1_{(0, n)} \) by Lebesgue’s dominated convergence theorem. By integration by parts we obtain
\[\int_0^n \left(1 - \frac{x}{n}\right)^n x^{s-1} \, dx = \left(1 - \frac{x}{n}\right)^n x^s \left|_{x=0}^{s} \right. + \int_0^n \left(1 - \frac{x}{n}\right)^{n-1} \frac{x}{s} \, dx \]
\[= \frac{1}{s} \int_0^n \left(1 - \frac{x}{n}\right)^{n-1} x^s \, dx. \]
Repeating the argument \(n-1 \) times gives
\[\int_0^n \left(1 - \frac{x}{n}\right)^n x^{s-1} \, dx = \frac{n-1}{n} \int_0^n \left(1 - \frac{x}{n}\right)^{n-2} x^{s+1} \, dx \]
\[= \frac{n-1}{n} \cdots \frac{n-2}{n} \int_0^n \left(1 - \frac{x}{n}\right)^1 x^{s+1} \, dx \]
\[= \frac{1}{s(s+1) \cdots (s+n)} \int_0^n x^{s+n-1} \, dx \]
and thus the result. \(\square \)

Corollary 6.4. It holds that
\[\Gamma(s) = \frac{1}{s} \prod_{n=1}^\infty \frac{\left(1 + \frac{1}{n}\right)^s}{1 + \frac{s}{n}}. \quad (6.3) \]
Proof. Note that \((1 + 1)(1 + \frac{1}{2}) \cdots (1 + \frac{1}{n-1}) = \frac{3}{2} \cdot \frac{5}{3} \cdots \frac{n}{n-1} = n\), so the result follows from (6.2). \(\square\)

Theorem 6.5 (Schiömilch formula, Weierstrass’ definition). *It holds that*

\[
\Gamma(s) = \frac{e^{-\gamma s}}{s} \prod_{n=1}^{\infty} \frac{e^{\frac{s}{n}}}{1 + \frac{s}{n}}.
\]

(6.4)

where \(\gamma\) is the Euler–Mascheroni constant.

Proof. Use that \(\sum_{j=1}^{n} \frac{1}{j} - \log n \xrightarrow{n \to \infty} \gamma\) and thus \(\exp(-\gamma s + \sum_{j=1}^{n} \frac{s}{j}) \sim n^s\). The result follows with (6.3). \(\square\)

Theorem 6.6. *The Taylor series expansion is given by*

\[
\log \Gamma(1 + s) = -\gamma s + \sum_{k=2}^{\infty} \frac{\zeta(k)}{k} (-s)^k, \quad |s| < 1.
\]

Proof. With (6.4) we get

\[
\log (s \cdot \Gamma(s)) = -\gamma s + \sum_{n=1}^{\infty} \left(\frac{s}{n} - \log \left(1 + \frac{s}{n}\right) \right)
\]

\[
= -\gamma s + \sum_{n=1}^{\infty} \left(\frac{s}{n} + \sum_{k=1}^{n} (-1)^k \frac{1}{k} \left(\frac{s}{n}\right)^k \right)
\]

\[
= -\gamma s + \sum_{k=2}^{\infty} (-1)^k \frac{1}{k} \sum_{n=1}^{\infty} \left(\frac{s}{n}\right)^k
\]

\[
= -\gamma s + \sum_{k=2}^{\infty} (-s)^k \frac{\zeta(k)}{k}, \quad |s| < 1.
\]

(6.5)

the result. \(\square\)

Corollary 6.7. *It holds that \(\Gamma(s) = \frac{1}{s} - \gamma + \frac{s}{2} \left(\gamma^2 + \frac{\pi^2}{6}\right) + O(s^2)\) and \(\Gamma(s+1) = 1 - \gamma s + \frac{s}{2} \left(\gamma^2 + \frac{\pi^2}{6}\right) + O(s^2)\). The residues at \(s = -n \ (n = 0, 1, \ldots)\) are given by*

\[
\Gamma(s) = \frac{(-1)^n}{(s+n) \cdot n!} + O(1).
\]

(6.6)

6.2 Euler’s Reflection Formula

Proposition 6.8. *It holds that*

\[
\pi \coth \pi x = \frac{1}{x} + \sum_{n=1}^{\infty} \frac{2x}{x^2 + n^2}, \quad x \notin \mathbb{Z}.
\]

(6.7)

\(^1\)Lorenzo Mascheroni, 1750–1800

rough draft: do not distribute
Proof. Consider the function \(t \mapsto \cosh(x \cdot t) \) for \(x > 0 \) on \((-\pi, \pi)\). The function is even, thus the Taylor series expansion is \(\cosh xt = \frac{a_0}{2} + \sum_{n=1} a_n \cos nt \) with
\[
a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} \cosh xt \, dt = \frac{2}{x \pi} \sinh x\pi
\]
and
\[
a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos nt \cosh xt \, dt = \frac{1}{\pi} \int_{-\pi}^{\pi} e^{int} + e^{-int} e^{xt} + e^{-xt} \, dt
\]
\[
= \frac{1}{4\pi} \left(\frac{e^{(in+x)t}}{in + x} + \frac{e^{(in-x)t}}{in - x} + \frac{e^{(-in+x)t}}{-in + x} + \frac{e^{(-in-x)t}}{-in - x} \right)^\pi_{t=-\pi}^{t=\pi}
\]
\[
= (-1)^n \left(\frac{e^{x\pi} - e^{-x\pi}}{in + x} + \frac{e^{-x\pi} - e^{-x\pi}}{in - x} + \frac{e^{x\pi} - e^{-x\pi}}{-in + x} + \frac{e^{-x\pi} - e^{-x\pi}}{-in - x} \right)
\]
\[
= (-1)^n \frac{4x}{2\pi} \sum_{n=1} \frac{2x \cos nt}{n^2 + x^2} \sinh x\pi.
\]

and thus
\[
\cosh xt = \frac{\sinh x\pi}{\pi x} + \frac{\sinh x\pi}{\pi} \sum_{n=1} (-1)^n \frac{2x \cos nt}{n^2 + x^2}.
\]

The result follows for \(t = \pi \).

\(\square \)

Proposition 6.9 (Euler’s infinite product for the sine function). It holds that
\[
\sin \pi x = \pi x \prod_{k=1}^{\infty} \left(1 - \frac{x^2}{k^2} \right).
\]

Proof. Set \(f(x) := \sin \pi x \) thus \(f'(x) = \pi \cot \pi x \); set \(g(x) := \pi x \prod_{k=1}^{\infty} \left(1 - \frac{x^2}{k^2} \right) \) and it follows that
\[
g'(x) = \frac{x}{x} - \sum_{k=1}^{\infty} \frac{2x/k^2}{1 - x^2/k^2} = \frac{1}{x} - \sum_{k=1}^{\infty} \frac{2x}{k^2 - x^2}
\]
and using (6.7) thus \(\frac{f'(x)}{f(x)} = \frac{g'(x)}{g(x)} \). It follows that \(f(x) = cg(ix) \) for some constant \(c \in \mathbb{C} \). The constant is clear by letting \(x \to 0 \) in (6.9).

\(\square \)

Corollary 6.10 (Wallis’ product for \(\pi \)). It holds that
\[
\frac{\pi}{2} = \prod_{k=1}^{\infty} \frac{4k^2}{4k^2 - 1} = \frac{2 \cdots 4 \cdots 6 \cdots 8}{1 \cdots 3 \cdots 5 \cdots 7 \cdots 9 \cdots}.
\]

or equivalently,
\[
\frac{\sqrt{\pi k}}{2^k} \binom{2k}{k} \to 1,
\]

as \(k \to \infty \).

Proof. Choose \(x = \frac{1}{2} \) in (6.9) and observe that \(1 - \frac{1}{2^n} = \frac{2^{n-1} - 2^{n+1}}{2^n} \).

The second formula follows from \(\frac{1}{2^k} \binom{2k}{k} = \frac{13 \cdots (2k-1)}{2^4 \cdots (2k)} \).

\(\square \)

\(^3\)John Wallis, 1616–1703

Version: December 22, 2019
Proposition 6.11 (Reflection formula, functional equation). It holds that
\[\Gamma(s) \Gamma(1 - s) = \frac{\pi}{\sin(\pi s)}. \]

Proof. We use (6.2) to see that
\[\Gamma(s) \Gamma(1 - s) \leftarrow n! \frac{n^s}{s(1 + s) \cdot (n + s)} \cdot \frac{n^{1-s}}{(1-s)(1-s+1) \cdot (1-s+n)} \]
\[= \frac{n^2}{n} \frac{1}{s(1-s^2) \cdot (n^2-s^2)} \cdot \frac{1}{1-s+n} \]
\[= \frac{\pi}{\sin(\pi s)} \frac{1}{\pi s} \left(1 - \frac{s^2}{n^2} \right) \left(1 - \frac{s^2}{n_2} \right) \cdots \left(1 - \frac{s^2}{n_m} \right) \]
\[\rightarrow \frac{\pi}{\sin(\pi s)} \]
as \(n \to \infty \) by (6.9) and thus the result. \(\square \)

Corollary 6.12. It holds that \(\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi} \).

6.3 DUPLICATION FORMULA

Proposition 6.13 (Legendre duplication formula). It holds that
\[\Gamma(s) \Gamma\left(s + \frac{1}{2}\right) = 2^{1-2s} \sqrt{\pi} \Gamma(2s); \]
more generally, for \(m \in \{2, 3, 4, \ldots\} \), the multiplication theorem
\[\prod_{k=0}^{m-1} \Gamma\left(s + \frac{k}{m}\right) = (2\pi)^{\frac{m-1}{2}} m^{\frac{1}{2}-ms} \Gamma(ms) \]
holds true.

Proof. Indeed, with (6.2) and (6.10),
\[\frac{\Gamma(s) \Gamma\left(s + \frac{1}{2}\right)}{\Gamma(2s)} \leftarrow n \frac{n^s}{n^s} \frac{n^{s+\frac{1}{2}}}{(s+\frac{1}{2})(s+\frac{1}{2}+\frac{1}{2}) \cdots (n+s+\frac{1}{2})} \]
\[= \frac{n^{1/2} \cdot 2^{-2s}}{n} \frac{n^{s+\frac{1}{2}}}{n^s(2s+2) \cdots (2s+2n)} \frac{n^{s+\frac{1}{2}}}{(s+\frac{1}{2})(s+\frac{1}{2}+\frac{1}{2}) \cdots (s+n-\frac{1}{2}) \cdots (s+n+\frac{1}{2})} \]
\[= \frac{2^{-2s}}{\sqrt{n}} \frac{n^{s+\frac{1}{2}}}{s+\frac{n+1}{2}} \left. \right|_{n \to \infty} 2^{1-2s} \sqrt{\pi} \]
and thus the result; the remaining statement follows similarly. \(\square \)

rough draft: do not distribute
Theorem 7.1. For \(k = 1 \) thus

\[
\sum_{k=1}^{n} f(k) = \int_{0}^{n} f(x) \, dx = \int_{0}^{n} f(x) \, d\lfloor x \rfloor - x).
\]

By integration by parts thus,

\[
\sum_{k=1}^{n} f(k) = \int_{0}^{n} f(x) \, dx = \int_{0}^{n} (x - \lfloor x \rfloor) f'(x) \, dx,
\]

or

\[
\sum_{k=1}^{n} f(k) = \int_{0}^{n} f(x) \, dx + \frac{f(n) - f(0)}{2} + \int_{0}^{n} \left(x - \lfloor x \rfloor - \frac{1}{2} \right) f'(x) \, dx. \tag{7.1}
\]

Now recall from (5.9) the functions \(\beta_k(x) = B_k(x - \lfloor x \rfloor) \) and from (5.11) the function \(B_1(x) \), thus

\[
\sum_{k=1}^{n} f(k) = \int_{0}^{n} f(x) \, dx + \frac{f(n) - f(0)}{2} + \int_{0}^{n} \beta_1(x) f'(x) \, dx. \tag{7.2}
\]

Recall from (5.7) that \(\beta_k(x) = \frac{\beta_k(x)}{k+1} \) and from (5.3) that \(\beta_k(n) = \beta_k(0) = B_k \). Integrating by parts thus gives

\[
\sum_{k=0}^{n-1} f(k) = \int_{0}^{n} f(x) \, dx + B_1(f(n) - f(0)) + \frac{B_2}{2} \cdot (f'(n) - f'(0)) - \int_{0}^{n} \frac{B_3(x)}{2} f''(x) \, dx.
\]

Repeating the procedure and noting that \(B_1 = 0 \),

\[
\sum_{k=0}^{n-1} f(k) = \int_{0}^{n} f(x) \, dx + B_1(f(n) - f(0)) + \frac{B_2}{2} \cdot (f'(n) - f'(0)) + \int_{0}^{n} \frac{B_3(x)}{6} f'''(x) \, dx.
\]

Repeating the procedure (in total \(p \) times) gives the Euler–Maclaurin\(^1\) summation formula.

Theorem 7.1. For \(p \in \mathbb{N} \) and \(f \in C^p([0,n]) \) it holds that

\[
\sum_{k=0}^{n-1} f(k) = \int_{0}^{n} f(x) \, dx + \sum_{\ell=1}^{p} \frac{B_\ell}{\ell!} f^{(\ell-1)}(x) \bigg|_{x=0}^{n} - \frac{(-1)^p}{p!} \int_{0}^{n} \beta_p(x) f^{(p)}(x) \, dx,
\]

or

\[
\sum_{k=1}^{n} f(k) = \int_{0}^{n} f(x) \, dx + \sum_{\ell=1}^{p} \frac{(-1)^\ell}{\ell!} B_\ell f^{(\ell-1)}(x) \bigg|_{x=0}^{n} - \frac{(-1)^p}{p!} \int_{0}^{n} \beta_p(x) f^{(p)}(x) \, dx.
\]

\(^1\)Colin Maclaurin, 1698–1746, Scottish
7.1 Euler–Mascheroni Constant

Example 7.2. The Euler–Mascheroni constant is
\[\gamma := \lim_{n \to \infty} \sum_{k=1}^{n-1} \frac{1}{k} - \log n = 0.5772156649 \ldots \tag{7.3} \]

Set \(f(x) := \frac{1}{x^2} \), then, by (7.2),
\[\sum_{j=1}^{n} \frac{1}{j} - \log(n + 1) = \sum_{k=0}^{n-1} f(k) - \int_{0}^{n} f(x) \, dx = -\frac{1}{n+1} - 1 - \int_{0}^{n} \frac{\beta_1(x)}{(x+1)^2} \, dx. \]

Letting \(n \to \infty \) gives the convergent integral \(\gamma = \frac{1}{2} - \int_{1}^{\infty} \frac{\beta_1(x)}{x^2} \, dx. \)

7.2 Stirling Formula

Choose \(f(x) := \log x \) in (7.1), then
\[\log n! = \sum_{k=2}^{n} \log k = \int_{1}^{n} \log x \, dx + \frac{1}{2} \log n + \int_{1}^{n} \frac{\beta_1(x)}{x} \, dx \]
and thus \(\log n! - \left(n + \frac{1}{2} \right) \log n + n = 1 + \int_{1}^{n} \frac{\beta_1(x)}{x} \, dx \) exists for \(n \to \infty \).

With \(b_n := \frac{n!}{n^n \sqrt{n}} \) and Corollary 6.10 we find that \(\frac{1}{h} \leftarrow \frac{h}{b_n} = \frac{(2n)!e^{2n}}{(2n)^{2n} \sqrt{2\pi n}} \cdot \frac{n^n}{e^{n}} = \sqrt{\frac{2}{\pi n}} \frac{(2n)!}{2^n} \to \frac{1}{\sqrt{2\pi}} \)
and thus, asymptotically, \(n! \sim \sqrt{2\pi n} \left(\frac{2}{3} \right)^n \).

A more thorough analysis (cf. Abramowitz and Stegun [1, 6.1.42]) gives the asymptotic expansion
\[\log \Gamma(z) = \left(z - \frac{1}{2} \right) \log z - z + \log 2\pi + \sum_{m=1}^{n} \frac{B_{2m}}{2m(2m-1)z^{2m-1}}. \]

Alternative proof, following an idea of P. Billingsley. Let \(X_i \) be independent Poisson variables with parameter 1. The random variable \(X_1 + \cdots + X_n \) follows a Poisson distribution with parameter \(n \).

Set \(h(x) := \max(0, x) \) (the ramp function), then
\[\mathbb{E} h \left(\frac{X_1 + \cdots + X_n - n}{\sqrt{n}} \right) = \sum_{k=n+1}^{\infty} \frac{e^{-n}n^k}{k! \sqrt{n}} \frac{k-n}{\sqrt{n}} = e^{-n} \sqrt{n} \sum_{k=n+1}^{\infty} \frac{n^k}{(k-1)!} \frac{n^{k+1}}{k!} = e^{-n} \frac{n^{n+1}}{\sqrt{n}!}. \]

By the central limit theorem \(\frac{X_1 + \cdots + X_n - n}{\sqrt{n}} \) converges in distribution to a random variable \(Z \sim \mathcal{N}(0, 1) \) for which \(\mathbb{E} h(Z) = \int_{0}^{\infty} x e^{-x^2/2} \, dx = e^{-x^2/2} \bigg|_{x=0}^{x=\infty} = \frac{1}{\sqrt{2\pi}} \). Thus the result. \[\square \]

Corollary 7.3. It holds that
\[\binom{z}{k} \sim \frac{(-1)^k}{\Gamma(-z)k^{z+1}} \text{ and } \binom{k+z}{k} \sim \frac{k^z}{\Gamma(z+1)} \]
as \(k \to \infty \).
7.2 STIRLING FORMULA

Proof. Indeed, with (6.3) we have that

\[
(-1)^k \binom{z}{k} = \binom{-z + k - 1}{k} = \frac{1}{\Gamma(-z)(k + 1)^z+1} \prod_{j=k+1}^{\infty} \frac{(1 + \frac{1}{j})^{-z-1}}{1 - \frac{z+1}{j}}
\]

and thus the result. \(\square\)
8.1 SILVERMAN–TOEPLITZ THEOREM

Definition 8.1. We shall say that the summability method $t = (t_{ik})_{i,k=0}^\infty$ confines a regular summability method if the following hold true for every convergent sequence with $a_k \xrightarrow{k \to \infty} \alpha$:

1. $\sum_{k=0}^\infty t_{ik} a_k$ converges for every $i = 0, 1, \ldots$ and
2. $\sum_{k=0}^\infty t_{ik} a_k \xrightarrow{i \to \infty} \alpha$.

Theorem 8.2 (Silverman–Toeplitz). The matrix $t = (t_{ij})$ with $t_{ik} \in \mathbb{C}$ confines a regular summability method if and only if it satisfies the following properties:

1. $\sum_{k=0}^\infty |t_{ik}| \leq M < \infty$ for all $i = 0, 1, \ldots$,
2. $t_{ik} \xrightarrow{i \to \infty} 0$ for all $k = 0, 1, \ldots$ and
3. $\sum_{k=0}^\infty t_{ik} \xrightarrow{i \to \infty} 1$.

Proof. For $a = (a_k)_{k=0}^\infty \in c$ (the Banach space of sequences with a limit) define $t_i(a) := \sum_{k=0}^\infty t_{ik} a_k$, a linear functional on c. Recall that $t_i \in c^*$ is continuous with norm $\|t_i\| = \sum_{k=0}^\infty |t_{ik}|$ (i.e., $(t_{ik})_k \in \ell_1$ for all i) which converges by S1 for every point $a = (a_k) \in c$. By the uniform bounded principle (Banach–Steinhaus theorem) there is constant M such that $\sup_j \|t_i\| \leq M < \infty$, hence T1.

Choose $a = e_k \in c_0$, then $t_{ik} = t_i(e_k) \xrightarrow{i \to \infty} 0$ by S2, hence T2. Finally choose $a = (1, 1, \ldots) \in c$ with limit $a_k \to a = 1$ to get $\sum_{k=0}^\infty t_{ik} a_k \xrightarrow{i \to \infty} 1$ by S2, hence T3.

As for the converse observe that for $a = a \cdot (1, 1, \ldots) + \sum_{k=0}^\infty (a_k - a) \cdot e_k$ and hence $t_i(x) = a \cdot \sum_{k=0}^\infty t_{ik} + \sum_{k=0}^\infty (a_k - a) t_{ik}$, where $\sum_{k=0}^\infty t_{ik} \xrightarrow{i \to \infty} 1$ by T3. For the remaining term we have $|\sum_{k=0}^\infty (a_k - a) t_{ik}| \leq \sum_k |a_k - a| |t_{ik}| + M \sup_{k \geq r} |a_k - a|$ by T2 and hence, for r large enough, $f_i((a_k)) \xrightarrow{i \to \infty} 0$, i.e., S2 and S1. □

Remark 8.3. For the summability methods below we investigate the sequences of partial sums $s_k := \sum_{j=0}^k a_j$. Note that

$$\sum_{k=0}^\infty t_{ik} s_k = \sum_{j=0}^\infty a_j \cdot \sum_{k=j}^\infty t_{ik}$$

and

$$\sum_{k=0}^\infty (T_{ik} - T_{i,k+1}) s_k = \sum_{j=0}^\infty a_j \cdot T_{ij},$$

where $T_{ij} = \sum_{k=j}^\infty t_{ik}$ and $t_{ij} = T_{ij} - T_{i,j+1}$.

43
8.2 CESÀRO SUMMATION

Consider the nth partial sum of the series $s_n := \sum_{j=0}^{n} a_j \rightarrow s := \sum_{j=0}^{\infty} a_j$. Then

$$\frac{n+1 - 0}{n+1} a_0 + \frac{n+1 - 1}{n+1} a_1 + \cdots + \frac{n+1 - n}{n} a_n = \frac{s_0 + s_1 + \cdots + s_n}{n} \rightarrow s,$$

(8.1)

the limit does not change and Theorem 8.2 applies with $t_{ik} = \begin{cases} \frac{1}{i+k+1} & \text{if } k \leq i \\ 0 & \text{else}. \end{cases}$ The procedure may be repeated, which gives rise for the following, more general method.

Definition 8.4. For $\alpha \in \mathbb{C}$ we shall call the limit

$$\sum_{j=0}^{n} \left(\binom{n}{j} \frac{\alpha}{n+\alpha} \right) a_j =: \sum_{j=0}^{\infty} a_j$$

the Cesàro mean.\(^1\)

Note that, for $\alpha = 1$, \(\binom{n}{j} \frac{\alpha}{n+\alpha} = \frac{n+1-j}{n+1}\) and thus (8.1).

Remark 8.5. The Cesàro limit of Grandi’s series is $\sum_{k=0}^{\infty} (-1)^k = \frac{1}{2}$, cf. Figure 13.3.

8.3 EULER’S SERIES TRANSFORMATION

Theorem 8.6 (Euler transform). It holds that

$$\sum_{j=0}^{\infty} a_j = \frac{1}{(1+y)^{j+1}} \sum_{j=0}^{i} \left(\binom{i}{j} \right) y^{j+1} a_j,$$

(8.2)

where $y \in \mathbb{C}$ is a parameter.

Proof. We have that

$$\sum_{i=j}^{\infty} \left(\binom{i}{j} \right) \left(\frac{1}{1+y} \right)^{i+1} = y^{-j-1}.$$

(8.3)

Indeed, for $j = 0$ the assertion follows from the usual geometric series. Differentiating (8.3) reveals the claim for $j \leftarrow j + 1$ after obvious rearrangements.

By rearranging the series (8.2) we find that

$$\sum_{i=0}^{\infty} \frac{1}{(1+y)^{i+1}} \sum_{j=0}^{i} \left(\binom{i}{j} \right) y^{j+1} a_j = \sum_{j=0}^{\infty} a_j \sum_{i=j}^{\infty} \frac{1}{(1+y)^{i+1}} \sum_{j=0}^{i} \left(\binom{i}{j} \right) \frac{1}{(1+y)^{j+1}} = \sum_{j=0}^{\infty} a_j,$$

thus the assertion. \(\square\)

\(^1\)Ernesto Cesàro, 1859–1906
8.4 SUMMATION BY PARTS

The rearrangement
\[\sum_{k=m}^{n} f_k(g_{k+1} - g_k) = [f_m g_{n+1} - f_n g_m] - \sum_{k=m+1}^{n} g_k(f_k - f_{k-1}). \]

is called summation by parts, or Abel2 transformation. Repeating the procedure \(M \) times gives the assertion of the following statement.

Proposition 8.7. For \(M = 0, 1, \ldots \) it holds that
\[\sum_{k=0}^{n} f_k g_k = \sum_{i=0}^{M-1} f_i G_i^{(i+1)} + \sum_{j=0}^{n-M} f_j G_j^{(M)} \]
\[= \sum_{i=0}^{M-1} (-1)^i f_i G_i^{(i+1)} + (-1)^M \sum_{j=0}^{n-M} f_j G_j^{(M)}, \]

where
\[f_j^{(M)} := \sum_{k=0}^{M} (-1)^{M-k} \binom{M}{k} f_{j+k} \]
and
\[G_j^{(M)} := \sum_{k=0}^{n} \binom{k - j + M - 1}{M - 1} g_k, \]
\[\tilde{G}_j^{(M)} := \sum_{k=0}^{j} \binom{j - k + M - 1}{M - 1} g_k. \]

Proposition 8.8 (Abel’s test). Suppose the sequence \((b_k)_{k=0}^{\infty}\) is of bounded variation (i.e., \(\sum_{j=0}^{\infty} |b_{j+1} - b_j| < \infty \)) and \(\sum_{k=0}^{\infty} a_k\) converges. Then \(\sum_{k=0}^{\infty} a_k b_k \) converges too.

Proof. Note first that \(b_k \) is uniformly bounded, as
\[|b_k| = \left| b_0 + \sum_{j=0}^{k-1} b_{j+1} - b_j \right| \leq |b_0| + \sum_{j=0}^{\infty} |b_{j+1} - b_j|. \]

By summation by parts it holds that
\[\sum_{k=M}^{N} a_k b_k = b_M \sum_{k=M}^{N} a_k + \sum_{j=M}^{N-1} (b_{j+1} - b_j) \sum_{k=j+1}^{N} a_k. \]
(8.4)

For \(\varepsilon > 0 \) find \(n_0 \in \mathbb{N} \) such that \(\sum_{k=M}^{N} a_k \) is less than any given positive number for \(N, M > n_0 \). It follows that
\[\left| \sum_{k=M}^{N} a_k b_k \right| \leq |b_M| \varepsilon + \sum_{j=M}^{N-1} |b_{j+1} - b_j| \varepsilon \leq \varepsilon \left(|b_0| + 2 \sum_{j=0}^{N} |b_{j+1} - b_j| \right). \]

The assertion follows, as \(\varepsilon > 0 \) is arbitrary. \(\square \)

2Niels Henrik Abel, 1802–1829, Norwegian

Version: December 22, 2019
Proposition 8.9 (Continuity). Suppose that
(i) $|1 - b_k(r)| \to 0$ for all $k \in \mathbb{N}$ (pointwise convergence) and
(ii) $\sum_{k=0}^{\infty} |b_k(r) - b_{k+1}(r)| < C$ for some $C < \infty$ and $r < 1$ (uniform bounded variation),
then
$$\lim_{r \to 1^-} \sum_{k=0}^{\infty} b_k(r) \cdot a_k = \sum_{k=0}^{\infty} a_k,$$
provided that the latter sum exists.

Proof. Let $M \in \mathbb{N}$ be large enough so that $|\sum_{k=M+1}^{\infty} a_k| < \varepsilon$ for all $\ell > M$ and $r_0 < 1$ large enough such that $|1 - b_k(r)| < \frac{\varepsilon}{M \sup_{\ell \in [0,1]} |a_\ell|}$ for all $k = 0,1,\ldots,M - 1$ and $|1 - b_M(r)| < 2$ for all $r \in (r_0,1)$.

Similarly to (8.4) it follows for $r > r_0$ that
$$\sum_{k=0}^{\infty} a_k - \sum_{k=0}^{\infty} a_k b_k(r) = \sum_{k=0}^{M-1} a_k (1 - b_k(r)) + \sum_{k=M}^{\infty} a_k (1 - b_k(r))$$
$$= \sum_{k=0}^{M-1} a_k (1 - b_k(r)) + (1 - b_M(r)) \sum_{k=M}^{\infty} a_k + \sum_{j=M}^{\infty} (b_j(r) - b_{j+1}(r)) \sum_{k=j+1}^{\infty} a_k.$$

Hence
$$\left| \sum_{k=0}^{\infty} a_k - \sum_{k=0}^{\infty} a_k b_k(r) \right| \leq M \varepsilon + 2\varepsilon + \varepsilon \sum_{j=M}^{\infty} |b_j(r) - b_{j+1}(r)| < (3 + C)\varepsilon$$
and thus the assertion. □

8.4.1 Abel summation

Theorem 8.10. It holds that
$$\lim_{r \to 1^-} \sum_{k=0}^{\infty} r^k \cdot a_k = \sum_{k=0}^{\infty} a_k,$$
provided that the latter sum exists.

Proof. Choose $b_k(r) := r^k$, then $b_k(r) = r^k \to 1$ and $\sum_{k=0}^{\infty} |b_k(r) - b_{k+1}(r)| = \sum_{k=0}^{\infty} r^k - r^{k+1} = 1$ for $r \in (0,1)$. The assertion follows with Proposition 8.9. □

8.4.2 Lambert summation

Theorem 8.11 (Lambert3 summation). It holds that
$$\lim_{r \to 1^-} (1 - r) \cdot \sum_{k=1}^{\infty} \frac{k r^k}{1 - r^k} \cdot a_k = \sum_{k=1}^{\infty} a_k,$$
provided that the latter sum exists.

Proof. Choose $b_k(r) := \frac{(1-r)k r^k}{1-r^k}$. By de L'Hôpital's rule,
$$\lim_{r \to 1^-} b_k(r) = \lim_{r \to 1^-} \frac{(1-r)k r^k}{1 - r^k} = \lim_{r \to 1^-} \frac{-k r^k + (1-r)k^2 r^{k-1}}{-kr^{k-1}} = 1.$$
The assertion follows with Proposition 8.9 by monotonicity, as $b_k(r) > b_{k+1}(r) > 0$ for $r \in (0,1)$. □

3Johann Heinrich Lambert, 1728–1777, Swiss polymath

rough draft: do not distribute
8.5 ABEL’S SUMMATION FORMULA

Theorem 8.12 (Abel’s summation formula). It holds that
\[
\sum_{1 \leq n \leq x} a_n \phi(n) = A(x) \phi(x) - \int_{1-e}^x A(u) \phi'(u) \, du,
\] (8.6)
where \(A(x) := \sum_{1 \leq n \leq x} a_n \) and \(e \in (0, 1) \).

Proof. By Riemann-Stieltjes integration by parts we have that
\[
\int_{1-e}^x A(u) \, d\phi(u) + \int_{1-e}^x \phi(u)
\]
d\(A(u) = \phi(u) A(u) \bigg|_{u=1-e}^x = A(x) \phi(x) \) and thus the result. \(\Box \)

8.6 POISSON SUMMATION FORMULA

Definition 8.13. The Fourier transform of a function \(f : \mathbb{R} \to \mathbb{C} \) is
\[
\hat{f}(k) := \int_{-\infty}^{\infty} f(t) e^{-2\pi ikt} \, dt, \quad k \in \mathbb{R}.
\]

Theorem 8.14 (Poisson summation formula). It holds that
\[
\sum_{k \in \mathbb{Z}} f(k) = \sum_{k \in \mathbb{Z}} \hat{f}(k).
\] (8.7)

Proof. Set \(g(t) := \sum_{n \in \mathbb{Z}} f(t + n) \) and note that \(g \) has period 1. Its Fourier series is
\[g(t) = \sum_{k \in \mathbb{Z}} c_k \cdot e^{2\pi ikt}, \quad \text{where} \]
\[
c_k = \int_0^1 e^{-2\pi ikt} g(t) \, dt
= \int_0^1 e^{-2\pi ikt} \sum_{n \in \mathbb{Z}} f(t + n) \, dt
= \sum_{n \in \mathbb{Z}} \int_0^{n+1} e^{-2\pi i(k-n)t} f(t) \, dt
= \sum_{n \in \mathbb{Z}} \int_n^{n+1} e^{-2\pi ikt} f(t) \, dt
= \int_{-\infty}^{\infty} e^{-2\pi ikt} f(t) \, dt
= \hat{f}(k).
\]

It follows that
\[
\sum_{k \in \mathbb{Z}} f(t + k) = g(t) = \sum_{k \in \mathbb{Z}} e^{2\pi ikt} c_k = \sum_{k \in \mathbb{Z}} e^{2\pi ikt} \hat{f}(k)
\]
and the assertion by choosing \(t = 0 \). \(\Box \)

Version: December 22, 2019
Example 8.15 (Jacobi\(^4\) theta function). For \(x > 0\) define the function

\[
\vartheta(x) := \sum_{k \in \mathbb{Z}} e^{-k^2 \pi x} = 1 + 2 \sum_{k=1}^{\infty} e^{-k^2 \pi x},
\]

then

\[
\vartheta(x) = \frac{1}{\sqrt{x}} \vartheta \left(\frac{1}{x} \right).
\]

Proof. We have that

\[
\int_{-\infty}^{\infty} e^{-2\pi i k \cdot} \cdot e^{-i^2 \pi x} \, dt = \frac{e^{-\frac{x k^2}{2 \pi} \cdot}}{\sqrt{x}} \int_{-\infty}^{\infty} \frac{1}{2 \pi} \cdot e^{-\frac{i^2}{2 \pi} (t + \frac{i k}{x})^2} \, dt = \frac{e^{-\frac{x k^2}{2 \pi} \cdot}}{\sqrt{x}},
\]

where we have used that \(2\pi i k t + i^2 \pi x = \frac{2k^2}{x} + \pi x (t + \frac{i k}{x})^2\). Thus the Fourier transform of \(f(t) := e^{-i^2 \pi x}\) is \(\hat{f}(k) = \frac{1}{\sqrt{x}} e^{-\frac{x k^2}{2 \pi}}\). Applying the Poisson summation formula (8.7) reveals the result. \(\square\)

8.7 BOREL SUMMATION

Borel summation allows summing divergent series.

Definition 8.16. The Borel summation of the sequence \((a_k)_{k=1}^{\infty}\) is

\[
\sum_{k=0}^{\infty} a_k z^k := \int_{0}^{\infty} B\Lambda(t \, z) \, e^{-t} \, dt,
\]

where \(B\Lambda(t) := \sum_{k=0}^{\infty} \frac{a_k}{k!} t^k\).

Proposition 8.17. If \(\sum_{k=0}^{\infty} a_k z^k\) converges, then the sum coincides with its Borel summation.

Proof. Indeed, one may interchange the summation with integration and it holds that

\[
A(z) := \sum_{k=0}^{\infty} a_k z^k = \sum_{k=0}^{\infty} \frac{a_k}{k!} z^k \cdot \int_{0}^{\infty} e^{-t} t^k \, dt = \sum_{k=0}^{\infty} \int_{0}^{\infty} e^{-t} \cdot \frac{a_k}{k!} (t \, z)^k \, dt = \int_{0}^{\infty} e^{-t} \cdot B\Lambda(t \, z) \, dt
\]

and thus the assertion. \(\square\)

\(^4\)Carl Gustav Jacob Jacobi, 1804–1851
Example 8.18. Consider \(A(z) := \sum_{k=0}^{\infty} (-z)^k k! \), then \(B = A(t) = \sum_{k=0}^{\infty} (-t)^k = \frac{1}{1+t} \) and the Borel summation is
\[
A(z) = \int_{0}^{\infty} e^{-t} \frac{dt}{1 + zt} = \frac{1}{t} e^{\frac{1}{z}} \Gamma \left(0, \frac{1}{z} \right),
\]
that is, \(\sum_{k=0}^{\infty} (-z)^k k! = \frac{1}{z} e^{\frac{1}{z}} \Gamma \left(0, \frac{1}{z} \right). \)
Clearly, the series is not summable in the classical sense.

8.8 ABEL–PLANA FORMULA

8.9 MERTENS’ THEOREM

Theorem 8.19. Suppose that \(\sum_{i=0}^{\infty} a_i =: A \) converges absolutely and \(\sum_{i=0}^{\infty} b_i =: B \) converges, then the Cauchy product \(\sum_{i=0}^{\infty} c_i = A \cdot B \) converges as well, where \(c_k := \sum_{\ell=0}^{k} a_{k-\ell} b_{\ell}. \)

Proof. Define the partial sums \(A_n := \sum_{i=0}^{n} a_i, B_n := \sum_{i=0}^{n} b_i \) and \(C_n := \sum_{i=0}^{n} c_i. \) Then \(C_n = \sum_{i=0}^{n} a_n \cdot B_i = \sum_{i=0}^{n} a_{n-i}(B_i - B) + A_n B \) by rearrangement.
There exists an integer \(N \) so that
\[
|B_n - B| < \frac{\varepsilon}{1 + \sum_{k=0}^{\infty} |a_k|}
\] (8.10)
for all \(n > N. \) Further, there is \(M > 0 \) so that
\[
|a_n| < \frac{\varepsilon}{N \left(1 + \sup_{i \in \{0,1,\ldots,N-1\}} |B_i - B| \right)}
\] (8.11)
for all \(n > M. \) And there is \(L > 0 \) so that for all \(n > L \) also
\[
|A_n - A| < \frac{\varepsilon}{|B| + 1}.
\] (8.12)
Now let \(n > \max\{M+N,L\}. \) It follows that
\[
|C_n - AB| = \left| \sum_{i=0}^{n} a_n \cdot (B_i - B) + (A_n - A)B \right|
\leq \sum_{i=0}^{n-1} |a_n - i| \cdot |B_i - B| + \sum_{i=N}^{n} |a_{n-i}| \cdot |B_i - B| + |A_n - A| \cdot |B|
\leq < \varepsilon \text{ by (8.11)}, \quad < \varepsilon \text{ by (8.10)}, \quad < \varepsilon \text{ by (8.12)}
\leq 3\varepsilon
\]
and hence the assertion. \(\square \)

Version: December 22, 2019
9.1 ARITHMETIC FUNCTIONS

Definition 9.1. A function $f : \mathbb{N} \to \mathbb{C}$ is said to be arithmetic; the class of all arithmetic functions is \mathcal{A}.

Definition 9.2. An arithmetic function $f : \mathbb{N} \to \mathbb{C}$ is:

- additive, if $f(m \cdot n) = f(m) + f(n)$ provided that $(m, n) = 1$,
- totally (completely) additive, if $f(m \cdot n) = f(m) + f(n)$ for all $m, n \in \mathbb{N}$.

An arithmetic function is:

- multiplicative, if $f(m \cdot n) = f(m) \cdot f(n)$ provided that $(m, n) = 1$,
- totally (completely) multiplicative, if $f(m \cdot n) = f(m) \cdot f(n)$ for all $m, n \in \mathbb{N}$.

The class of all multiplicative functions is \mathcal{M}.

Remark 9.3. If $f(\cdot)$ is multiplicative, then $f(1) = 1$ or $f(\cdot) = 0$. Further, if f_1, \ldots, f_k are multiplicative then $n \mapsto f_1(n) \cdots f_k(n)$ is multiplicative.

9.2 EXAMPLES OF ARITHMETIC FUNCTIONS

Definition 9.4. The big Omega function

$$\Omega(n) = \sum_{i=1}^{\omega} \alpha_i = \sum_{p \in \mathcal{P} : p^\alpha | n} 1$$

counts the total number of prime factors in the canonical representation (2.3), $n = p_1^{\alpha_1} \cdots p_\omega^{\alpha_\omega}$, while the prime omega function

$$\omega(n) := \omega = \sum_{p \in \mathcal{P} : p | n} 1$$

(9.1)

counts the distinct number of prime factors of n.

The Liouville function\footnote{Joseph Liouville, 1809–1882, French} λ is (the second λ in Table 3.1)

$$\lambda(n) := (-1)^{\Omega(n)}.$$
(9.2)
Proposition 9.5. It holds that
(i) The function big Omega Ω is completely additive,
(ii) Liouville’s λ is completely multiplicative,
(iii) the prime omega function ω is additive and
(iv) Euler’s totient function φ is multiplicative (cf. Theorem 3.2).

Definition 9.6. The number-of-divisors function
\[\tau(n) := \sum_{d|n} 1 \quad (9.3) \]
(for the German Teiler = divisors) counts the number of divisors; often, $\sigma_0 = d = \nu := \tau$.

Definition 9.7. The sigma function, or sum-of-divisors function is
\[\sigma(n) := \sum_{d|n} d. \]

Definition 9.8. More generally, the divisor function is
\[\sigma_k(n) := \sum_{d|n} d^k. \quad (9.4) \]

Proposition 9.9. The divisor function σ_k are multiplicative, but not completely multiplicative.

9.3 EULER’S PRODUCT FORMULA

Definition 9.10. Riemann’s ζ-function is the analytic continuation of the Dirichlet series
\[\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s}, \quad (9.5) \]
which converges for $\Re(s) > 1$.

Proposition 9.11 (Euler’s product formula). It holds that
\[\zeta(s) = \prod_{p \text{ prime}} \frac{1}{1 - \frac{1}{p^s}}, \quad \Re(s) > 1. \quad (9.6) \]

Proof. The assertion follows with $f(n) = 1$ from the following, more general statement. \hfill \square

Theorem 9.12. Suppose that f is multiplicative and $\sum_{n=1}^{\infty} \frac{f(n)}{n^s}$ converges absolutely for some $s \in \mathbb{C}$, then
\[\sum_{n=1} \frac{f(n)}{n^s} = \prod_{p \text{ prime}} \sum_{k=0} f(p^k) \frac{p^{ks}}{p^s}. \]

If f is totally multiplicative, then
\[\sum_{n=1} \frac{f(n)}{n^s} = \prod_{p \text{ prime}} \frac{1}{1 - f(p)/p^s}. \]
Proof. Choose N large enough so that $\sum_{n>N} f(n) n^{-s} < \varepsilon$. Set $\mathbb{P}_N := \{ p \in \mathbb{P} : p \leq N \}$, then
\[\prod_{p \in \mathbb{P}_N} \sum_{k=0}^\infty \frac{f(p^k)}{p^{ks}} = \sum_{n \in \mathbb{N}} \frac{f(n)}{n^s} \]
and hence $\sum_{n=1}^\infty \frac{f(n)}{n^s} - \prod_{p \in \mathbb{P}_N} \sum_{k=0}^\infty \frac{f(p^k)}{p^{ks}} \leq \sum_{n>N} \frac{f(n)}{n^s} \leq \sum_{n>N} \frac{f(n)}{n^s} < \varepsilon$ from which the assertion follows. \[\square \]

Proposition 9.13 (Liouville function). It holds that
\[\zeta(2s) \zeta(s) = \prod_{p \text{ prime}} \left(1 + \frac{1}{p^s} \right) = \sum_{n=1}^\infty \frac{\lambda(n)}{n^s}, \quad \Re(s) > 1, \]
where $\lambda(n)$ is the Liouville function, cf. (9.2).

Proof. Indeed, $\frac{\zeta(s)}{\zeta(2s)} = \prod_{p \in \mathbb{P}} \frac{1 - \frac{1}{p^{2s}}}{1 - \frac{1}{p^s}} = \prod_{p \in \mathbb{P}} \left(1 + \frac{1}{p^s} \right)$, the first assertion. The remaining assertion follows with $\frac{1}{1 - \frac{1}{p^s}} = \sum_{k=0}^\infty \frac{(-1)^k}{p^{sk}}$. \[\square \]

Remark 9.14. It follows from $\zeta(s) = \zeta(2s) \cdot \prod_{p \in \mathbb{P}} \left(1 + \frac{1}{p^s} \right)$ that every number is the product of simple primes (square-free) \times the square of a natural number.

Definition 9.15 (Möbius function). The Möbius function $\mu: \mathbb{N} \to \{-1,0,1\}$ (cf. Table 3.1) is
\[\mu(n) := \begin{cases} 1 & \text{if } n = 1, \\ (-1)^k & \text{if } n = p_1 \cdots p_k \text{ with distinct primes } p_1 < \ldots < p_k, \\ 0 & \text{if } n \text{ has a square (prime) factor}. \end{cases} \]

Remark 9.16. The function $n \mapsto |\mu(n)|$ is the indicator function for the square-free integers.

Proposition 9.17. The function $\mu(\cdot)$ is multiplicative (not totally multiplicative, though).

Theorem 9.18. Let $Q_k(n)$ be the number of kth-power free integers up to n, then
\[Q_k(n) \sim \frac{n}{\zeta(k)} \]
as $n \to \infty$.

Square-free numbers, in particular, have for $k = 2$ the asymptotic density $\frac{Q_2(n)}{n} \sim \frac{6}{\pi^2} \approx 0.6079$.

Sketch of the proof. For large n, a fraction $1 - \frac{1}{2^k}$ of numbers is not divisible by 2^k, $1 - \frac{1}{3^k}$ are not divisible by 3^k, etc. These ratios are multiplicative (cf. the Chinese remainder theorem, Theorem 2.32) and we thus obtain the approximation
\[Q_k(n) \sim n \cdot \prod_{p \text{ prime}} \left(1 - \frac{1}{p^k} \right) = \frac{n}{\prod_{p \text{ prime}} \frac{1}{1 - \frac{1}{p^k}}} = \frac{n}{\zeta(k)}, \]
the assertion. \[\square \]

\[^3 \text{August Ferdinand Möbius, 1790–1868} \]
Theorem 9.19 (Dirichlet inverse of the Möbius function). It holds that

\[\sum_{d \mid n} \mu(d) = \begin{cases} 1 & \text{if } n = 1, \\ 0 & \text{else.} \end{cases} \tag{9.7} \]

Proof. For \(n = p_1^{a_1} \cdots p_\omega^{a_\omega} > 1 \) (with \(\omega \) distinct prime factors) we have that

\[\sum_{d \mid n} \mu(d) = \sum_{d \mid n, d \text{ square-free}} \mu(d) = \sum_{r=1}^{\omega} \mu(p_1^{i_1} \cdots p_r^{i_r}) = \mu(1) + \sum_{1 \leq i_1 < \cdots < i_r \leq \omega} \mu(p_1^{i_1} \cdots p_r^{i_r}) \]

where the latter sum runs over all square-free divisors of \(n \). For combinatorial reasons,

\[\sum_{d \mid n} \mu(d) = \sum_{r=0}^{\omega} \binom{\omega}{r} (-1)^r = (1 - 1)^\omega = 0 \]

and thus the result. \(\square \)

Theorem 9.20. It holds that

\[\sum_{n=1}^\infty \frac{a_n}{n^s} \cdot \sum_{n=1}^\infty \frac{b_n}{n^s} = \sum_{n=1}^\infty \frac{c_n}{n^s}. \tag{9.8} \]

where \(c_n = \sum_{d \mid n} a_d \cdot b_{n/d} = \sum_{j \mid n, k = n/d} a_j \cdot b_k \).

Proof. Indeed, \(\sum_{n=1}^\infty \frac{a_n}{n^s} \cdot \sum_{m=1}^\infty \frac{b_m}{m^s} = \sum_{n,m=1} \frac{a_n b_m}{(n \cdot m)^s} \). The result follows by comparing terms. \(\square \)

Proposition 9.21. It holds that

\[\frac{1}{\zeta(s)} = \sum_{n=1}^\infty \frac{\mu(n)}{n^s}, \quad \Re(s) > 1. \tag{9.9} \]

Proof. The proof is immediate by (9.8) and (9.7). \(\square \)

Corollary 9.22 (Corollary to Proposition 9.13). It holds that

\[\frac{\zeta(s)}{\zeta(2s)} = \sum_{n=1}^\infty \frac{|\mu(n)|}{n^s} = \sum_{n \text{ square-free}}^\infty \frac{1}{n^s}. \]

Corollary 9.23 (Landau\(^4\)). It holds that

\[\sum_{n=1}^\infty \frac{\mu(n)}{n} = 0 \text{ and } \sum_{n=1}^\infty \frac{\mu(n) \log n}{n} = -1. \tag{9.10} \]

Proof. Consider (9.9) and its derivative for \(s \to 1 \). \(\square \)

Proposition 9.24. The number of divisors of \(n \) (including 1 and \(n \)) is \(\tau(n) := \sum_{d \mid n} 1 \). It holds that

\[\zeta(s)^2 = \sum_{n=1}^\infty \frac{\tau(n)}{n^s}, \quad \Re(s) > 1. \]

\(^4\)Edmund Landau, 1877–1938, German rough draft: do not distribute
Proof. The proof is immediate by (9.8).

Proposition 9.25. It holds that

\[
\frac{\zeta(s) - 1}{\zeta(s)} = \sum_{n=1} \frac{\varphi(n)}{n^s}, \quad \Re(s) > 1,
\]

where \(\varphi(\cdot)\) is Euler’s totient function (3.1).

Proof. The proof is immediate by (9.8), as

\[
\zeta(s) \cdot \sum_{n=1} \frac{\varphi(n)}{n^s} = \sum_{n=1} \frac{1}{n^s} \sum_{d|n} 1 \cdot \varphi(d) = \sum_{n=1} \frac{n}{n^s} = \zeta(s - 1)
\]

by Gauss’ theorem, Theorem 3.5.

Proposition 9.26. The following hold true (cf. Titchmarsh [19]):

- \(\frac{\zeta^2(s)}{\zeta(2s)} = \sum_{n=1} \frac{\omega(n)}{n^s}, \) where \(\omega\) is the number of different prime factors, cf. (9.1);
- \(\zeta(s) \zeta(s - a) = \sum_{n=1} \frac{\sigma_n(n)}{n^s}, \) where \(\sigma_n\) is the divisor function, cf. (9.4);
- \(\frac{\zeta(s)^3}{\zeta(2s)} = \sum_{n=1} \frac{\tau(n)}{n^s}, \) where \(\tau\) is the number of divisors, cf. (9.3);
- \(\frac{\zeta(s)^4}{\zeta(2s)} = \sum_{n=1} \frac{\tau(n)^2}{n^s};\)
- \((\zeta(s) - 1)^k = \sum_{n=2} \frac{f_k(n)}{n^s}, \) where \(f_k(n)\) is the number of representations of \(n\) as a product of \(k\) factors, each greater than unity when \(n > 1\), the order of the factors being essential;
- \(\frac{1}{\zeta(s)} = \sum_{n=1} \frac{f(n)}{n^s}, \) where \(f(n)\) is the number of representations of \(n\) as a product of factors greater than unity, representations with factors in a different order being considered as distinct, and \(f(1) = 1.\)

Definition 9.27. The von Mangoldt\(^{v}\) function is

\[
\Lambda(n) := \begin{cases}
\log p & \text{if } n = p^k \ (p \text{ prime, } k \text{ integer}), \\
0 & \text{else}.
\end{cases}
\]

Proposition 9.28. It holds that

\[
\log \zeta(s) = \sum_{n=1} \frac{\Lambda(n)}{n^s \log n}.
\]

Proof. From (9.6) we deduce that

\[
\log \zeta(s) = - \sum_{p \text{ prime}} \log \left(1 - \frac{1}{p^s}\right) = \sum_{p \text{ prime}} \sum_{k=1}^\infty \frac{1}{k p^{ks}}.
\]

Now note that \(\frac{\Lambda(p^k)}{\log p^k} = \frac{1}{k}\) for \(n = p^k\) and 0 else, thus the result.

\(^{v}\)Hans Carl Friedrich von Mangoldt, 1854–1925, German

Version: December 22, 2019
Theorem 9.29. For \(\Re(s) > 1 \) it holds that

\[
-\frac{\zeta'(s)}{\zeta(s)} = \sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^s} = \sum_{p \text{ prime}} \frac{\log p}{p^s} = \sum_{p \text{ prime}} \frac{\log p}{p^s} + \sum_{p \text{ prime}} \frac{\log p}{p^s(p^s-1)}; \tag{9.11}
\]

the latter sum converges for \(\Re(s) > \frac{1}{2} \).

Proof. From (9.6) we deduce that

\[
\log \zeta(s) = -\sum_{p \in \mathbb{P}} \frac{1}{p^s} \log \left(1 - \frac{1}{p^s}\right).
\]

Differentiating with respect to \(s \) thus

\[
\frac{\zeta'(s)}{\zeta(s)} = \sum_{p \in \mathbb{P}} \frac{1}{p^s} \frac{\log p}{p^s} = -\sum_{p \in \mathbb{P}} \frac{\log p}{p^s-1}, \quad \text{the second identity is immediate.}
\]

Convergence follows from the integral test for convergence or the inequality

\[
\sum_{p \in \mathbb{P}} \frac{\log p}{p^s(p^s-1)} \leq \frac{\log 2}{2^s(2^s-1)} + \sum_{n=3}^{\infty} \frac{\log n}{n^s(n^s-1)} \leq \frac{\log 2}{2^s(2^s-1)} + \int_2^{\infty} \frac{\log x}{x^s(x^s-1)} \, dx < \infty.
\]

\(\square \)

Definition 9.30. The prime zeta function is

\[
P(s) := \frac{1}{2^s} + \frac{1}{3^s} + \frac{1}{5^s} + \cdots = \sum_{p \text{ prime}} \frac{1}{p^s}. \tag{9.13}
\]

Theorem 9.31. For \(\Re(s) > 1 \) it holds that

\[
\log \zeta(s) = \sum_{\ell=1}^{\infty} \frac{1}{\ell} \log \zeta(\ell s) \tag{9.14}
\]

and conversely,

\[
P(s) = \sum_{p \text{ prime}} \frac{1}{p^s} = \sum_{k=1}^{\infty} \frac{\mu(k)}{k} \log \zeta(k s).
\]

Proof. From Euler’s product (9.6) it follows that

\[
\log \zeta(s) = -\sum_{p \text{ prime}} \log \left(1 - \frac{1}{p^s}\right) = \sum_{p \text{ prime}} \sum_{\ell=1}^{\infty} \frac{1}{\ell} \frac{1}{p^{\ell s}} = \sum_{\ell=1}^{\infty} \frac{1}{\ell} \sum_{p \text{ prime}} \frac{1}{p^{\ell s}} = \sum_{\ell=1}^{\infty} \frac{1}{\ell} \log \zeta(\ell s). \tag{9.15}
\]

Hence,

\[
\sum_{k=1}^{\infty} \frac{\mu(k)}{k} \log \zeta(k s) = \sum_{k, \ell=1}^{\infty} \mu(k) \frac{\log k \ell s}{k} = \sum_{n=1}^{\infty} \sum_{k \ell=n} \mu(k) \frac{P(n s)}{n} = \sum_{k \ell=n} \mu(k) \frac{P(n s)}{n} \sum_{k \ell=n} \mu(k) = P(s),
\]

the result. \(\square \)
Proposition 9.32. For \(k \geq 1 \) and \(\Re(s) > 1 \) it holds that \(|P(ks)| \leq \frac{1}{k-1} \).

Proof. Indeed,

\[
|P(ks)| \leq P(k) = \sum_{p \text{ prime}} \frac{1}{p^s} \leq \sum_{n=2}^{\infty} \frac{1}{n^s} \leq \sum_{n=2}^{\infty} \int_{n-1}^{n} \frac{dx}{x^s} = \int_{1}^{\infty} \frac{dx}{x^s} = \frac{1}{k-1}.
\]

\[\square\]

9.4 PROBLEMS

10.1 DIRICHLET PRODUCT AND MÖBIUS INVERSION

Recall the definition of arithmetic (Definition 9.1), additive and multiplicative (Definition 9.2) functions.

Definition 10.1 (Dirichlet convolution). The Dirichlet product of arithmetic functions f and g is the arithmetic function $f \ast g$, where

$$(f \ast g)(n) := \sum_{d_1 d_2 = n} f(d_1) \cdot g(d_2). \quad (10.1)$$

The product is commutative and associative:

$$(f \ast (g \ast h))(n) = (f \ast g) \ast h(n) = \sum_{d_1 \mid n} f(d_1) g(d_2) h(d_3).$$

Definition 10.2. Define the arithmetic functions

$$\delta_1(n) := \begin{cases} 1 & \text{if } n = 1, \\ 0 & \text{else} \end{cases}$$

and

$$\mathbb{1}(n) := 1$$

for $n \in \mathbb{N}$.

Remark 10.3. It holds that $\delta_1 \ast f = f \ast \delta_1 = f$ (δ_1 is the neutral element with respect to the Dirichlet product).

Definition 10.4 (Dirichlet inverse). The function f^{-1} with $f \ast f^{-1} = \delta_1$ is the Dirichlet inverse of f with respect to \ast.

Theorem 10.5 (Dirichlet inverse of the Möbius function). The Möbius function is the Dirichlet inverse of $\mathbb{1}$, i.e.,

$$\mu \ast \mathbb{1} = \delta_1; \quad (10.2)$$

more explicitly,

$$\sum_{d \mid n} \mu(d) = \begin{cases} 1 & \text{if } n = 1, \\ 0 & \text{else}. \end{cases} \quad (10.3)$$

Proof. The proof is immediate by Theorem 9.19. \qed

Example 10.6. The Dirichlet inverse of the arithmetic function $\alpha : n \mapsto \frac{1}{n^s}$ is $\alpha^{-1} : n \mapsto \mu(n) \frac{1}{n^s}$.

1Johann Peter Gustave Lejeune Dirichlet, 1805–1859
Proof. Indeed, \(\sum_{{d\mid n}} a \left(\frac{d}{n} \right)^{-1}(d) = \sum_{{d\mid n}} \left(\frac{d}{n} \right)^{-1} \cdot \sum_{{d\mid n}} \mu(d) = \frac{1}{n^2} \sum_{{d\mid n}} \mu(d) = \frac{1}{n^2} \cdot \delta_1(n) = \delta_1(n) \) by (9.8).

Definition 10.7. The sum function is

\[
S_f(n) := \sum_{{d\mid n}} f(d).
\]

(10.4)

Remark 10.8. We have that \(S_f = f \ast 1 = \mathbb{1} \ast f \). (However, note that \(\mathbb{1} \cdot f = f \ast \mathbb{1} = f \) for the usual, pointwise product.)

Theorem 10.9 (Möbius inversion formula; Dedekind\(^2\)). Any arithmetic function \(f \) can be expressed in terms of the its sum function \(S_f \) as

\[
f(n) = \sum_{{d_1, d_2 = n}} \mu(d_1) \cdot S_f(d_2)
\]

(10.5)

for every integer \(n \geq 1 \), where \(S_f \) is the sum function (10.4).

Proof. We have that \(f = \delta_1 \ast f = (\mu \ast \mathbb{1}) \ast f = \mu \ast (\mathbb{1} \ast f) = \mu \ast S_f \), this is the result.

For a more explicit proof,

\[
\sum_{{d\mid n}} \mu(d) \frac{n}{d} S_f \left(\frac{n}{d} \right) = \sum_{{d\mid n}} \mu \left(\frac{n}{d} \right) S_f(d) = \sum_{{d\mid n}} \mu \left(\frac{n}{d} \right) \sum_{{d_1\mid d}} f(d_1) \\
= \sum_{{d_1\mid n}} f(d_1) \sum_{{d_1\mid d}} \mu \left(\frac{n}{d} \right) = \sum_{{d_1\mid n}} f(d_1) \sum_{{d_1\mid m}} \mu \left(\frac{m}{d_2} \right).
\]

where \(m = n/d_1, d_2 = d/d_1 \). By (9.7), the second sum is non-zero when \(m = 1 \), i.e., \(n = d_1 \), and hence the whole expression equals \(f(n) \). \(\square \)

Theorem 10.10. The set \(M \) of multiplicative functions is closed under the Dirichlet product, i.e., \(f \ast g \in M \) whenever \(f, g \in M \).

Proof. For \((a, b) = 1 \) note that

\[
d_1 \mid a \text{ and } d_2 \mid b \implies (d_1, d_2) = 1
\]

and

\[
\{d: d \mid a \cdot b\} = \{d_1 \cdot d_2: d_1 \mid a \text{ and } d_2 \mid b\}.
\]

Set \(h := f \ast g \), then

\[
h(a) h(b) = (f \ast g)(a) \cdot (f \ast g)(b) = \sum_{{d_1\mid a}} f(d_1) g \left(\frac{a}{d_1} \right) \sum_{{d_2\mid b}} f(d_2) g \left(\frac{b}{d_2} \right) = \sum_{{d_1\mid [a, d_2]}} f(d_1) f(d_2) g \left(\frac{a}{d_1} \right) g \left(\frac{b}{d_2} \right) = \sum_{{d_1\mid [a, d_2]} b} f(d_1) d_2 g \left(\frac{a b}{d_1 d_2} \right) = \sum_{{d_1\mid a b \mid}} f(d) g \left(\frac{a b}{d} \right) = h(a b).
\]

Thus, \(h \) is also multiplicative so that \(f \ast g \in M \). \(\square \)

\(^2\)Richard Dedekind, 1831–1916, German

rough draft: do not distribute
10.2 THE SUM FUNCTION

Theorem 10.11. The function \(f(\cdot) \) is multiplicative iff its sum-function \(S_f \) is multiplicative.

Proof. Assuming that \(f \) is multiplicative we have that \(S_f = f \ast 1 \) is multiplicative by Theorem 10.10, as \(1 \) is multiplicative.

As for the converse it holds that \(f = \mu \ast S_f \) by the M"obius inversion formula (10.5). Assuming that \(S_f \) is multiplicative, it follows again with Theorem 10.10 that \(f \) is multiplicative, as \(\mu \) is multiplicative by Proposition 9.17. \(\square \)

Corollary 10.12. The sum function of a multiplicative function \(f \) is given by

\[
S_f(n) = \prod_{i=1}^{\omega} \left(1 + f(p_i) + f(p_i^2) + \cdots + f(p_i^{\alpha_i}) \right).
\]

If \(f \) is totally multiplicative, then it is sufficient to know \(f|_\mathbb{P} \), as

\[
S_f(n) = \prod_{i=1}^{\omega} \frac{f(p_i)^{\alpha_i+1} - 1}{f(p_i) - 1}.
\]

10.3 OTHER SUM FUNCTIONS

Corollary 10.13 (Corollary to Theorem 9.19; M"obius). For a function \(f : [1, \infty) \rightarrow \mathbb{C} \) define

\[
F(x) := \sum_{k \leq x, \ k \in \mathbb{N}} f \left(\frac{x}{k} \right), \quad (10.6)
\]

then

\[
f(x) = \sum_{k \leq x, \ k \in \mathbb{N}} \mu(k) F \left(\frac{x}{k} \right); \quad (10.7)
\]

conversely, (10.7) implies (10.6).

Proof. For an arithmetic function \(\alpha : \mathbb{N} \rightarrow \mathbb{C} \) and \(f : [0, \infty) \rightarrow \mathbb{C} \) define the operation

\[
(\alpha \triangle f)(x) := \sum_{k \leq x, \ k \in \mathbb{N}} \alpha(k) f \left(\frac{x}{k} \right).
\]

The following hold true:

(i) \(\alpha \triangle (f + g) = \alpha \triangle f + \alpha \triangle g \),

(ii) \((\alpha + \beta) \triangle f = \alpha \triangle f + \beta \triangle f \),

(iii) \(\alpha \triangle (\beta \triangle f) = (\alpha \ast \beta) \triangle f \) and

(iv) \(\delta_1 \triangle f = f \).

Version: December 22, 2019
MULTIPlicative FUNCTIONS AND MöBIUS INVERSION

(i) and (ii) are clear. As for (iii),
\[(\alpha \triangle (\beta \triangle f))(x) = \sum_{k \leq x} \alpha(k)(\beta \triangle f)\left(\frac{x}{k}\right) = \sum_{k \leq x} \alpha(k) \sum_{\ell \leq \frac{x}{k}} \beta(\ell) f\left(\frac{x}{k\ell}\right)\]
\[= \sum_{k \leq x} \alpha(k) \beta(\ell) f\left(\frac{x}{k\ell}\right)\]
\[= \sum_{n \leq x} \sum_{k \ell = n} \alpha(k) \beta(\ell) f\left(\frac{x}{n}\right)\]
\[= \sum_{n \leq x} (\alpha \ast \beta)(n) f\left(\frac{x}{n}\right) = ((\alpha \ast \beta) \triangle f)(x).\]

(iv) finally follows trivially from \((\delta_1 \triangle f)(x) = \sum_{k \leq x} \delta_1(k) f\left(\frac{x}{k}\right) = f(x)\).
Now note that \(F = 1 \triangle f\). Hence
\[\mu \triangle F = \mu \triangle (1 \triangle f) = (\mu \ast 1) \triangle f = \delta_1 \triangle f = f\]
by (9.8), which is (10.7). Finally
\[1 \triangle f = 1 \triangle (\mu \triangle F) = (1 \ast \mu) \triangle F = \delta_1 \triangle F = F,\]
which is (10.6).

Remark 10.14. Set \(f(x) := 1\), then \(F(x) = \lfloor x \rfloor\). It follows that
\[1 = \sum_{k \leq x} \mu(k) \cdot \left\lfloor \frac{x}{k} \right\rfloor.\]

For example \((x = 5)\)
\[1 = 5\mu(1) + 2\mu(2) + \mu(3) + \mu(4) + \mu(5)\]
or \(1 = 6\mu(1) + 3\mu(2) + 2\mu(3) + \mu(4) + \mu(5) + \mu(6)\)

\((x = 6)\).

10.4 PROBLEMS

Exercise 10.1. Show the Lambert series for the Möbius function,
\[\sum_{n=1} \mu(n) \frac{r^n}{1 - r^n} = r, \quad |r| < 1\]
or more generally,
\[\sum_{n=1} a_n x^n = \sum (\mu \ast a)(n) \frac{x^n}{1 - x^n}.\]

Exercise 10.2. Show that
\[\sum_{n=1} \frac{\mu(n)}{n} = 0,\]
provided that the sum exists (hint: Lambert summation 8.5).
Exercise 10.3. Show that
\[\sum_{n=1}^{\infty} \frac{a_n}{n^s} = \zeta(s) \cdot \sum_{n=1}^{\infty} \frac{\mu(n)}{n^s}. \]

Exercise 10.4. Show that
\[\sum_{n=1}^{\infty} x^{\lambda(n)} = \sum_{n=1}^{\infty} \lambda(n) \frac{x^n}{1 - x^n}, \]
where \(\lambda \) is the Liouville function.
Dirichlet Series

If \(n \mapsto f(n) \) is multiplicative, then so is \(n \mapsto \frac{f(n)}{n^{\sigma}} \) for every \(s \in \mathbb{C} \).

Definition 11.1. The **Dirichlet series** associated with an arithmetic function \(a \) is

\[
D_a(s) := \sum_{n=1}^{\infty} \frac{a_n}{n^s}.
\]

11.1 PROPERTIES

Lemma 11.2. If \(a_1 + \cdots + a_n \) is bounded, then \(D_a(s) \) is holomorphic in \(\{ s : \Re(s) > 0 \} \).

Theorem 11.3. It holds that

\[
\sum_{n=1}^{\infty} \frac{a_n}{n^s} - \sum_{n=1}^{\infty} \frac{b_n}{n^s} = \sum_{n=1}^{\infty} \frac{(a * b)(n)}{n^s},
\]

where \(* \) is the Dirichlet convolution (10.1), \(c_n = \sum_{d|n} a_d b_{n/d} = \sum_{j,k=n} a_j b_k \).

Proof. See (9.8).

Theorem 11.4. It holds that \(\frac{1}{\sum_{n=1}^{\infty} \frac{b_n}{n^s}} = \sum_{n=1}^{\infty} \frac{a_n}{n^s} \), where \(b_n := \sum_{d|n} \mu \left(\frac{n}{d} \right) a_d \).

Proof. It holds that \(\sum_{n=1}^{\infty} \frac{a_n}{n^s} \cdot \sum_{m=1}^{\infty} \frac{b_m}{m^s} = \sum_{n=1}^{\infty} \frac{c_n}{n^s} \) with \(c_n = \sum_{d|n} a_d \sum_{d'|n/d} \mu(d')b_{n/d}d' \).

11.2 ABSISSA OF CONVERGENCE

Theorem 11.5 (Cf. Hardy and Riesz [9, Theorem 2]). Suppose that \(\sum_{n=1}^{\infty} \frac{a_n}{n^s} \) converges and \(\theta < \frac{\pi}{2} \). Then the Dirichlet series \(D_a(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s} \) converges uniformly on

\[
G := \{ s \in \mathbb{C} : \arg(s - s_0) \leq \theta \}
\]

and \(D_a(s) \) is holomorphic on \(\{ s : \Re(s) > \Re(s_0) \} \).

Proof. The series converges at \(s_0 \), hence, for \(\epsilon > 0 \), there is \(M > 0 \) so that \(\left| \sum_{M < n < M + 1} \frac{a_n}{n^s} \right| < \epsilon \) for all \(s > M \). Set \(\sigma := \Re(s) \) and \(\sigma_0 := \Re(s_0) \) and \(\phi(n) := \frac{1}{n^{\sigma_0}} \), then with Abel’s summation formula (8.8),

\[
\sum_{M \leq n < N} \frac{a_n}{n^s} = \sum_{M \leq n < N} \frac{a_n}{n^s} \cdot \frac{1}{n^{s_0}} + \int_{M}^{N} \sum_{M \leq n < \mu} \frac{a_n}{n^s} \cdot \frac{1}{n^{s_0}} \cdot \frac{s - s_0}{\mu^{\sigma_0}} \, d\mu.
\]

As \(\sigma_0 < \sigma \) it follows that

\[
\left| \sum_{M \leq n < N} \frac{a_n}{n^s} \right| < \epsilon \left(\frac{1}{N^{\sigma - \sigma_0}} + \int_{M}^{N} \frac{s - s_0}{\mu^{\sigma_0}} \, d\mu \right) \leq \epsilon \left(1 + \frac{|s - s_0|}{\sigma - \sigma_0} \right).
\]

65
Define the angle \(\sin \alpha := \frac{|\sigma - \sigma_0|}{|s - s_0|} \). Assuming that \(s \in G \) it holds that \(\frac{\pi}{2} - \alpha < \vartheta \), thus \(|\sigma - \sigma_0| < \frac{1}{\cos \vartheta} \). It follows that

\[
\left| \sum_{M \leq n < N} \frac{a_n}{n^s} \right| < \varepsilon \left(1 + \frac{2}{\cos \vartheta} \right)
\]

uniformly in \(G \) and hence the assertion. \(\square \)

Theorem 11.6 (Uniqueness). Suppose that \(F(s) := \sum_{n=1}^{\infty} \frac{a_n}{n^s} \) and \(G(s) := \sum_{n=1}^{\infty} \frac{b_n}{n^s} \) converge for \(s = s_0 \) and \(F(\sigma) = G(\sigma) \) for all \(\sigma \in \mathbb{R} \) sufficiently large. Then \(a_n = b_n \) for all \(n \in \mathbb{N} \).

Proof. Convergence is uniformly on \([\mathcal{R}(s_0) + 1, \infty)\), thus

\[
\lim_{\sigma \to \infty} F(\sigma) = \sum_{n=1}^{\infty} a_n \cdot \lim_{\sigma \to \infty} \frac{1}{\sigma^s} = a_1.
\]

The same argument applied to \(G \) gives that \(a_1 = b_1 \).

Consider next the functions \(F_2(s) := 2^s (F(s) - a_1) = \sum_{n=2}^{\infty} a_n \left(\frac{2}{n} \right)^s \) and \(G_2(s) := 2^s (G(s) - b_1) \). As \(a_1 = b_1 \) it holds that \(F_2 = G_2 \). As above we find that \(a_2 = b_2 \) and the assertion follows by repeating the arguments successively. \(\square \)

Theorem 11.7 (Abscissa of convergence). Let

\[
\sigma_0 := \limsup_{n \to \infty} \frac{\log |\sum_{i=1}^{N} a_n|}{\log N},
\]

then the Dirichlet series \(\mathcal{D}a(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s} \) converges for all \(s \in \mathbb{C} \) with \(\mathcal{R}(s) > \sigma_0 \) and diverges for all \(\mathcal{R}(s) < \sigma_0 \).

11.3 PROBLEMS

Exercise 11.1. Show that \(\sum_{n=1}^{\infty} \frac{\alpha^n}{n^s} \) converges for all \(s \in \mathbb{C} \), if \(|\alpha| < 1 \), but diverges for all \(s \in \mathbb{C} \) if \(|\alpha| > 1 \).
Definition 12.1. The Mellin\(^1\) transform of a function \(f: (0, \infty) \rightarrow \mathbb{C}\) is the function \(Mf: \mathbb{C} \rightarrow \mathbb{C}\), where
\[
Mf(s) := \int_{0}^{\infty} x^{s-1} f(x) \, dx, \quad s \in \mathbb{C}.
\]

Example 12.2. Bateman [3, pp. 303] provides a comprehensive list of Mellin transforms. Table 12.1 provides few examples.

12.1 INVERSION

Proposition 12.3 (Inversion of the Mellin transform). It holds that
\[
M^{-1}F(x) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} F(s) x^{-s} \, ds = f(x),
\]
where \(F(s) := Mf(s) = \int_{0}^{\infty} f(x) x^{s-1} \, dx\) and \(c\) is within the strip of analyticity, \(c \in \{ s \in \mathbb{C} : a < \Re(s) < b \}\).

Proof. We shall derive the result from Fourier transforms.

With \(c\) fixed, define \(h(x) := x^c \cdot f(x)\) so that 0 is in the strip of analyticity of the function \(h\). Note first that
\[
Mh(-it) = \int_{0}^{\infty} x^{-it-1} h(x) \, dx = \int_{-\infty}^{0} e^{-ity} h(e^y) \, dy = \mathcal{F}(h \circ \exp)(t),
\]
where
\[
\mathcal{F}(g)(t) := \int_{-\infty}^{\infty} e^{-ity} g(y) \, dy
\]
is the usual Fourier transform. Employing the inverse Fourier transform gives
\[
h(e^y) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ity} Mh(-it) \, dt = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} e^{-sy} Mh(s) \, ds.
\]

\(^1\)Hjelmar Mellin, 1854–1933, Finnish

\(^2\)The function
\[
H(x) := \begin{cases}
0 & \text{if } x < 0, \\
\frac{1}{2} & \text{if } x = 0, \\
1 & \text{if } x > 1
\end{cases}
\]
is the Heaviside step function.

\(^3\)aka. Cahen–Mellin integral

\(^4\)Hermite polynomials
<table>
<thead>
<tr>
<th>function</th>
<th>Mellin transform</th>
<th>remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(x)$</td>
<td>$\mathcal{M}f(s) = \int_0^\infty x^{-s} f(x) , dx$</td>
<td></td>
</tr>
<tr>
<td>$\frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} F(s)x^{-s} , ds$</td>
<td>$F(s)$</td>
<td>cf. (12.1)</td>
</tr>
<tr>
<td>$\delta(x - b)$</td>
<td>$\frac{\text{e}^{-bs}}{\text{B}(s)}$</td>
<td>Lemma 12.8</td>
</tr>
<tr>
<td>$x^a H(b - x)$</td>
<td>$\frac{\text{e}^{-bs}}{\text{B}(s)}$</td>
<td>Example 12.15</td>
</tr>
<tr>
<td>$x^a H(x - b)$</td>
<td>$\frac{\text{e}^{-bs}}{\text{B}(s)}$</td>
<td></td>
</tr>
<tr>
<td>$x^f(ax^b)$</td>
<td>$\frac{\text{e}^{-bs}}{\text{B}(s)} \mathcal{M}f \left(\frac{a + s}{b} \right)$</td>
<td></td>
</tr>
<tr>
<td>$\text{e}^{-b x \log x} \cdot H_n \left(\log x \right)$</td>
<td>$\sqrt{2\pi} (-i)^n e^{ir^2} \cdot H_n (i s)$</td>
<td></td>
</tr>
<tr>
<td>$\sin \alpha x$</td>
<td>$\frac{\Gamma(s)}{\text{B}(s)} \sin \frac{\alpha x}{\pi}$</td>
<td></td>
</tr>
<tr>
<td>$\cos \alpha x$</td>
<td>$\frac{\Gamma(s)}{\text{B}(s)} \cos \frac{\alpha x}{\pi}$</td>
<td></td>
</tr>
<tr>
<td>$e^{-x} \sin \alpha x$</td>
<td>$\frac{\Gamma(s)}{\text{B}(s)} \sin \frac{\alpha x}{\pi}$</td>
<td></td>
</tr>
<tr>
<td>$e^{-x} \cos \alpha x$</td>
<td>$\frac{\Gamma(s)}{\text{B}(s)} \cos \frac{\alpha x}{\pi}$</td>
<td></td>
</tr>
<tr>
<td>$2 \psi(x^2)$</td>
<td>$\zeta(s) = \frac{\Gamma(s)}{\Gamma(s-1)} \frac{\Gamma(\frac{1}{2})}{\pi^{\frac{1}{2}}} \zeta(s)$</td>
<td>cf. (13.21)</td>
</tr>
<tr>
<td>$\sum_{k=0}^n \frac{a(k)}{x^k}(-x)^k$</td>
<td>$\Gamma(s) \cdot \phi(-s)$</td>
<td>cf. (12.6)</td>
</tr>
</tbody>
</table>

Dirichlet series

| $\sum_{n=1} a_n e^{-nx}$ | $\Gamma(s) \cdot \mathcal{D}a(s)$ | Theorem 12.9 |
| $\sum_{n=1} a_n f(x)^n$ | $\mathcal{D}a(-s) \cdot \mathcal{M}f(-s)$ | cf. (12.5) |

Derivatives

| $f^{(n)}(x)$ | $(-1)^n \frac{\Gamma(s)}{\Gamma(s-n)} \mathcal{M}f(s-n)$ | |
| $\left(x^a \frac{d}{dx} \right)^n f(x)$ | $(-1)^n s^n \mathcal{M}f(s)$ | |

Convolutions

$x^\alpha \int_0^\infty y^\beta g \left(\frac{x}{y} \right) g(y) \frac{dy}{y}$	$\mathcal{M}f(s + \alpha) \cdot \mathcal{M}g(s + \alpha + \beta)$	cf. (12.8)
$x^\alpha \int_0^\infty y^\beta f(xy) g(y) \frac{dy}{y}$	$\mathcal{M}f(s + \alpha) \cdot \mathcal{M}g(\beta - s - \alpha)$	cf. (12.9)
$f(x) g(x)$	$\frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \mathcal{M}f(z) \cdot \mathcal{M}g(s - z) \, dz$	Proposition 12.13

Table 12.1: Mellin transforms
Now note that \(Mh(s) = Mf(s + c) \) and after replacing \(y \leftarrow \log x \) in (12.3) thus
\[
f(x) = x^{-c} \cdot h(x) = \frac{x^{-c}}{2\pi i} \int_{c-i\infty}^{c+i\infty} x^{-s} \cdot Mh(s) \, ds
= \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} x^{-(s+c)} \cdot Mf(s + c) \, ds
= \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} x^{-s} \cdot Mf(s) \, ds,
\]
the assertion. \(\square \)

12.2 PERRON’S FORMULA

Theorem 12.4 (Perron’s formula, see also Proposition 12.6 below\(^5\)). Suppose that \(Da(s) := \sum_{n=1}^{\infty} a_n \) converges uniformly on \(\{s: \Re(s) > c - \varepsilon\} \) for some \(\varepsilon > 0 \) and \(c > 0 \). Then it holds that
\[
A^*(x) := \sum_{n \leq x}^* a_n = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} Da(s) \frac{x^s}{s} \, ds \quad \text{for all (sic!) } x \in \mathbb{R},
\]
where \(\sum_{n \leq x}^* a_n = \sum_{n < x} a_n + \frac{1}{2} a_x \) if \(x \) is an integer (and \(\sum_{n \leq x}^* a_n = \sum_{n \leq x} a_n \) else).

Remark 12.5. Notice that Perron’s formula allows computing \(\sum_{n \leq x} a_n \), even if \(Da \) does not converge at \(s = 0 \).

Proof. By Abel’s summation formula (8.6) it follows that
\[
Da(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s} = \int_0^\infty \frac{1}{x^s} \, dA(x) = s \int_0^\infty A(x) \frac{x^{s+1}}{x^s} \, dx = s \cdot MA(-s).
\]
From Mellin inversion (12.1) we deduce that
\[
A(x) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} MA(s) x^{-s} \, ds
= \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \frac{Da(-s)}{-s} \cdot x^{-s} \, ds
= \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} Da(s) \frac{x^s}{s} \, ds,
\]
the assertion. \(\square \)

Proposition 12.6 (Discrete convolution). It holds that
\[
\sum_{n=1}^{\infty} a_n \cdot f\left(\frac{n}{x}\right) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} Da(s) \cdot Mf(s) x^s \, ds.
\]

Remark 12.7. The preceding result generalizes Perron’s formula. Indeed, choose \(f(x) := H(x - 1) \), then \(Mf(s) = \frac{1}{s} \) (cf. Table 12.1) and this gives Perron’s formula (12.4).

\(^5\)Oskar Perron, 1880–1975, German mathematician
Proof. We have that
\[
M \left(\sum_{n=1}^{\infty} a_n \cdot f \left(\frac{n}{x} \right) \right)(s) = \int_{0}^{\infty} x^{s-1} \sum_{n=1}^{\infty} a_n \cdot f \left(\frac{n}{x} \right) \, dx
\]
\[
= \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} D_{a}(-s) \cdot Mf(-s) \, ds
\]
By inverting the formula with (12.1) we obtain
\[
\sum_{n=1}^{\infty} a_n \cdot f \left(\frac{n}{x} \right) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} D_{a}(-s) \cdot Mf(-s) \, ds
\]
the result.

However, the latter identity is only almost everywhere and \(A(x) \) is not continuous at integers.

To verify Perron’s formula rigorously (i.e., for all \(x \in \mathbb{R} \)) we shall employ the following auxiliary lemma.

Lemma 12.8. Let \(c > 0 \), \(y > 0 \) and \(T > 0 \). Further, set
\[
I(y,T) := \frac{1}{2\pi i} \int_{c-iT}^{c+iT} y^s \frac{s}{s} \, ds \quad \text{and} \quad H(y) := \begin{cases}
0 & \text{if } y < 0, \\
\frac{1}{2} & \text{if } y = 0, \\
1 & \text{if } y > 0
\end{cases}
\]
(Heaviside step function, cf. (12.2)). It holds that
\[
|I(y,T) - H(y-1)| < \left\{ \begin{array}{ll}
y^c \min \left(1, \frac{1}{T \log |y|} \right) & \text{if } y \neq 1, \\
\frac{c}{\pi T} & \text{if } y = 1
\end{array} \right.
\]
(cf. Table 12.1 with \(b = 1 \) and \(a = 0 \).)

Proof. For \(y = 1 \),
\[
I(1,T) = \frac{1}{2\pi} \int_{-T}^{T} \frac{dt}{c + it} = \frac{1}{2\pi} \int_{-T}^{T} \frac{c - it}{c^2 + t^2} \, dt = \frac{1}{\pi} \int_{0}^{T} \frac{c}{c^2 + t^2} \, dt
\]
\[
= \frac{1}{\pi} \int_{0}^{T/c} \frac{1}{1 + t^2} \, dt = \frac{1}{\pi} \int_{0}^{\infty} \frac{1}{1 + t^2} \, dt - \frac{1}{\pi} \int_{T/c}^{\infty} \frac{1}{1 + t^2} \, dt = \frac{1}{2} - \frac{1}{\pi} \int_{T/c}^{\infty} \frac{1}{1 + t^2} \, dt
\]
(recall that \(\arctan z = \frac{1}{1 + z^2} \)) and hence \(|I(1,T) - \frac{1}{2}| < \frac{1}{\pi} \int_{T/c}^{\infty} \frac{dt}{t} = \frac{c}{\pi T} \).

If \(0 < y < 1 \), then \(0 = \int \frac{y^s}{s} \, ds \) for the contour according Figure 12.1a and hence
\[
I(y,T) = \frac{1}{2\pi i} \int_{c-iT}^{c+iT} \left(\int_{c-iT}^{r-iT} + \int_{r-iT}^{r+iT} - \int_{c+iT}^{r+iT} \right) \frac{y^s}{s} \, ds
\]
\[
= \frac{1}{2\pi i} \int_{r-iT}^{r+iT} \left(\int_{c-iT}^{r-iT} - \int_{c+iT}^{r+iT} \right) \frac{y^s}{s} \, ds
\]
rough draft: do not distribute
and thus \(|I(y,T)| < 2 \frac{1}{\pi} \int_c^\infty \frac{y^r}{r} \, dr \leq \frac{y^r}{\pi|\log y|}\) and thus the result.

For \(y > 1\), the function \(s \mapsto \frac{\lambda^s}{s}\) has a pole with residue 1 at \(s = 0\). For the integral along the contour in Figure 12.1b thus,

\[I(y,T) = 1 - \frac{1}{2\pi i} \left(\int_{c+iT}^{c+iT} + \int_{-r+iT}^{-r+iT} + \int_{-r-iT}^{c-iT} \right) \frac{\lambda^s}{s} \, ds. \]

This integral can be treated as above and thus the result.

Proof of Perron’s formula (Theorem 12.4). It holds that

\[A(x) = \sum_{n \leq x} a_n = \sum_{n=1}^\infty a_n \frac{\lambda}{n} \left(\frac{x}{n} - 1 \right) \]
\[= \sum_{n=1}^\infty a_n \frac{1}{2\pi i} \int_c^{c+iT} \left(\frac{x}{n} \right) \frac{\lambda^s}{s} \, ds \]
\[= \frac{1}{2\pi i} \int_{c-iT}^{c+iT} \left(\sum_{n=1}^\infty \frac{a_n}{n^s} \right) \frac{x^s}{s} \, ds, \]

the assertion.

\[\blacksquare \]

12.3 **RAMANUJAN’S MASTER THEOREM**

Theorem 12.9. Let \(D_a(s) := \sum_{n=1}^\infty \frac{a_n}{n^s}\) and \(f_a(x) := \sum_{n=1} a_n e^{-nx}\), then

\[\Gamma(s) \cdot D_a(s) = M f_a(s), \]

cf. Table 12.1.

Proof. Indeed,

\[M f_a(s) = \sum_{n=1} a_n \int_0^\infty x^{s-1} e^{-nx} \, dx \]
\[= \sum_{n=1} \frac{a_n}{n^s} \int_0^\infty x^{s-1} e^{-x} \, dx \]
\[= D_a(s) \cdot \Gamma(s), \]

Version: December 22, 2019
the assertion. □

Perron’s formula\(^6\) describes the inverse Mellin transform applied to a Dirichlet series.

Theorem 12.10 (Ramanujan’s master theorem\(^7\)). Suppose that \(\phi \) is entire and \(|\phi(s)\Gamma(s)| < \frac{1}{R^{1-s}} \) in \(\{s : \Im(s) < c, |x| \geq R\} \) for increasing \(R \). Then the Mellin transform of

\[
 f(x) := \sum_{k=0}^{\infty} \frac{\phi(k)}{k!} (-x)^k
\]

is

\[
 Mf(s) = \int_{0}^{\infty} x^{s-1} f(x) \, dx = \Gamma(s) \cdot \phi(-s).
\]

The identity is often employed as formal identity.

Proof. The Gamma function \(s \mapsto \Gamma(s) \) has poles at \(s \in \{-k : k = 0, 1, 2, \ldots\} \) and the residues at \(s = -k \) are given by \(\Gamma(s) = (-1)^{k} \frac{1}{k!} + O(1) \), cf. (6.6). By Cauchy’s residue theorem, applied to the contour Figure 12.1b displays,

\[
 \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \Gamma(s) \phi(-s) x^{-s} \, ds = \sum_{k=0}^{\infty} (-1)^{k} \frac{\phi(k)}{k!} x^{k} = \sum_{k=0}^{\infty} \frac{\phi(k)}{k!} (-x)^k = f(x),
\]

and the assertion follows by Mellin inversion (12.1). □

12.4 CONVOLUTIONS

Definition 12.11 (Multiplicative convolution). The convolution of two functions \(f, g : (0, \infty) \to \mathbb{C} \)

is

\[
 (f * g)(x) = \int_{0}^{\infty} f\left(\frac{x}{y} \right) g(y) \, \frac{dy}{y}.
\]

Proposition 12.12 (Convolution). It holds that

\[
 M(f * g) = Mf \cdot Mg;
\]

and further (cf. Table 12.1),

\[
 M\left(x^{\alpha} \int_{0}^{\infty} y^{\beta} f\left(\frac{x}{y} \right) g(y) \, \frac{dy}{y} \right)(s) = Mf(s+\alpha) \cdot Mg(\beta-s-\alpha),
\]

\[
 M\left(x^{\alpha} \int_{0}^{\infty} y^{\beta} f(xy) g(y) \, \frac{dy}{y} \right)(s) = Mf(s+\alpha) \cdot Mg(\beta - s - \alpha).
\]

Proof. With Fubini,

\[
 M\left(x^{\alpha} \int_{0}^{\infty} y^{\beta} f\left(\frac{x}{y} \right) g(y) \, \frac{dy}{y} \right)(s) = \int_{0}^{\infty} x^{s+\alpha-1} \int_{0}^{\infty} y^{\beta-1} f\left(\frac{x}{y} \right) g(y) \, dy \, dx
\]

\[
= \int_{0}^{\infty} x^{s+\alpha-1} \int_{0}^{\infty} y^{\beta+\alpha-1} g(y) \, dy \, \int_{0}^{\infty} x^{s+\alpha-1} f(x) \, dx
\]

\[
= Mf(s+\alpha) \cdot Mg(\beta + s + \alpha)
\]

\(^6\)Oskar Perron, 1880–1975, German
\(^7\)Srinivasa Ramanujan, 1887–1920, Indian

rough draft: do not distribute
and thus (12.8) and (12.7). Further,

\[M\left(\alpha^\beta \int_0^\infty y^\beta f(xy)g(y)\,\frac{dy}{y}\right)(s) = \int_0^\infty x^{s+\alpha-1} \int_0^\infty y^{\beta-1} f(xy) g(y)\,dy\,dx \]

\[= \int_0^\infty x^{s+\alpha-1} f(x)\,dx \cdot \int_0^\infty y^{\beta-\alpha-1} g(y)\,dy \]

\[= M\{f(x + \alpha) \cdot Mg(\beta - \alpha - s)\} \]

and thus (12.9). \[\square\]

Proposition 12.13. We have that

\[M(f \cdot g)(s) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} Mf(z) \cdot Mg(s - z)\,dz. \]

Proof. Recall from Table 12.1 that \(M^{-1}(\cdot) = \delta(-\cdot - 1) \), thus

\[\frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} Mf(z) \cdot Mg(s - z)\,dz = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \int_0^\infty x^{s-1} f(x)\,dx \cdot \int_0^\infty y^{r-1} g(y)\,dy\,dz \]

\[= \int_0^\infty \int_0^\infty \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \frac{1}{x} \,dx \cdot \frac{y}{x} g(y)\,dy\,dz \]

\[= \int_0^\infty g(x) x^{s-1} f(x)\,dx \]

and thus the assertion. \(\square\)

Example 12.14. Let \(\phi(k) = 1 \), then \(f(x) = e^{-x} \) and \(Mf(s) = \Gamma(s) \).

Example 12.15. Let \(\phi(k) := -\alpha^k \sin \frac{k\pi}{2} \) so that

\[f(x) = \sum_{k=0}^\infty \frac{\phi(k)}{k!}(-x)^k = \sum_{n=0}^\infty (-1)^n \frac{\alpha^{2n+1}}{(2n+1)!}x^{2n+1} = \sin \alpha x. \]

It follows that \(M(\sin \alpha x)(s) = \frac{\Gamma(s)}{\alpha^s} \sin \frac{\pi s}{2} \) (cf. Table 12.1).

Example 12.16. Let \(\phi(k) := \alpha^k \cos \frac{k\pi}{2} \) so that

\[f(x) = \sum_{k=0}^\infty \frac{\phi(k)}{k!}(-x)^k = \sum_{n=0}^\infty (-1)^n \frac{\alpha^{2n}}{(2n)!}(-x)^{2n} = \cos \alpha x \]

and thus \(M(\cos \alpha x)(s) = \frac{\Gamma(s)}{\alpha^s} \cos \frac{\pi s}{2} \).
Figure 12.2: I remember once going to see him (Ramanujan) when he was lying ill at Putney. I had ridden in taxi-cab No. 1729, and remarked that the number seemed to be rather a dull one, and that I hoped it was not an unfavourable omen. ‘No’, he replied, ‘it is a very interesting number; it is the smallest number expressible as the sum of two [positive] cubes in two different ways.’
Riemann zeta function

Mathematicians have tried in vain to this day to discover some order in the sequence of prime numbers, and we have reason to believe that it is a mystery into which the human mind will never penetrate.

Leonhard Euler, 1707–1783

Riemann\(^1\) (cf. Riemann [15]) was the first to consider the function \(\zeta\) on the complex plane.

Remark 13.1 (Derivatives). The derivatives of the zeta function are \(\zeta^{(k)}(s) = (-1)^k \sum_{n=2}^{\infty} \frac{\log^k n}{n^s}\), \(k \geq 1\).

Proposition 13.2 (Explicit values). For \(n = 1, 2, \ldots\) it holds that

\[\zeta(2n) = (-1)^{n-1} \frac{B_{2n}}{2(2n)!}(2\pi)^{2n}.\] \(13.1\)

Proof. Choose \(x = 0\) in the Fourier series (5.10) and note that \(\beta_k\) is continuous for \(k \geq 2\) with \(\beta_k(0) = B_k\). \(\square\)

Example 13.3 (Basel problem). In particular we find the relations

\[\zeta(2) = \sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}, \quad \zeta(4) = \sum_{k=1}^{\infty} \frac{1}{k^4} = \frac{\pi^4}{90}, \quad \zeta(6) = \sum_{k=1}^{\infty} \frac{1}{k^6} = \frac{\pi^6}{945},\] \(13.2\)

e etc.

Note that \(\left|\frac{1}{n^s}\right| = \frac{1}{n^\sigma}\) for \(s = \sigma + it\) so that (9.5) converges indeed for \(\Re(s) > 1\). The following provides an extension to \(\Re(s) > 0\).

13.1 RELATED DIRICHLET SERIES

Lemma 13.4. It holds that

\[\zeta(s) = \frac{1}{1-2^{1-s}} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^s}, \quad \Re(s) > 0.\] \(13.3\)

Remark 13.5. Note, that the abscissa of convergence (cf. Theorem 11.7) of the series \(\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^s}\) is \(s_0 = 0\), although \((1-2^{1-s}) \zeta(s) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^s}\) does not have a singularity at \(\Re(s) = s_0\). This is a notable difference to power series.

\(^1\)Bernhard Riemann, 1826–1866, German
Proof. Indeed,
\[
\eta(s) := \left(1 - \frac{2}{2^s}\right) \zeta(s) = 1 + \frac{1}{2^s} + \frac{1}{3^s} + \frac{1}{4^s} + \frac{1}{5^s} + \frac{1}{6^s} + \frac{1}{7^s} + \frac{1}{8^s} + \ldots
\]
\[
- \frac{2}{2^s} - \frac{2}{4^s} - \frac{2}{6^s} - \frac{2}{8^s}
\]
\[
= 1 - \frac{1}{2^s} + \frac{1}{3^s} - \frac{1}{4^s} + \frac{1}{5^s} - \frac{1}{6^s} + \frac{1}{7^s} + \ldots
\]
and thus the result. □

Proposition 13.6. It holds that
\[
\zeta(s) = \frac{1}{s - 1} \sum_{n=1}^{\infty} \left(\frac{n}{n+1}^s - \frac{n-s}{n^s}\right),
\]
the series converges for \(\Re(s) > 0\).

Proof. Indeed,
\[
\sum_{n=1}^{\infty} \left(\frac{n}{n+1}^s - \frac{n-s}{n^s}\right) = \sum_{n=1}^{\infty} \frac{n-1}{n^s} - \sum_{n=1}^{\infty} \frac{n-s}{n^s}
\]
\[
= \sum_{n=1}^{\infty} \frac{n-1-n+s}{n^s} = (s-1)\zeta(s),
\]
hence the identity. As for convergence recall that \((1+x)^y = \sum_{k=0}^{\infty} \binom{y}{k} x^k\). Thus
\[
\frac{n}{(n+1)^s} - \frac{n-s}{n^s} = \frac{1}{n^s} \left(n \left(1 + \frac{1}{n}\right)^{s-n} - n + s\right)
\]
\[
= \frac{1}{n^s} \left(n - n \frac{s}{n} + \frac{s(s+1)}{2n^2} + O\left(\frac{1}{n^2}\right) - n + s\right)
\]
\[
= \frac{s(s+1)}{2n^{s+1}} + O\left(\frac{1}{n^{s+2}}\right)
\]
and thus the result. □

Remark 13.7. The series converges for \(s = 1\) to \(\sum_{n=1}^{\infty} \left(\frac{n}{n+1}^s - \frac{n-1}{n^s}\right) = \sum_{n=1}^{\infty} \left(-\frac{1}{n+1} + \frac{1}{n}\right) = 1\) so that \(\zeta\) has a pole at \(s = 1\) with residue 1, i.e., \(\zeta(s) = \frac{1}{s-1} + O(1)\).

Proposition 13.8. The series
\[
\zeta(s) = \frac{1}{s-1} \sum_{n=1}^{\infty} \frac{n(n+1)}{2} \left(\frac{2n+3+s}{(n+1)^{s+2}} - \frac{2n-1-s}{n^{s+2}}\right)
\]
converges for \(\Re(s) > -1\).
Proof. As above,

\[
\sum_{n=1}^{\infty} \frac{n(n+1)}{2} \left(\frac{2n+3+s}{(n+1)^{s+2}} - \frac{2n-1-s}{n^{s+2}} \right)
= \sum_{n=1}^{\infty} \frac{(n-1)n}{2} \cdot \left(\frac{2(n-1) + 3 + s}{n^{s+2}} - \frac{n(n+1) + 2n-1-s}{n^{s+2}} \right)
= \sum_{n=1}^{\infty} \frac{2n^2(s-1)}{2n^{s+2}} = (s-1) \zeta(s),
\]

after simplifications. Convergence can be established as above, it holds that

\[
\frac{n(n+1)}{2} \left(\frac{2n+3+s}{(n+1)^{s+2}} - \frac{2n-1-s}{n^{s+2}} \right) = \frac{1}{2} \frac{(s+3)}{n^{s+2}} + O \left(n^{-s-3} \right)
\]

and thus the assertion. □

Remark 13.9. Note that

\[
\zeta(0) = -\frac{1}{2} \sum_{n=1}^{\infty} \left(\frac{2n+3}{n+1} - (n+1) \frac{2n-1}{n} \right) = -\frac{1}{2} \sum_{n=1}^{\infty} \left(1 - \frac{1}{n+1} \right) = -\frac{1}{2}.
\]

13.2 REPRESENTATIONS AS INTEGRAL

Proposition 13.10 (Mellin transform). It holds that

\[
\zeta(s) \Gamma(s) = \int_{0}^{\infty} \frac{x^{s-1}}{e^x-1} \, dx \quad (\Re(s) > 1).
\]

Proof. Apply Theorem 12.9 with \(f(x) = \sum_{n=1}^{\infty} e^{-nx} = \frac{1}{e^x-1} \). □

Theorem 13.11. It holds that

\[
\zeta(s) = s \int_{1}^{\infty} \frac{u^{s-1} \lfloor u \rfloor}{u^{s+1}} \, du, \quad \Re(s) > 1.
\]

Proof. Choose \(a_n := 1 \) so that \(A(x) = \lfloor x \rfloor \) and \(\varphi(x) = \frac{1}{x} \). Then apply Abel’s summation formula (8.6). □

Theorem 13.12. It holds that

\[
\zeta(s) = -s \int_{0}^{\infty} \frac{\lfloor x \rfloor}{t^{r-1}} \, dt, \quad 0 < \Re(s) < 1
\]

where \(\text{frac}(x) := x - \lfloor x \rfloor \) is the fractional part of the number \(x \in \mathbb{R} \).

Proof. From (13.6) we infer that

\[
\zeta(s) = s \int_{0}^{1} \frac{1}{u} u^{s-1} \, du, \quad \Re(s) > 1.
\]

\[\text{I.e., } 1 + 1 + 1 + \cdots = -\frac{1}{2}, \text{cf. Figure 13.3}\]
It holds that \(f_0^1 \frac{1}{u} u^{s-1} du = \int_0^1 u^{s-2} du = \frac{\frac{u^{s-1}}{s-1}}{|u|} \bigg|_{u=0} = \frac{1}{s-1} \) for \(\Re(s) > 1 \) and thus
\[
\zeta(s) - \frac{s}{s-1} = s \int_0^1 \left(\frac{1}{u} - \frac{1}{u} \right) u^{s-1} du. \tag{13.8}
\]

Now note that \(\int_1^\infty \frac{1}{u} u^{s-1} du = \int_1^\infty u^{s-2} du = \frac{u^{s-1}}{s-1} \bigg|_{u=1} = -\frac{1}{s-1} \) for \(\Re(s) < 1 \) and thus
\[
\zeta(s) - \frac{s}{s-1} = s \int_0^\infty \left(\frac{1}{u} - \frac{1}{u} \right) u^{s-1} du + s \int_1^\infty \frac{1}{u} u^{s-1} du.
\]
\[= s \int_0^\infty \left(\frac{1}{u} - \frac{1}{u} \right) u^{s-1} du - \frac{s}{s-1},\]
and thus the result. \(\square \)

Remark 13.13. The equation (13.8) holds for \(\Re(s) > 0 \) and thus proves that \(\zeta \) has a single pole at \(s = 1 \).

Definition 13.14. The function \(M(x) := \sum_{n \leq x} \mu(n) \) is the Mertens function.\(^4\)

Theorem 13.15. It holds that
\[
\frac{1}{\zeta(s)} = s \int_1^{\infty} \frac{M(u)}{u^{s+1}} du, \quad \Re(s) > 1.
\tag{13.9}
\]

Proof. In Abel’s summation formula (8.6) choose \(a_n := \mu(n) \) so that \(A(x) = M(x) \) and \(\phi(x) = \frac{1}{\sqrt{x}} \), then the result derives from (9.9). \(\square \)

Theorem 13.16 (Riemann, cf. Edwards [7]). It holds that (recall that \((-x)^s = \exp(s \cdot \log(-x))\), \(\text{which is not defined for } x \in \mathbb{R}_{\geq 0}\))
\[
2 \sin(\pi s) \Gamma(s) \zeta(s) = i \oint_H \frac{(-x)^{s-1}}{e^x - 1} dx,
\tag{13.10}
\]
where \(H \) is the Hankel\(^5\) contour.

Remark 13.17. The Hankel contour (aka. keyhole contour, cf. Figure 13.1) is a path in the complex plane which extends from \([+\infty, \delta]\), around the origin counter clockwise and back to \([+\infty, -\delta]\), where \(\delta \) is an arbitrarily small positive number.

Proof. We have that
\[
\int_H \frac{(-x)^{s-1}}{e^x - 1} dx = -\left(\int_0^\infty + \int_{|x| = \delta} + \int_\delta^\infty \right) \frac{(-x)^s}{e^x - 1} dx, \tag{11.11}
\]
although, strictly speaking, the path of integration must be taken to be slightly above the real axis as it descends from \(+\infty\) to \(0\) and slightly below the real axis as it goes from \(0\) back to \(+\infty\).

Now note that
\[
\int_{|x| = \delta} \frac{(-x)^s}{e^x - 1} dx = \int_{|x| = \delta} x^{s-2} \sum_{k=0}^\infty B_k \frac{(-x)^k}{k!} dx
\]
\[= \int_0^{2\pi} \delta^{s-1} \cdot e^{ir(s-1)} \sum_{k=0}^\infty \frac{(-1)^k B_k}{k!} \delta^k e^{ikt} dt \rightarrow 0 \]

\(^4\)Franz Mertens, 1840–1927
\(^5\)Hermann Hankel, 1839–1873, German mathematician

rough draft: do not distribute
for $s > 1$ by (5.1). The remaining terms in the integral (13.11) are

$$\lim_{\delta \to 0} \int_{-\infty}^{\delta} \exp(s \log x - i\pi) \frac{1}{(e^x - 1)x} \, dx + \int_{\delta}^{+\infty} \exp(s \log x + i\pi) \frac{1}{(e^x - 1)x} \, dx = \left(e^{i\pi s} - e^{-i\pi s} \right) \int_{0}^{\infty} \frac{x^{s-1}}{e^x - 1} \, dx.$$

With (13.5) we thus have $\int_{H} \frac{(-x)^{s-1}}{e^{x-1}} \, dx = -2i \sin(\pi s) \Gamma(s) \zeta(s)$ and thus the assertion. \hfill \square

13.3 GLOBALLY CONVERGENT SERIES

Theorem 13.18. It holds that

$$\zeta(s) = \frac{1}{1 - 2^{1-s}} \sum_{n=0}^{\infty} \frac{1}{2^{n+1}} \sum_{k=0}^{n} (-1)^k \binom{n}{k} \frac{1}{(k + 1)^s},$$

the series converges for all $s \in \mathbb{C}$.

Proof. Apply Euler transform (cf. (8.2)) to (13.3). \hfill \square

Theorem 13.19 (Cf. Hasse [11]). It holds that

$$\zeta(s) = \frac{1}{s - 1} \sum_{n=0}^{\infty} \frac{1}{n + 1} \sum_{k=0}^{n} (-1)^k \binom{n}{k} \frac{(-1)^k}{(k + 1)^{s-1}};$$

(13.12)
Figure 13.3: Ramanujan’s proof of \(\zeta(-1) = 1 + 2 + 3 + \cdots = -\frac{1}{12} \) in his letter to Hardy

the series converges for all \(s \in \mathbb{C} \).

Proof. Note first that

\[
\sum_{k=0}^{n} \binom{n}{k} \frac{(-1)^k}{(k+1)^s} = \frac{1}{\Gamma(s)} \int_{0}^{\infty} \sum_{k=0}^{n} \binom{n}{k} e^{-(k+1)t} t^{s-1} \, dt
\]

\[
= \frac{1}{\Gamma(s)} \int_{0}^{\infty} (1-e^{-t})^n e^{-t} t^{s-1} \, dt.
\]

Finally, as \(\log(1-x) = -\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1} \),

\[
\sum_{n=0}^{\infty} \frac{1}{n+1} \sum_{k=0}^{n} \binom{n}{k} \frac{(-1)^k}{(k+1)^s} = \frac{1}{\Gamma(s)} \int_{0}^{\infty} \sum_{n=0}^{\infty} \frac{(1-e^{-t})^n}{n+1} e^{-t} t^{s-1} \, dt
\]

\[
= \frac{1}{\Gamma(s)} \int_{0}^{\infty} \frac{t^{s}}{1-e^{-t}} \, dt
\]

\[
= \frac{1}{\Gamma(s)} \zeta(s+1) \Gamma(s+1)
\]

by (13.5) and thus the result. \(\Box \)

Corollary 13.20 (Explicit values, cf. Remark 13.9). *It holds that* \(\zeta(0) = -\frac{1}{2} \) and \(\zeta(-n) = -\frac{B_{n+1}}{n+1}, \quad n = 1, 2, 3, \ldots \)

Proof. By comparing (5.5) and (13.12) it follows with (5.6) that \(\zeta(-n) = -\frac{B_{n+1}}{n+1} = -\frac{B_{n+1}}{n+1} \). \(\Box \)

Alternative proof. The assertion follows as well from the residue theorem with (5.1) and (13.10). \(\Box \)

Remark 13.21 (Cf. Figure 13.3). *This result is often stated as* \(1 + 1 + 1 + \cdots = \zeta(0) = -\frac{1}{2} \) or \(1 + 2 + 3 + \cdots = \zeta(-1) = -\frac{1}{12} \).

Corollary 13.22. *It holds (cf. Remark 5.3 and Figure 13.2) that*

\[
\zeta(s) = 0, \quad s = -2, -4, -6, \ldots
\]

These are called the trivial zeros of the Riemann zeta function.
13.4 POWER SERIES EXPANSIONS

Define the function $f_n(s) := \frac{n^s}{(s+1)^n} - \frac{n^{-s}}{n^s}$ and recall from (13.4) that $\zeta(s) = \frac{1}{s-1} \sum_{n=1}^{\infty} f_n(s)$. The series converges for $\Re(s) > 0$. From Taylor we obtain that

$$
\zeta(s) = \frac{1}{s-1} \sum_{n=1}^{\infty} \left(f_n(1) + (s-1) f'_n(1) + \frac{(s-1)^2}{2} f''_n(1) + \ldots \right)
$$

$$
= \sum_{n=1}^{\infty} \frac{f_n(1)}{s-1} + \sum_{n=1}^{\infty} f'_n(1) + \frac{s-1}{2} \sum_{n=1}^{\infty} f''_n(1) + \ldots
$$

Now note, for $k \geq 1$, that

$$
(-1)^k f^{(k)}_n(s) = -k \log^{k-1} n \frac{n^s}{n^s} - (n-s) \log^k n \frac{n^s}{n^s} + n \log^k (n+1) \frac{n^s}{(n+1)^s}
$$

and

$$
\frac{(-1)^k f^{(k+1)}_n(1)}{k+1} = \log^k n \frac{n}{n} - \frac{1}{k+1} \left(\frac{n}{n+1} \log^{k+1} (n+1) - \frac{n-1}{n} \log^{k+1} n \right).
$$

Definition 13.23. The numbers

$$
\gamma_k := \lim_{m \to \infty} \sum_{n=1}^{m} \log^k n \frac{n}{n} - \frac{\log^{k+1} m}{k+1}
$$

are Stieltjes constants.⁶

Remark 13.24. The constant $\gamma_0 = \gamma = 0.577215 \ldots$ is Euler’s constant or Euler–Mascheroni constant, cf. (7.3). The following constants are $\gamma_1 = -0.072815 \ldots$, $\gamma_2 = -0.009690 \ldots$, etc.

Remark 13.25. Note in (13.14) that $\int_1^m \log^k n \frac{n}{n} \, dn = \frac{\log^{k+1} m}{k+1}$.

Theorem (Global Laurent series expansion). It holds that

$$
\zeta(s) = \frac{1}{s-1} + \sum_{k=0}^{\infty} \frac{(-1)^k \gamma_k}{k!} (s-1)^k
$$

$$
= \frac{1}{s-1} + \gamma - \gamma_1 (s-1) + \frac{\gamma_2}{2} (s-1)^2 + \ldots
$$

for every $s \in \mathbb{C} \setminus \{0\}$, where γ_k are Stieltjes constants. ζ has a simple pole at $s = 1$ with residue $\text{Res}_1(\zeta) = 1$.

Proof. Note first that

$$
\sum_{n=1}^{\infty} f_n(1) = \sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1
$$

It follows with (13.13) that

$$
\gamma_k = \lim_{m \to \infty} \sum_{n=1}^{m} \frac{\log^k n}{n} - \frac{\log^{k+1} m}{m+1} = \lim_{m \to \infty} \sum_{n=1}^{m} \frac{(-1)^k f^{(k+1)}_n(1)}{k+1}.
$$

⁶Thomas Jean Stieltjes, 1856–1894, Dutch
as the sum is telescoping. Note further that
\[
\frac{m}{m+1} \log^{k+1}(m+1) - \log^{k+1} m = \frac{m}{m+1} \left(\log m + \log \left(1 + \frac{1}{m} \right) \right)^{k+1} - \log^{k+1} m
\]
\[
= \frac{m}{m+1} \left(\log m + \frac{1}{m} \right)^{k+1} - \log^{k+1} m + O \left(\frac{\log^k m}{m} \right)
\]
and thus the assertion.

\[\square\]

13.5 Euler’s Theorem

Corollary 13.26 (Euler’s theorem). The series of reciprocal primes diverges,
\[
\sum_{p \text{ prime}} \frac{1}{p} = \infty.
\]

Remark 13.27 (Euler’s informal proof). We provide Euler’s informal proof first. Note, that
\[
\log \sum_{n=1}^{\infty} \frac{1}{n} = \log \prod_{p \text{ prime}} \frac{1}{1-p^{-1}} = - \sum_{p \text{ prime}} \log \left(1 - \frac{1}{p} \right)
\]
\[
= \sum_{p \text{ prime}} \left(\frac{1}{p} + \frac{1}{2p^2} + \frac{1}{3p^3} + \ldots \right)
\]
\[
= \sum_{p \text{ prime}} \frac{1}{p} + \frac{1}{2} \sum_{p \text{ prime}} \frac{1}{p^2} + \frac{1}{2} \sum_{p \text{ prime}} \frac{1}{p^3} + \ldots
\]
\[
= A + \frac{1}{2} B + \frac{1}{3} C + \frac{1}{3} D + \ldots
\]
\[
= A + K
\]
for some \(K < 1 \). By letting \(x \to 1 \) in \(\log \frac{1}{1-x} = \sum_{n=1}^{\infty} \frac{x^n}{n} \) we find that \(\sum_{n=1}^{\infty} \frac{1}{n} = \log \infty \). It follows that
\[
A = \sum_{p \text{ prime}} \frac{1}{p} = \log \log \infty.
\]

Proof. From (9.14) and Proposition 9.32 we deduce that
\[
\left| \log \zeta(s) - \sum_{p \text{ prime}} \frac{1}{p^s} \right| \leq \sum_{k=2}^{\infty} \frac{1}{k} \frac{1}{k-1} = 1.
\]

From Taylor series expansion (13.15) we have for \(s \sim 1 \) and \(\Re(s) > 1 \) that
\[
P(s) = \sum_{p \text{ prime}} \frac{1}{p^s} \sim \log \zeta(s) \sim \log \frac{1}{s-1}
\]
and thus the result. \[\square\]
Remark 13.28. Note the contrast: it holds that

\[\sum_{p \text{ prime}} \frac{1}{p^s} \sim \log \frac{1}{s-1} \]

by (13.16), but, as \(\frac{\zeta'(s)}{\zeta(s)} = -\frac{1}{s-1} \),

\[\sum_{p \text{ prime}} \frac{\log p}{p^s} \sim \frac{1}{s-1} \]

by (9.12).

Theorem 13.29 (Mertens’ second theorem). It holds that

\[\sum_{p \leq x} \frac{1}{p} \sim \log \log x + \gamma + \sum_{k=2}^{\infty} \frac{\mu(k)}{k} \log \zeta(k) + O\left(\frac{1}{\log x}\right). \]

The Meissel–Mertens constant is \(M := \gamma + \sum_{k=2}^{\infty} \frac{\mu(k)}{k} \log \zeta(k) = \gamma + \sum_{p \in \mathbb{P}} \log \left(1 - \frac{1}{p}\right) + \frac{1}{p} \approx 0.21649... \).

See Theorem 16.9 below for a proof based on the prime number theorem (PNT, Theorem 16.4 below).

Remark 13.30. We have that \(\log \log 10^{10000} \approx 10.04 \) and the age of the universe is \(\approx 4.3 \times 10^{17} \) seconds.

13.6 THE FUNCTIONAL EQUATION

Riemann’s functional equation for the \(\zeta \)-function is a reflection formula relating \(\zeta(s) \) with \(\zeta(1 - s) \).

Version: December 22, 2019
Theorem 13.31 (Functional equation). It holds that

\[\zeta(s) = 2(2\pi)^{s-1} \sin \frac{\pi s}{2} \Gamma(1-s) \zeta(1-s). \]

Further, with \(\xi(s) := \frac{s(1-s)}{2\pi^2} \Gamma \left(\frac{1}{2} \right) \zeta(s) \) we have that

\[\xi(s) = \xi(1-s). \] \hfill (13.17)

Remark 13.32. Riemann actually considered the function \(\Xi(z) := \xi \left(\frac{1}{2} + iz \right) \).

Proof. Recall from (8.8) the definition of the Jacobi theta function \(\vartheta \) and define

\[\psi(x) := \frac{3}{2} x \vartheta'(x) + x^2 \vartheta''(x) = \sum_{k=1}^\infty \left(2 \left(k^2 \pi x \right)^2 - 3k^2 \pi x \right) e^{-k^2 \pi x} \] \hfill (13.18)

(see Figure 13.5a for the graph; cf. Riemann's note, Figure 13.4). As Jacobi's theta function, the function \(\psi \) satisfies the functional equation (cf. (8.9))

\[\psi(x) = \frac{1}{\sqrt{x}} \psi \left(\frac{1}{x} \right). \] \hfill (13.19)

Indeed, we have from (13.18) that

\[\psi(x) = \sqrt{x} \frac{d}{dx} \left(x^{3/2} \vartheta'(x) \right) = \sqrt{x} \frac{d}{dx} \left(x^{3/2} \vartheta'(x) \right) \]

and with (8.9) thus

\[\psi(x) = \sqrt{x} \frac{d}{dx} \left(x^{3/2} \vartheta'(x) \left(\frac{1}{x} \right) \right) \]

\[= \sqrt{x} \frac{d}{dx} \left(x^{3/2} \left(-\frac{1}{2} x^{-3/2} \vartheta \left(\frac{1}{x} \right) - x^{-3/2} \vartheta' \left(\frac{1}{x} \right) \right) \right) \]

\[= \sqrt{x} \frac{d}{dx} \left(-\frac{1}{2} x^{1/2} \vartheta \left(\frac{1}{x} \right) + \frac{1}{x} \vartheta' \left(\frac{1}{x} \right) + \frac{1}{x^3} \vartheta'' \left(\frac{1}{x} \right) \right) \]

\[= \frac{1}{\sqrt{x}} \psi \left(\frac{1}{x} \right), \]

i.e., (13.19).
It holds that
\[
\int_0^\infty x^{\frac{\xi}{2} - 1} \psi(x) \, dx = \sum_{k=1}^{\infty} \int_0^\infty x^{\frac{\xi}{2} - 1} \left(2 \left(k^2 \pi x \right)^2 - 3k^2 \pi x \right) e^{-k^2 \pi x} \, dx
\]
\[
= \frac{\zeta(s)}{\pi^{n/2}} \sum_{k=1}^{\infty} \int_0^\infty \frac{x^{\frac{\xi}{2} - 1}}{(k^2 \pi)^{\xi}} \left(2x^2 - 3x \right) e^{-x} \, dx
\]
\[
= \frac{\zeta(s)}{\pi^{n/2}} \left(2 \Gamma \left(\frac{s}{2} + 2 \right) - 3 \Gamma \left(\frac{s}{2} + 1 \right) \right)
\]
\[
= \frac{\zeta(s)}{\pi^{n/2}} \Gamma \left(\frac{s}{2} \right) \left(2 \frac{s}{2} \left(\frac{s}{2} + 1 \right) - 3 \frac{s}{2} \right)
\]
\[
= \frac{\zeta(s)}{\pi^{n/2}} \frac{s(s-1)}{2} \Gamma \left(\frac{s}{2} \right).
\]

Hence (cf. Table 12.1)
\[
\xi(s) = \frac{\zeta(s) \frac{s(s-1)}{2} \Gamma \left(\frac{s}{2} \right)}{\pi^{n/2}} = \int_0^\infty x^{\frac{\xi}{2} - 1} \psi(x) \, dx
\]
\[
= \int_0^\infty x^{\frac{\xi}{2} - \frac{1}{2}} \psi \left(\frac{1}{x} \right) \, dx
\]
\[
= \int_0^\infty x^{-\frac{\xi}{2} + 1} \psi (x) \, dx
\]
\[
= \int_0^\infty x^{\frac{\xi}{2} - 1} \psi (x) \, dx;
\]
comparing with (13.20) reveals that \(\xi \) is symmetric and thus the functional equation (13.17).

However, convergence remains to be discussed. To this end observe that (13.18) implies that \(\psi^{(k)}(x) \to 0 \) as \(x \to \infty \) for every \(k = 0, 1, \ldots \) and further, \(\psi^{(k)}(x) \to 0 \) as \(x \to 0 \) by (13.19). It follows that (13.19) holds for all \(s \in \mathbb{C} \), the integral converges globally. \(\square \)

Remark 13.33 (Fourier transform). With (13.20) we have that
\[
\xi(s) = \int_0^\infty x^{\frac{\xi}{2} - 1} \psi(x) \, dx = \int_0^\infty x^{\frac{\xi}{2} - 1} \cdot 2 \psi(x^2) \, dx
\]
\[
= \int_{-\infty}^{\infty} e^{x(s-1/2)} \cdot 2 e^{s/2} \psi(e^{2x}) \, dx
\]
\[
= \int_{-\infty}^{\infty} \cos \left(\frac{s-1}{2} \pi x \right) \cdot 2 e^{s/2} \psi(e^{2x}) \, dx,
\]
where \(x \mapsto 2 e^{s/2} \psi(e^{2x}) \) is symmetric.

Remark 13.34 (Representations of \(\cos tx \)). The Fourier transform of the following representations derives from (6.8):
\[
\cos tx = \frac{\sin \pi t}{\pi t} - \frac{\sin \pi t}{\pi} \sum_{k=1}^{\infty} (-1)^k \frac{2t}{k^2 + t^2} \cos kx \quad (-\pi \leq x \leq \pi)
\]
\[
= \lim_{n \to \infty} H_{2n} \left(\frac{tx}{2\sqrt{n}} \right) \quad (\text{all } x)
\]
\[
= T_i(\cos x) = \cos \frac{\pi x}{2} + t \sum_{j=1}^{\infty} \left(\frac{2x}{j} \right)^{l} \cos \frac{\pi(t-j)}{2} \left(\frac{2x}{j} \right)^{l}.
\]
\(H_n \) is the Hermite polynomial and \(T_t \) the generalized Chebyshev polynomial.

Remark 13.35 (Riemann–Siegel theta function, \(Z \)-function). To investigate the function \(\zeta \) on the critical line \(\{ s \in \mathbb{C} : \Re(s) = \frac{1}{2} \} \) it is convenient to define \(\theta(t) := \arg \Gamma \left(\frac{1 + it}{2} \right) - \frac{t \log \pi}{2} \) (the principal branch of the function \(\xi \)) and \(Z(t) := e^{i \theta(t)} \xi \left(\frac{1}{2} + it \right) \). Note, that \(Z(t) \in \mathbb{R} \) and \(\zeta \left(\frac{1}{2} + it \right) = \pm Z(t) \) for \(t \in \mathbb{R} \). Figure 13.5b displays the graph of \(Z \).

Proposition 13.36 (Explicit values). It holds that \(\zeta'(0) = -\frac{1}{2} \log 2\pi \) and \(\zeta'(-2n) = (-1)^n \zeta(2n+1)2n! \left(\frac{\pi}{2} \right)^n \).

We give a further proof of the functional equation.

Second proof of Theorem 13.31. Recall from (13.6) that \(\zeta(s) = s \int_1^\infty \frac{x^{s-1}}{\pi^2} \text{d}x \), thus

\[
\zeta(s) = \frac{1}{s-1} + \frac{1}{2} - s \int_1^\infty \frac{x - \lfloor x \rfloor - \frac{1}{2}}{x^{s+1}} \text{d}x \quad (\Re(s) > -1)
\]

\[
= -s \int_0^\infty \frac{x - \lfloor x \rfloor - \frac{1}{2}}{x^{s+1}} \text{d}x \quad (-1 < \Re(s) < 0).
\]

Now recall the sawtooth wave from (5.11) so that

\[
\zeta(s) = \frac{s}{\pi} \sum_{n=1}^\infty \frac{1}{n} \int_0^\infty \frac{\sin 2\pi nx}{x^{s+1}} \text{d}x
\]

\[
= \frac{s}{\pi} \sum_{n=1}^\infty (2\pi)^n n \int_0^\infty \frac{\sin x}{x^{s+1}} \text{d}x
\]

\[
= \frac{s}{\pi} (2\pi)^s \zeta(1-s)(-\Gamma(-s)) \sin \frac{\pi s}{2},
\]

and thus the result. We have used here \(\int_0^\infty x^{s-1} \sin x \text{d}x = \Gamma(s) \sin \frac{\pi s}{2} \), see Example 12.15 and Table 12.1.
13.7 RIEMANN HYPOTHESIS (RH)

The first non-trivial, or 'non-obvious' zeros of the Riemann zeta are (cf. Figure 13.5b)

\[\rho_1 := \frac{1}{2} + i \cdot 14.134725141734693790 \ldots \]
\[\rho_2 := \frac{1}{2} + i \cdot 21.022039638771554993 \ldots \]
\[\rho_3 := \frac{1}{2} + i \cdot 25.010857580145688763 \ldots \text{ and} \]
\[\rho_4 := \frac{1}{2} + i \cdot 30.424876125859513210 \ldots \]

The following formulation of the Riemann hypothesis (RH) quotes the second millennium problem, http://www.claymath.org/millennium-problems:

The prime number theorem determines the average distribution of the primes. The Riemann hypothesis tells us about the deviation from the average. Formulated in Riemann’s 1859 paper, it asserts that all the 'non-obvious' zeros of the zeta function are complex numbers with real part \(\frac{1}{2} \).

13.8 HADAMARD PRODUCT

Hadamard's product follows from Weierstrass product theorem.

Theorem 13.37. It holds that

\[\zeta(s) = \frac{e^{\left(\log(2\pi) - \frac{1}{2}\right)s}}{2(s-1)\Gamma\left(1 + \frac{s}{2}\right)} \prod \left(1 - \frac{s}{\rho}\right) e^{s \rho}, \]

where the product is over the non-trivial zeros \(\rho \) of \(\zeta \) and the \(\gamma \) again is the Euler–Mascheroni constant.

Corollary 13.38. It holds that

\[\frac{\zeta'(s)}{\zeta(s)} = \log 2\pi - \gamma - 2 - \frac{1}{s-1} - \frac{1}{2} \frac{\Gamma(s/2 + 1)}{\Gamma(s/2 + 1)} + \sum \left(\frac{1}{s - \rho} + \frac{1}{\rho}\right), \]

where the sum is among all nontrivial zeros \(\rho \) of the Riemann zeta function.

Theorem 13.39. It holds that

\[\xi(s) = \frac{1}{2} \prod \left(1 - \frac{s}{\rho}\right). \]

Theorem 13.40 (Li’s criterion). It holds that

\[\frac{d}{dz} \log \xi\left(\frac{z}{z-1}\right) = \sum n=1 \lambda_{n+1} z^n, \]

where \(\lambda_n := \frac{1}{(n-1)!} \frac{d^n}{ds^n} (s^{n-1} \xi(s)) \bigg|_{s=1} = \sum \rho \left(1 - \frac{1}{\rho}\right)^n. \)

The Riemann hypothesis is true iff \(\lambda_n > 0 \) for all \(n = 1, 2, \ldots \)

\footnote{Jacques Hadamard, 1865–1963, French}
\footnote{Karl Weierstrass, 1815–1897, German}

Version: December 22, 2019
PROBLEMS

Exercise 13.1. Verify the identity \((13.18)\).
Further results and auxiliary relations

14.1 OCCURRENCE OF COPRIMES

Theorem 14.1. The probability of two numbers being coprime is \(\frac{6}{\pi^2} \approx 60.8\% \); more precisely: let

\[
\text{copr}(x) := \{(m,n) \in \mathbb{N} \times \mathbb{N} : m,n \leq x \text{ and } m \text{ and } n \text{ are coprime}\}.
\]

Then

\[
\lim_{x \to \infty} \frac{|\text{copr}(x)|}{x^2} = \frac{6}{\pi^2}.
\]

Proof. Define

\[
A_k(x) := \{(m,n) \in \mathbb{N}^2 : m,n \leq x \text{ and } \gcd(m,n) = k\}
\]

and \(A(x) := \bigcup_{k \leq x} A_k(x)\), the union of disjoint sets. Note that, for \(x\) and \(k\) fixed, the map

\[
\text{copr}\left(\frac{x}{k}\right) \to A_k(x)
\]

\[
(m,n) \mapsto (k \cdot m, k \cdot n)
\]

is a bijection. Therefore, \(|x|^2 = \sum_{k \leq x} |A_k(x)| = \sum_{k \leq x} |\text{copr}\left(\frac{x}{k}\right)|\) and by Corollary 10.13 thus

\[
|\text{copr}(x)| = \sum_{k \leq x} \mu(k) \left[\frac{x}{k} \right]^2.
\]

Now note that \(\left(\frac{x}{k}\right)^2 - \left[\frac{x}{k} \right]^2 \leq 2 \frac{1}{k}\). Hence

\[
\left| \text{copr}(x) - \sum_{k \leq x} \mu(k) \left[\frac{x}{k} \right]^2 \right| \leq 2x \sum_{k \leq x} \frac{1}{k} \leq 2x(1 + \log x)
\]

or

\[
\left| \frac{\text{copr}(x)}{x^2} - \sum_{k \leq x} \frac{\mu(k)}{k^2} \right| \leq 2 \frac{1 + \log x}{x}.
\]

(14.1)

With (9.9) and (13.2) we find that \(\sum_{k=1}^{\infty} \frac{\mu(k)}{k^2} = \frac{1}{\zeta(2)} = \frac{6}{\pi^2}\). The result follows by letting \(x \to \infty\) in (14.1). \(\square\)

14.2 EXPONENTIAL INTEGRAL

Definition 14.2. The exponential integral is

\[
\text{Ei}(z) := \text{p.v.} \int_{-\infty}^{z} \frac{e^t}{t} \, dt,
\]

where p.v. denotes the Cauchy principal value.
Proposition 14.3. It holds that
\[\text{Ei}(z) = y + \log z + \sum_{k=1}^{\infty} \frac{z^k}{k \cdot k!}. \] (14.2)

Proof. By integration by parts, (6.5) and (6.1),
\[\log z + \int_{e}^{z} \frac{e^{-t}}{t} dt = (1 - e^{-z}) \log z + \int_{e}^{z} e^{-t} \log t \, dt \xrightarrow{z \to \infty} \int_{0}^{\infty} e^{-t} \log t \, dt = \Gamma'(1) = -y. \]

It follows that
\[\text{Ei}(z) \xrightarrow{z \to \infty} \int_{-\infty}^{0} e^{t} e^{-1} \, dt - \log z + \int_{z}^{1} e^{-t} - 1 \, dt \xrightarrow{z \to \infty} y + \log z + \sum_{k=1}^{\infty} \int_{0}^{\infty} \frac{z^k}{k!} \, dt \]
and thus the result. □

14.3 LOGARITHMIC INTEGRAL FUNCTION

Definition 14.4. The logarithmic integral is
\[\text{li}(x) := p.v. \int_{0}^{x} \frac{1}{\log t} \, dt, \]
for \(x > 1 \) being the Cauchy principal value.

Proposition 14.5. It holds that \(\text{li}(\log z) = \gamma + \log z + \sum_{k=1}^{\infty} \frac{\log^k z}{k!}. \)

Asymptotic expansion. The logarithmic integral has the asymptotic series expansion
\[\text{li}(x) = \frac{x}{\log x} \left(1 + \frac{1}{\log x} + \frac{2}{\log^2 x} + \cdots + \frac{k!}{\log^k x} \right) + O \left(\frac{x}{\log^{k+1} x} \right) \] (14.3)
as \(x \to \infty \). To see this asymptotic expansion replace \(x \leftarrow e^y \), then
\[\text{li} (e^y) = \int_{0}^{e^y} \frac{1}{\log t} \, dt = e^y \int_{0}^{\infty} \frac{e^{-yt}}{1-t} \, dt. \]

By Taylor series expansion we have \(\frac{1}{1-t} = 1 + t + \cdots + t^{n-1} + \frac{t^n}{1-t} \), thus
\[\text{li} (e^y) = e^y \sum_{k=1}^{n} \int_{0}^{\infty} t^{k-1} e^{-yt} \, dt + e^y \int_{0}^{\infty} \frac{e^{-yt} t^n}{1-t} \, dt \]
\[= e^y \sum_{k=1}^{n} \frac{(k-1)!}{y^k} + R_{n}(y), \]
where \(R_{n}(y) = e^y \int_{0}^{\infty} \frac{e^{-yt} t^n}{1-t} \, dt = O \left(1/y^{n+1} \right) \) as \(y \to \infty \). The expansion follows by replacing \(y \leftarrow \log x \) again.

More generally and by a similar reasoning it can be shown that
\[\int_{0}^{x} \frac{dt}{\log^k t} = \frac{x}{\log^k x} \left(1 + \frac{k}{\log x} + \frac{(k+1)k}{\log^2 x} + \cdots + \frac{k!}{\log^\ell x} \right) \ell! + O \left(\frac{x}{\log^{k+1} x} \right), \] (14.4)
as \(x \to \infty \). rough draft: do not distribute
Remark 14.6. Differentiate (14.4) with respect to x to see the identity.

Remark 14.7. Compare with (14.3) and Gauss’ letter (Figure 1.1, second page) the extension

$$\frac{x}{\log x - 1} = \frac{x}{\log x \left(1 - \frac{1}{\log x} \right)} = \frac{x}{\log x \left(1 + \frac{1}{\log x} + \frac{1}{\log^2 x} + \cdots \right)}.$$

14.4 ANALYTIC EXTENSIONS

The following is from Zagier [22].

Theorem 14.8 (Analytic theorem, Newman [14]). Let $f(t)$ ($t \geq 0$) be bounded and locally integrable function and suppose that the function $g(z) := \int_0^\infty f(t)e^{-zt} \, dt$ ($\Re(z) > 0$) extends holomorphically to $\Re(z) \geq 0$. Then $\int_0^\infty f(t) \, dt$ exists and equals $g(0)$.

Proof. For $T > 0$ set $g_T(z) := \int_0^T f(t)e^{-zt} \, dt$. The function g_T is holomorphic for all $z \in \mathbb{C}$. To prove the theorem we have to show that $\lim_{T \to \infty} g_T(0) = g(0)$.

Let $R > 0$ be large and C the boundary of the region $\{ z \in \mathbb{C}; |z| \leq R$, $\Re(z) \geq -\delta \}$, where $\delta > 0$ is small enough (depending on R) so that g is holomorphic in and on C. By Cauchy’s theorem,

$$g(0) - g_T(0) = \frac{1}{2\pi i} \oint_C (g(z) - g_T(z))e^{zT} \left(1 + \frac{z^2}{R^2} \right) \frac{1}{z} \, dz. \tag{14.5}$$

Define $C^+ := \{ z \in \mathbb{C}; |z| = R \text{ and } \Re(z) > 0 \}$ and $C^- := \{ z \in \mathbb{C}; |z| = R \text{ and } \Re(z) < 0 \}$. Note that for $z \in C^+$

$$|g(z) - g_T(z)| = \left| \int_T^\infty f(t)e^{-zt} \, dt \right| \leq B \int_T^\infty |e^{-zt}| \, dt = B \frac{e^{-T\Re(z)}}{\Re(z)}$$

and further $\left(1 + \frac{z^2}{R^2} \right) \frac{1}{z} = \frac{1}{z} + \frac{z}{R} = \frac{\Re(z)}{R^2} + \frac{\Re(z)}{R^2} = \frac{2\Re(z)}{R^2}$, thus

$$\left| e^{zT} \left(1 + \frac{z^2}{R^2} \right) \frac{1}{z} \right| \leq e^{T\Re(z)} \frac{2\Re(z)}{R^2}.$$

Consequently, on C^+, the integrand in (14.5) is bounded by $\frac{2B}{R^2}$.

Note that g_T is an entire function (i.e., analytic everywhere) and the contour thus may be changed to C^-. But for $z \in C^-$ it holds that

$$|g_T(z)| = \left| \int_0^T f(t)e^{-zt} \, dt \right| \leq B \int_0^T |e^{-zt}| \, dt = B \frac{e^{-\Re(z)T}}{\Re(z)}$$

so that the integrand in (14.5) thus again is bounded by $\frac{2B}{R^2}$.

On the remaining contour the integrand in (14.5) is $g(z)e^{zT} \left(1 + \frac{z^2}{R^2} \right) \frac{1}{z}$, which decreases uniformly as T increases. The total length of the contour is $2\pi R$, thus it follows that $|g(0) - g_T(0)| < \frac{4B\pi}{R^2}$. The assertion follows, as $R > 0$ is arbitrary. □
15.1 Riemann Prime Counting Functions and Their Relation

Definition 15.1 (Prime-counting function). The prime-counting function is

\[\pi(x) := \sum_{\substack{p \leq x, \\ p \text{ prime}}} 1. \]

The Riemann prime-counting function is

\[J(x) := \sum_{n=1}^{\infty} \frac{\pi\left(\frac{x}{n}\right)}{n} = \sum_{\substack{p \leq x, \\ p \text{ prime}}} \frac{1}{k}. \]

Different notation in frequent use is also \(J = \Pi \).

Note that \(\pi(2) = 1, \pi(4) = 2, J(4) = 2 \frac{1}{2} \) and

\[\pi(p_n) = n \]

for the \(n \)th prime \(p_n (n \in \mathbb{N}) \). We also have that \(p_{\pi(p)} = p \), if \(p \) is prime.

Remark 15.2. As \(\pi(x) = 0 \) for \(x < 2 \) it is sufficient in (15.1) to sum up to \(n \leq \log_2(x) \), i.e.,

\[J(x) = \sum_{n=1}^{\log_2(x)} \frac{\pi\left(\frac{x}{n}\right)}{n}. \]

Theorem 15.3. It holds that

\[\pi(x) = \sum_{n=1}^{\infty} \frac{\mu(n) J\left(\frac{x}{n}\right)}{n}. \]

Figure 15.1: Prime counting functions \(\pi \) and \(J \)
PRIME COUNTING FUNCTIONS

Proof. Indeed, with (15.1),
\[
\sum_{d_1=1}^{\infty} \frac{\mu(d_1)}{d_1} J \left(x^{1/d_1} \right) = \sum_{d_1=1}^{\infty} \frac{\mu(d_1)}{d_1} \sum_{d_2=1}^{d_1} \frac{1}{d_2} \pi \left(x^{1/d_1 d_2} \right) = \pi(x),
\]
where we have employed (9.7) (the Dirichlet inverse of the Möbius function).

Theorem 15.4 (Mellin transforms). It holds that
\[
\log \zeta(s) = s \int_0^\infty \frac{\pi(x)}{x(x^s-1)} \, dx = s \int_0^\infty \frac{J(x)}{x^{s+1}} \, dx
\]
and (recall the zeta prime function \(P(s) = \sum_{p \text{ prime}} \frac{1}{p^s}\) from (9.13))
\[
P(s) = s \int_0^\infty \frac{\pi(x)}{x^{s+1}} \, dx.
\]

Proof. By Riemann–Stieltjes integration by parts
\[
\log \zeta(s) = -\sum_p \log \left(1 - \frac{1}{p^s} \right) = -\int_1^\infty \log \left(1 - \frac{1}{x^s} \right) \, \pi(x) = \int_1^\infty \frac{\pi(x)}{x^{s+1}} \, dx = s \int_0^\infty \frac{\pi(x)}{x(x^s-1)} \, dx;
\]
a slightly more explicit derivation is
\[
\log \zeta(s) = -\sum_p \log \left(1 - \frac{1}{p^s} \right) = -\sum_{n=2} \left(\pi(n) - \pi(n-1) \right) \log \left(1 - \frac{1}{n^s} \right) = -\sum_{n=2} \pi(n) \left(\log \left(1 - \frac{1}{n^s} \right) - \left(1 - \frac{1}{(n+1)^s} \right) \right) = \sum_{n=2} \pi(n) \int_n^{n+1} \frac{s}{x(x^s-1)} \, dx = s \int_2^\infty \frac{\pi(x)}{x(x^s-1)} \, dx.
\]
Further

\[
\log \zeta(s) = s \int_0^\infty \frac{\pi(x)}{x(x^s - 1)} \, dx \\
= s \int_0^\infty \frac{\pi(x)}{x^{s+1}} \frac{1}{1 - x^{-s}} \, dx \\
= s \int_0^\infty \frac{\pi(x)}{x^{s+1}} x^s \sum_{k=1} x^{-sk} \, dx \\
= s \sum_{k=1} \int_0^\infty \frac{\pi(x)}{x^{s+1}} \frac{1}{x^{s+1}} \, dx
\]

and thus the result.

The Mellin transformation of \(P \) (cf. (9.13)) is immediate from

\[
P(s) = \int_1^\infty \frac{1}{x^s} \, d\pi(x) = \int_1^\infty \frac{1}{x^{s+1}} \pi(x) \, dx.
\]

\[\square\]

Proposition 15.5. It holds that

\[
J(x) = \sum_{n \leq x} \frac{\Lambda(n)}{\log n}. \tag{15.4}
\]

Proof. Indeed, \(J(x) = \sum_{p^k \leq x} \frac{1}{k} = \sum_{p^k \leq x} \frac{\log p}{\log p^k} = \sum_{n \leq x} \frac{\Lambda(n)}{\log n} \). \[\square\]

15.2 CHEBYSHEV PRIME COUNTING FUNCTIONS AND THEIR RELATION

Definition 15.6. The first Chebyshev function \(\vartheta(x) \) is

\[
\vartheta(x) := \sum_{p \leq x, \text{prime}} \log p = \sum_{k=1}^{\pi(x)} \log p_k = \log(x#), \tag{15.5}
\]

the second Chebyshev function is the summatory von Mangoldt function,

\[
\psi(x) := \sum_{n \leq x} \Lambda(n) = \sum_{p^k \leq x, \text{prime}} \log p; \tag{15.6}
\]

the primorial is

\[
x# := \prod_{p \leq x, \text{prime}} p.
\]

Remark 15.7. Note that \(n# = p_{\pi(n)#} \).

Remark 15.8. Note that we expect that \(\vartheta(x) \sim \int_1^x \log p \, d\left(\int_0^p \frac{1}{\log t} \, dt \right) = \int_1^x \frac{\log p}{\log p} \, dt = x - 1 \).
Figure 15.2: Chebyshev function ϑ

(a) Plot of ϑ

(b) Plot of $\vartheta(x) - x$

Figure 15.3: Chebyshev function ψ

(a) Plot of ψ

(b) Plot of $\psi(x) - x$
Proposition 15.9. It holds that

\[\psi(x) = \sum_{p \leq x} \left\lfloor \frac{\log x}{\log p} \right\rfloor \log p \]

(15.7)

and

\[\psi(x) = \vartheta(x) + \vartheta\left(x^{1/2}\right) + \vartheta\left(x^{1/3}\right) + \cdots = \sum_{m=1}^{\infty} \vartheta\left(x^{1/m}\right) \]

and conversely,

\[\vartheta(x) = \sum_{m=1}^{\infty} \mu(m) \psi\left(x^{1/m}\right) . \]

Proof. Note that \(\log x / \log p = \log p / x \). Then

\[\sum_{d_1=1}^{\infty} \mu(d_1) \psi\left(x^{1/d_1}\right) = \sum_{d_1=1}^{\infty} \mu(d_1) \sum_{d_2=1 \atop d_1 d_2 = n}^{\infty} \theta\left(x^{1/d_2}\right) \]

\[= \sum_{n=1}^{\infty} \theta\left(x^{1/n}\right) \sum_{d_1 d_2 = n}^{\infty} \mu(d_1) \]

\[= \vartheta(x) \],

where we have employed (9.7) (the Dirichlet inverse of the Möbius function; cf. Theorem 15.3).

Proposition 15.10. We have that

\[\log n = \sum_{d \mid n} \Lambda(d) \text{ and } \Lambda(n) = -\sum_{d \mid n} \mu(d) \log d. \]

Proof. Use Möbius inversion formula (10.5).

Proposition 15.11. It holds that (recall the definition of the zeta prime function (9.13))

\[P(s) = \sum_{p \text{ prime}} \frac{\log p}{p^s} = s \int_{1}^{\infty} \frac{\vartheta(x)}{x^{s+1}} \, dx \]

and further (cf. Theorem 9.29) we have

\[\frac{\zeta'(s)}{\zeta(s)} = -\sum_{n=2}^{\infty} \frac{\Lambda(n)}{n^s} = -s \int_{1}^{\infty} \frac{\psi(x)}{x^{s+1}} \, dx \]

and

\[\log \zeta(s) = \sum_{n=2}^{\infty} \frac{\Lambda(n)}{n^s \log n} . \]

Proof. With \(P(s) = \sum_{p \text{ prime}} \frac{\log p}{p^s} \) (cf. (9.13)) we have that

\[P(s) = \sum_{p \text{ prime}} \frac{\log p}{p^s} = \int_{1}^{\infty} \frac{d\vartheta(x)}{x^s} = s \int_{1}^{\infty} \frac{\vartheta(x)}{x^{s+1}} \, dx . \]

(15.8)
From (9.6) (see also (9.29)) we deduce that
\[
\frac{\zeta'(s)}{\zeta(s)} = -\frac{d}{ds} \sum_{p \text{ prime}} \log \left(1 - \frac{1}{p^s} \right) = \sum_{p \text{ prime}} \frac{\log \frac{1}{p}}{1 - \frac{1}{p^s}} = -\sum_{p \text{ prime}} \sum_{k=1}^{\infty} \frac{\log p}{p^{sk}} = \sum_{n=1}^{\infty} \Lambda(n) n^{-s}
\]
and thus the first identity.

The second identity follows from Abel's summation formula (8.6), as the Chebyshev function \(\psi \) is the summatory function of \(\Lambda \) by (15.6).

15.3 RELATION OF PRIME COUNTING FUNCTIONS

The extremely ingenious proof of the following proposition is due to Chebyshev.

Proposition 15.12 (Chebyshev). It holds that
\[
\vartheta(x) < x \cdot \log 4 \tag{15.9}
\]
for all \(x > 0 \).

Proof. Employing the primorial (15.5) the statement is equivalent to \(F_n := n# = \prod_{p \leq n} p^\omega \) for all \(n \in \mathbb{N} \) which we shall verify by induction.

The statement is true for \(n = 3 \).

If \(n \) is even, then \(F_n = F_{n-1} < 4^{n-1} < 4^n \), as desired.

If \(n \) is odd, then \(n = 2k + 1 \). Consider the binomial coefficient \(\binom{2k+1}{k} \). Clearly, for every prime \(p \) with \(k + 2 \leq p \leq 2k + 1 \), one has that \(p \mid \binom{2k+1}{k} \) and hence \(\prod_{k+1 < p \leq 2k+1} p \leq \binom{2k+1}{k} \). It follows that \(\binom{2k+1}{k} \leq \frac{1}{2} (1 + 1)^{2k+1} = 4^k \). By induction hypothesis \(\prod_{p \leq k+1} < 4^{k+1} \), hence
\[
F_n = F_{2k+1} = \prod_{p \leq 2k+1} p \cdot \prod_{k+1 < p \leq 2k+1} p < 4^{k+1} \cdot \binom{2k+1}{k} < 4^{k+1} 4^k = 4^{2k+1} = 4^n,
\]
the assertion.

Theorem 15.13 (Prime counting functions). The prime counting functions are related as follows:

\((i) \) \(\pi(x) = \frac{\vartheta(x)}{\log x} + \int_2^x \frac{\vartheta(u)}{u \log^2 u} \, du = \frac{\vartheta(x)}{\log x} + O \left(\frac{x}{\log^2 x} \right) \) and

\((ii) \) \(\vartheta(x) = \pi(x) \log x - \int_2^x \frac{\pi(u)}{u \log^2 u} \, du = \pi(x) \log x + O \left(\frac{x}{\log x} \right) \).

\((iii) \) \(J(x) = \frac{\vartheta(x)}{\log x} + \int_2^x \frac{\vartheta(u)}{u \log^2 u} \, du \) and

\((iv) \) \(\psi(x) = J(x) \log x - \int_2^x \frac{J(u)}{u} \, du \).

Proof. Set \(a_n := \begin{cases} \log n & \text{if } n \text{ is prime,} \\ 0 & \text{otherwise} \end{cases} \) and \(\phi(x) := \frac{1}{\log x} \). With Abel's summation formula (8.6)
\((A(x) = \sum_{n \leq x} a_n \vartheta(n) = \vartheta(x) + \int_2^x \frac{\vartheta(u)}{u \log^2 u} \, du , \) it follows that \(\pi(x) = \sum_{n \leq x} a_n \phi(n) = \frac{\vartheta(x)}{\log x} + \int_2^x \frac{\vartheta(u)}{u \log^2 u} \, du , \) as desired.

Applying Abel summation (8.6) again (with \(a_n = \begin{cases} 1 & \text{if } n \text{ is prime,} \\ 0 & \text{otherwise} \end{cases} , \) i.e., \(A(x) = \pi(x) \) and \(\phi(x) = \log x \) gives \(\vartheta(x) = \sum_{n \leq x} a_n \phi(n) = \pi(x) \log x - \int_2^x \frac{\pi(u)}{u} \, du \), the result.
As for the order of convergence recall from (15.9) that \(\frac{\vartheta(u)}{u \log^2 u} \leq \frac{\log 4}{\log^2 u} \), with (14.4) we conclude that \(\int_2^x \frac{\vartheta(u)}{u \log^2 u} \, du = O\left(\frac{x}{\log x}\right) \).

From (15.9) we have that \(\vartheta(x) = O(x) \), so we conclude from (i) that \(\pi(x) = O\left(\frac{x}{\log x}\right) \). Consequently, \(\int_2^x \frac{\pi(u)}{u} \, du = \int_2^x \frac{C_1}{\log u} \, du = C_1 \log x \), with (14.4), thus the order of convergence in (ii).

As for (iii) define \(a_n := \Lambda(n) \), then \(A(x) = \psi(x) \) by (15.6). Set \(\phi(x) = \frac{1}{\log x} \). With (15.4) we obtain that \(J(x) = \sum_{n \leq x} a_n \phi(n) = \sum_{n \leq x} \frac{\phi(x)}{\log x} + \int_1^x \frac{\phi(u)}{u \log^2 u} \, du \).

For (iv), applying Abel summation (8.6) (with \(a_n = \frac{\Lambda(n)}{\log n} \), i.e., \(A(x) = J(x) \)) and \(\phi(x) = \log x \) gives \(\psi(x) = \sum_{n \leq x} a_n \phi(n) = J(x) \log x - \int_1^x \frac{J(u)}{u} \, du \), the result. □

Corollary 15.14. The following are equivalent:

(i) \(\pi(x) \sim \frac{x}{\log x} \) for \(x \to \infty \),

(ii) \(\vartheta(x) \sim x \) for \(x \to \infty \) (cf. Remark 15.8),

(iii) \(\psi(x) \sim x \) for \(x \to \infty \),

(iv) \(J(x) \sim \frac{x}{\log x} \) for \(x \to \infty \).

Proof. It remains to show (iii).

With (15.7) we have that

\[
\psi(x) = \sum_{p \leq x} \log p \left\lfloor \frac{\log x}{\log p} \right\rfloor \leq \sum_{p \leq x} \log x = \pi(x) \log x
\]

and further, for every \(\varepsilon > 0 \),

\[
\psi(x) \geq \sum_{x^{1-\varepsilon} \leq p \leq x} \log p \geq \sum_{x^{1-\varepsilon} \leq p \leq x} (1 - \varepsilon) \log x \geq (1 - \varepsilon) \left(\pi(x) - x^{1-\varepsilon} \right) \log x.
\]

The assertion follows with (i). □
Fundamental for the prime number theorem (PNT) is that \(\zeta(s) \neq 0 \) for \(\Re(s) = 1 \).

16.1 ZETA FUNCTION ON \(\Re(\cdot) = 1 \)

Theorem 16.1. For \(\sigma > 1 \) and \(t \in \mathbb{R} \) we have that

\[
|\zeta(\sigma)^{3} \zeta(\sigma + it)^{4} \zeta(\sigma + 2it)| \geq 1. \tag{16.1}
\]

Proof. For any \(\phi \in \mathbb{R} \) the trigonometric identity

\[
3 + 4 \cos \phi + \cos 2\phi = 2 \cdot (1 + \cos \phi)^{2} \geq 0
\]

holds true. Recall that \(e^{\sigma + it} = e^{\sigma} \). From (9.15) we deduce

\[
|\zeta(\sigma + it)| = \exp\left(\sum_{p \text{ prime}} \sum_{\ell=1}^{\infty} \frac{3 + 4 \cos(\ell t \log p)}{\ell p^\sigma}\right)
\]

and consequently

\[
|\zeta(\sigma)^{3} \zeta(\sigma + it)^{4} \zeta(\sigma + 2it)| = \exp\left(\sum_{p \text{ prime}} \sum_{\ell=1}^{\infty} \frac{3 + 4 \cos(\ell t \log p) + \cos(2\ell t \log p)}{\ell p^\sigma}\right) \geq 1,
\]

the result. \(\square \)

The following theorem is in essence due to Hadamard, its original proof has about 25 pages.

Theorem 16.2. The Riemann \(\zeta \) function does not vanish for \(\Re(s) \geq 1 \), i.e., \(\zeta(s) \neq 0 \) whenever \(\Re(s) \geq 1 \).

Proof. Euler’s product formula (9.6) converges for \(\Re(s) > 1 \) and hence \(\zeta(s) \neq 0 \) for \(\Re(s) > 1 \). It remains to show that \(\zeta(s) \neq 0 \) whenever \(\Re(s) = 1 \).

We have that \(\zeta(\sigma) \sim \frac{1}{\sigma - 1} \) from (13.15). Suppose that \(\zeta(1 + it) = 0 \), then \(\zeta(\sigma + it) \sim \sigma - 1 \).

From (16.1) it follows that \(\left(\frac{1}{\sigma - 1}\right)^{3}(\sigma-1)^{4}\zeta(\sigma+it) \geq 1 \), thus \(\zeta(\sigma+2it) \sim \frac{1}{\sigma-1} \). This is a contradiction, as \(\zeta \) does not have a pole at \(1 + 2it \), its only pole is a \(s = 1 \). \(\square \)

The following proof is based on Newman [14], cf. also Zagier [22].

Theorem 16.3. The improper integral

\[
\int_{1}^{\infty} \frac{\vartheta(x) - x}{x^{2}} \, dx
\]

is a convergent integral, i.e., the limit \(\int_{1}^{T} \frac{\vartheta(x) - x}{x^{2}} \, dx \) exists, as \(T \to \infty \).
VII.

Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse.

(Monatsberichte der Berliner Akademie, November 1859.)

Meinen Dank für die Auszeichnung, welche mir die Akademie durch die Aufnahme unter ihre Correspondenten hat zu Theil werden lassen, glaube ich am besten dadurch zu erkennen zu geben, dass ich von der hierdurch erhaltenen Erlaubniss baldigst Gebrauch mache durch Mittheilung einer Untersuchung über die Häufigkeit der Primzahlen; ein Gegenstand, welcher durch das Interesse, welches Gauss und Dirichlet demselben längere Zeit geschenkt haben, einer solchen Mittheilung vielleicht nicht ganz unwerth erscheint.

Bei dieser Untersuchung diente mir als Ausgangspunkt die von Euler gemachte Bemerkung, dass das Product

$$\prod_{1}^{\infty} \frac{1}{1 - \frac{1}{p^s}} = \sum \frac{1}{n^s},$$

wenn für p alle Primzahlen, für n alle ganzen Zahlen gesetzt werden. Die Function der complexen Veränderlichen s, welche durch diese beiden Ausdrücke, so lange sie convergiren, dargestellt wird, bezeichne ich durch $\xi(s)$. Beide convergiren nur, so lange der reelle Theil von s grösser als 1 ist; es lässt sich indess leicht ein immer gültig bleibender Ausdruck der Function finden. Durch Anwendung der Gleichung

$$\int_{0}^{\infty} e^{-ns} \frac{x^{s-1}}{x^s - 1} \, dx = \frac{\Pi(s - 1)}{n^s}$$

erhält man zunächst

$$\Pi(s - 1) \xi(s) = \int_{0}^{\infty} \frac{x^{s-1}}{e^x - 1} \, dx.$$
Proof. From (15.8) it follows that

\[P(s) = s \int_1^\infty \frac{\vartheta(x)}{x^{s+1}} \, dx = s \int_0^\infty e^{-xt} \vartheta(e^t) \, dt. \]

By (9.12), the function

\[g(s-1) := \frac{P(s)}{s} - \frac{1}{s-1} = -\frac{1}{s} \frac{\zeta'(s)}{\zeta(s)} = \frac{1}{s-1} - \frac{1}{2} \sum_{p \text{ prime}} \log p \]

extends to \(\Re(s) \geq 1 \), i.e.,

\[g(z) = \frac{P(z+1)}{z+1} - \frac{1}{z} = \int_0^\infty \left(\vartheta(e^t)e^{-t} - 1 \right) e^{-zt} \, dt \]

extends to \(\Re(z) \geq 0 \). The integrand \(f \) is bounded by \(\log 4 - 1 \), see (15.9). It follows from Theorem 14.8 that \(\int_0^\infty f(t) \, dt = \int_1^\infty \vartheta(x) - x \, dx \) exists.

\[\square \]

16.2 THE PRIME NUMBER THEOREM

Theorem 16.4 (Prime number theorem, PNT; Hadamard and de la Vallée Poussin,† 1896). It holds that

\[\pi(x) \sim \frac{x}{\log x} \]

as \(x \to \infty \).

Proof. In view of Corollary 15.14 it is enough to verify that \(\vartheta(x) \sim x \) (cf. Remark 15.8). To this end recall from (15.14) that \(\int_1^\infty \vartheta(x)x \, dx \) converges.

Assume, by contraposition, that \(\vartheta(x) \not\sim x \), then there are \(\lambda > 1 \) and \(\mu < 1 \) so that \(\vartheta(x) > \lambda x \) or \(\vartheta(x) < \mu x \) for arbitrary large \(x > 0 \).

In the first case, as \(\vartheta \) is nondecreasing,

\[\int_{\lambda x}^{\lambda x + t} \vartheta(t) - t \, dt \geq \int_{\lambda x}^{\lambda x + t} \lambda x - t \, dt = \int_1^{\lambda} \lambda - t \, dt > 0, \]

and in the second

\[\int_{\mu x}^{\mu x + t} \vartheta(t) - t \, dt \leq \int_{\mu x}^{\mu x + t} \mu x - t \, dt = \int_1^{\mu} \mu - t \, dt < 0. \]

As \(x \) is arbitrary large, it follows that the integral \(\int_1^{\infty} \vartheta(x)x \, dx \) does not converge. This contradicts Theorem 16.3.

\[\square \]

Corollary 16.5. For every \(\varepsilon > 0 \) there is an \(n_0 \in \mathbb{N} \) so that there is a prime \(p \) with

\[n < p < \frac{(1+\varepsilon)n}{1+\varepsilon} \quad n \geq n_0. \]

Proof. By the prime number theorem,

\[\lim_{x \to \infty} \frac{\pi((1+\varepsilon)x)}{\pi(x)} = \lim_{x \to \infty} \frac{\log((1+\varepsilon)x)}{\log x} = (1+\varepsilon) \lim_{x \to \infty} \frac{\log x}{\log x + \log(1+\varepsilon)} = 1 + \varepsilon. \]

(16.2)

Therefore, there is \(n_0 \) so that \(\pi((1+\varepsilon)x) > \pi(x) \) for all \(x > n_0 \) and hence there is \(p \in \mathbb{P} \) between \(x \) and \((1+\varepsilon)x \).

\[\square \]

†Charles Jean de la Vallée Poussin, 1866–1962, Belgian

Version: December 22, 2019
16.3 CONSEQUENCES OF THE PRIME NUMBER THEOREM

Lemma 16.6. Let \((a_n)_{n \in \mathbb{N}}\) and \((b_n)_{n \in \mathbb{N}}\) are sequences with \(\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = \infty\) and
\[
\pi(a_n) \sim \pi(b_n),
\]
then also
\[
a_n \sim b_n
\]
as \(n \to \infty\).

Proof. We show first that \(\limsup_{n \to \infty} \frac{a_n}{b_n} \leq 1\).
Suppose this were false. Then there is \(\varepsilon > 0\) and \(n_k\) with \(n_k \to \infty\) such that \(a_{n_k} > (1 + \varepsilon) b_{n_k}\).
Then
\[
\limsup_{n \to \infty} \frac{\pi(a_{n_k})}{\pi(b_{n_k})} \geq \limsup_{n \to \infty} \frac{\pi((1 + \varepsilon) b_{n_k})}{\pi(b_{n_k})} = 1 + \varepsilon
\]
by (16.2), which is a contradiction to the assertion.

By exchanging the roles of \(a_n\) and \(b_n\) it follows that \(\limsup_{n \to \infty} \frac{b_n}{a_n} \leq 1\) and thus \(\lim_{n \to \infty} \frac{a_n}{b_n} = 1\).

Corollary 16.7. Let \(p_n\) denote the \(n\)th prime (cf. (15.2)), then it holds that
\[
p_n \sim n \log n
\]
as \(n \to \infty\).

Proof. By the prime number theorem
\[
\pi(n \log n) \sim \frac{n \log n}{\log(n \log n)} = \frac{n \log n}{\log n + \log \log n} = \frac{n}{1 + \log \log n} \sim n = \pi(p_n).
\]
The assertion follows from the preceding lemma.

Corollary 16.8 (Erdős\(^3\)). It holds that
\[
\frac{p_{n+1}}{p_n} \xrightarrow[n \to \infty]{} 1.
\]

Proof. Indeed, by (16.3), \(\frac{p_{n+1}}{p_n} \sim \frac{(n+1) \log(n+1)}{n \log n} \xrightarrow[n \to \infty]{} 1\).

Theorem 16.9 (See Theorem 13.29 above). It holds that
\[
\sum_{p \leq x} \frac{1}{p} \sim \log \log x.
\]
More generally,
\[
\sum_{p \leq x} \frac{1}{p} \sim \log \log x + M + O\left(\frac{1}{\log x}\right),
\]
where \(M := \gamma + \sum_{k=2}^{\infty} \frac{\mu(k)}{k} \log \zeta(k) = 0.261 497 212 \ldots \) is the Meissel\(^2\)–Mertens constant.

\(^2\)Paul Erdős, 1913–1996, Hungarian
\(^3\)Ernst Meissel, 1826–1895, German astronomer

rough draft: do not distribute
Remark 16.10. Euler actually writes $\sum_{p \text{ prime}}^\infty \frac{1}{p} = \log \log \infty$.

Proof. We have from Theorem 15.13 that $\pi(n) = \frac{n}{\log n} + O\left(\frac{n}{\log^2 n}\right)$. Hence

\[
\sum_{p \leq x} \frac{1}{p} = \sum_{n=1}^{x} \frac{\pi(n) - \pi(n-1)}{n}
\]

\[
= \sum_{n=1}^{x} \frac{\pi(n)}{n} - \sum_{n=0}^{x-1} \frac{\pi(n)}{n+1}
\]

\[
= \frac{\pi(x)}{x} + \sum_{n=1}^{x-1} \frac{\pi(n)}{n(n+1)}
\]

\[
= \frac{\pi(x)}{x} + \sum_{n=1}^{x-1} \left(\frac{1}{n^2} + O\left(\frac{1}{n \log^2 n}\right) \right)
\]

\[
= \sum_{n=1}^{x-1} \left(\frac{1}{n \log n} + O\left(\frac{1}{n \log^2 n}\right) \right) + O(1)
\]

\[
= \log \log x + O(1),
\]

where we have used that $\frac{1}{x \log x} = (\log \log x)'$ and $\frac{1}{x \log^2 x} = \left(-\frac{1}{\log x}\right)'$. \qed

Remark 16.11. Mertens actually proved the statement without employing the prime number theorem.
Riemann’s approach by employing the zeta function

This section repeats Riemann’s path. Here we proceed formally and care about convergence later.

17.1 MERTENS’ FUNCTION

Assume that \(f(\rho) = 0 \), then the series expansion is

\[
f(s) = 0 + f'(\rho)(s - \rho) + \frac{(s - \rho)^2}{2} f''(\rho) + O(s - \rho)^3,
\]

or, assuming that \(\rho \) is a simple zero (i.e., \(f'(\rho) \neq 0 \)),

\[
\frac{1}{f(s)} = \frac{1}{f'(\rho)(s - \rho)} - \frac{f''(\rho)}{2f'(\rho)^2} + O(s - \rho)^1,
\]

the residue at \(s = \rho \) is \(\frac{1}{f'(\rho)} \).

Recall from (9.9) that \(\frac{1}{\zeta(s)} = \sum_{n=1}^{\mu(n)} \frac{\mu(n)}{n^s} \) and from (13.9) that \(M(x) = \sum_{n \leq x} \mu(n) \). Assuming that all zeros are simple it follows from Perron’s formula (12.4) that

\[
M^*(x) = \sum_{n \leq x} \mu(n) = \int_{c-i\infty}^{c+i\infty} \frac{1}{\zeta(s)} x^s \frac{ds}{s} = \frac{1}{\zeta(0)} + \sum_{\rho: \zeta(\rho) = 0} \frac{x^\rho}{\rho} + \sum_{n=1}^{\frac{-2n}{\zeta'(-2n)}},
\]

where the sum is along all zeros \(\rho \) of the \(\zeta \)-function on the critical strip.

17.2 CHEBYSHEV SUMMATORY FUNCTION \(\psi \)

Theorem 17.1 (Riemann-von Mangoldt explicit formula). For any \(x > 1 \) it holds that

\[
\psi^*(x) = x - \sum_{\rho: \zeta'(\rho) = 0} \frac{x^\rho}{\rho} - \log 2\pi - \frac{1}{2} \log (1 - x^{-2}) . \tag{17.1}
\]

Proof. The summatory function is \(\sum_{n \leq x} \psi(n) = \sum_{n \leq x} \Lambda(n) \), cf. (15.6). Recall from (9.11) the Dirichlet series \(\frac{\zeta(s)}{\zeta'(s)} = -\sum_{n=1}^{\Lambda(n)} \frac{n^2}{\zeta(2s)} \) and the residue is \(\text{Res} \left(\frac{\zeta'(s)}{\zeta(s)}, s = \rho \right) = 1 \). With Perron’s formula
thus
\[
\psi^*(x) = \sum_{n \leq x} \Lambda(n)
\]
\[
= \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \left(-\frac{\zeta'(s)}{\zeta(s)} \right) \frac{x^s}{s} \, ds
\]
\[
= x - \frac{\zeta'(0)}{\zeta(0)} - \sum_{n=1}^{\infty} \frac{x^{-2n}}{n} - \sum_{\rho} \frac{x^\rho}{\rho}
\]
\[
= x - \sum_{\rho} \frac{x^\rho}{\rho} - \log 2 - \frac{1}{2} \log \left(1 - x^{-2}\right).
\]

\[\square\]

17.3 Riemann Prime Counting Function

Theorem 17.2. For \(x > 1 \) it holds that
\[
J^*(x) = \text{li}(x) - \sum_{\rho: \zeta(\rho) = 0} \text{li}(x^\rho) - \log 2 + \int_{2}^{\infty} \frac{dt}{t(t^2 - 1) \log t}.
\]

Remark 17.3. We note that \(\text{li}(x^\rho) = \text{Ei}(\rho \log x) \)

Proof. Recall that we have
\[
J^*(x) = \sum_{\rho^* \leq x} \frac{1}{k} = \sum_{n \leq x} \Lambda(n) \frac{1}{\log n} = \int_{0}^{x} \frac{1}{\log t} \, d\psi^*(t)
\]

and thus, with (17.1),
\[
J^*(x) = \int_{0}^{x} \frac{\psi^*(t)}{\log t} \, dt
\]
\[
= \int_{0}^{x} \frac{1 - \sum_{\rho} t^{\rho-1} - \frac{1}{\log t}}{\log t} \, dt
\]
\[
= \text{li}(x) - \sum_{\rho} \text{li}(x^\rho) - \log 2 + \int_{x}^{\infty} \frac{dt}{t(t^2 - 1) \log t}.
\] (17.2)

Indeed, \(\frac{d}{dx} \text{li}(x^\rho) = \frac{\rho x^{\rho-1}}{\log(x^\rho)} = \frac{x^{\rho-1}}{\log x} \).

\[\square\]

17.4 Prime Counting Function \(\pi \)

Theorem 17.4. For \(x > 1 \) it holds that
\[
\pi(x) = R(x) - \sum_{\rho} \Re(R(x^\rho)) - \frac{1}{\log x} + \frac{1}{\pi} \arctan \frac{\pi}{\log x}
\]
\[
= R(x) - \frac{1}{\log x} + \frac{1}{\pi} \arctan \frac{\pi}{\log x} - \sum_{n=1}^{\infty} \frac{\mu(n)}{n} \sum_{\rho} \text{Ei}(\rho \log x)
\]

\[\text{rough draft: do not distribute}\]
where

\[R(x) := \sum_{n=1}^{\infty} \frac{\mu(n)}{n} \text{li} \left(\frac{x^{1/n}}{n} \right) = 1 + \sum_{k=1}^{\infty} \frac{\log^k x}{k! k \zeta(k+1)} \] (17.3)

is Riemann’s \(R \)-function (cf. (15.3)). The latter series is known as Gram\(^1\) series.

Recall that we have \(\pi^*(x) = \sum_{k=1}^{\infty} \frac{\mu(k)}{k^s} J\left(\frac{x^{1/k}}{k} \right) \) and with (17.2) thus

\[\pi^*(x) = \sum_{k \leq x} 1 = R(x) - \sum_{\rho} R(x^{\rho}) - \frac{1}{\log x} + \frac{1}{\pi} \arctan \frac{\pi}{\log x}. \]

Proof of (17.3), Riemann’s \(R \)-function. With (14.2) and (9.10) it holds that

\[
R(x) = \sum_{n=1}^{\infty} \frac{\mu(n)}{n} \text{li} \left(\frac{x^{1/n}}{n} \right) = \sum_{n=1}^{\infty} \frac{\mu(n)}{n} \text{Ei} \left(\frac{\log x}{n} \right)
= \sum_{n=1}^{\infty} \frac{\mu(n)}{n} \left(\gamma - \log n + \log \log x + \sum_{k=1}^{\infty} \frac{\log^k x}{k k! n^{k}} \right)
= (\gamma + \log \log x) \sum_{n=1}^{\infty} \frac{\mu(n)}{n} - \sum_{n=1}^{\infty} \frac{\mu(n) \log n}{n} + \sum_{k=1}^{\infty} \frac{\log^k x}{k k!} \sum_{n=1}^{\infty} \frac{\mu(n)}{n^{k+1}},
\]

thus the result (cf. also Exercise 10.2).

For the rest see Riesel and Gohl [16]. □

\(^1\)Jørgen Pedersen Gram, Danish actuary and mathematician

Version: December 22, 2019
RIEMANN’S APPROACH BY EMPLOYING THE ZETA FUNCTION

rough draft: do not distribute
Further results

18.1 RESULTS

Theorem 18.1 (Dusart’s theorem, 1999). *It holds that (see Gauß’ letter, Figure 1.1)*

\[
\frac{x}{\log x - 1} < \pi(x) < \frac{x}{\log x - 1.1}
\]

for \(x > 60184 \).

Theorem 18.2 (Rosser’s theorem\(^1\)). *It holds that*

\[
p_n > n \log n \quad (n \geq 1).
\]

The statement has been improved as follows:

Theorem 18.3. *It holds that*

\[
\log n + \log \log n - 1 < \frac{p_n}{n} < \log n + \log \log n
\]

and

\[
\frac{p_n}{n} = \log n + \log \log n - 1 + \frac{\log \log n - 2}{\log n} - \frac{\log^2 \log n - 6 \log \log n + 11}{2 \log^2 n} + o \left(\frac{1}{\log^2 n} \right).
\]

Theorem 18.4 (Voronin’s universality theorem\(^2\)). *Let \(U \) be a compact subset of the strip \(\{ z \in \mathbb{C} : \frac{1}{2} < z < 1 \} \) such that the complement of \(U \) is connected. Let \(f : U \to \mathbb{C} \) be continuous and holomorphic in the interior of \(U \) which does not have any zeros in \(U \). Then, for every \(\varepsilon > 0 \), there exists \(\gamma > 0 \) so that*

\[
|\zeta(s + i\gamma) - f(s)| < \varepsilon
\]

for all \(s \in U \).

Theorem 18.5 (Erdős–Kac\(^3\)). *The number of distinct primes of a random number is normally distributed. More precisely, for any \(a < b \),*

\[
\frac{1}{x} \left| \left\{ n \leq x : a < \frac{\omega(n) - \log \log n}{\sqrt{\log \log n}} \leq b \right\} \right| \to \frac{1}{\sqrt{2\pi}} \int_a^b e^{-t^2/2} dt
\]

as \(x \to \infty \).

\(^1\) John Barkley Rosser, 1907–1989, US logician

\(^2\) Sergei Michailowitsch Woronin, 1946–1997, Russian

\(^3\) Mark Kac, 1914–1984, Polish

111
Billingsley’s proof. Let X_p be independent Bernoulli variables with $P(X_p = 1) = \frac{1}{p}$. Set $S_y := \sum_{p \leq y} X_p$, then $\mu_y := E S_y = \sum_{p \leq y} \frac{1}{p} = \log \log y + O(1)$ and $\sigma_y^2 := \text{var } S_y = \sum_{p \leq y} \frac{1}{p} - \frac{1}{p^2} = \log \log y + O(1)$ by Theorem 16.9. The central limit theorem implies $\frac{S_y - \mu_y}{\sigma_y} \rightarrow N(0, 1)$ as $y \rightarrow \infty$.

Fix y and let $I_p(n) := [p \mid n] = \begin{cases} 1 & \text{if } p \mid n \\ 0 & \text{else} \end{cases}$ (the Iverson bracket) so that $\omega_y(n) := \sum_{p \mid n, p \leq y} 1 = \sum_{p \leq y} I_p(n)$. We compare the moments of $\omega_y(n)$ with those of S_y, i.e.,

\[
\frac{1}{x} \sum_{n \leq x} (\omega_y(n) - \mu_y)^k - E (S_y - \mu_y)^k = \sum_{j=1}^k \binom{k}{j} (-\mu_y)^{k-j} \cdot \left(\frac{1}{x} \sum_{n \leq x} \omega_y(n)^j - E S_y^j \right).
\]

The last term is

\[
\sum_{p_1, \ldots, p_j \leq y} \left(\frac{1}{x} \sum_{n \leq x} I_{p_1}(n) \cdots I_{p_j}(n) - E X_{p_1} \cdots X_{p_j} \right) = \sum_{p_1, \ldots, p_j \leq y} \left(\frac{1}{x} \frac{x}{L} - \frac{1}{L} \right).
\]

This error bound implies that $\frac{1}{x} \sum_{n \leq x} (\omega_y(n) - \mu_y)^k \sim E \left(\frac{S_y - \mu_y}{\sigma_y} \right)^k \sim E Z^k$ as $y \rightarrow \infty$, where $Z \sim N(0, 1)$. If we choose $y := x^{1/(\log \log x)}$, then $\omega(n) - \omega_y(n) \leq \log \log \log x$ and thus the result. \qed

18.2 OPEN PROBLEMS

Conjecture 18.6 (Goldbach’s conjecture). Every even integer greater than 2 can be expressed as the sum of two primes.

Conjecture 18.7 (Twin prime conjecture). There exist infinity many twin primes (cf. Definition 2.19).

Problem 18.8 (Landau’s 4th problem). Are there infinitely many primes of the form $n^2 + 1$?

114 BIBLIOGRAPHY

Figure 18.1: Homer cubed

Index

B
Bernoulli number, 31
degree, 31
Bézout identity, 10

C
composite, 10
coprime, 10

D
Dirichlet inverse, 59
product, 59
series, 65

E
Euclid’s lemma, 11
Euler–Mascheroni constant, 36
exponential integral, 89

F
Fermat liar, 23
pseudoprime, 23
function additive, 51
arithmetic, 51
arithmetic function divisor, σ_k, 52
Liouville, λ, 51
Möbius, μ, 53
number-of-divisors, σ_0, 52
prime omega, big omega, Ω, 51
prime omega, ω, 51
sum-of-divisors, σ, 52
totient, φ, 19
von Mangoldt, Λ, 55
Chebyshev, θ, ψ, 95
multiplicative, 51
totally multiplicative, 51
fundamental theorem of arithmetic, 12

G
Gamma function, 35
gcd, 10

H
Heaviside step function, 67

L
least common multiple, lcm, 9
logarithmic integral, 90

M
Möbius inversion, 60
multiple, 10

N
number Carmichael, 23

P
prime, 10
cousin, 13
sexy, 13
twin, 13
prime gap, 13
prime number theorem, 103
prime-counting function, π, 93
primes
Fermat, 14
Mersenne, 14
primorial, 95

R
Riemann hypothesis, 87
Riemann-Siegel, 86

S
Stieltjes constants, 81
Stirling formula, 40
summation Abel, 47
Borel, 48
by parts, 45
Cesàro, 44
Euler, 44
Euler-Maclaurin, 39
Lambert, 46
Poisson, 47

W
Wallis’ product, 37

Z
zeros
 non-obvious, 87
 trivial, 80
zeta function, 52
 prime P, 56