Pension fund ALM with Multivariate Second order Stochastic Dominance constraints

Sebastiano Vitali, Vittorio Moriggia, Miloš Kopa

University of Bergamo Charles University

Chemnitz, CMS2019
Purpose of the work

To model and implement an Asset Liability Management problem of a Pension Fund in a Defined Benefit framework having:
- a short-term profitability target,
- a medium-term insurance risk-adjusted return
- a long-term strategic objective

Definition of multivariate second order stochastic dominance between the wealth of the Pension Fund and a benchmark wealth

The multivariate Second order Stochastic Dominance (SSD) is formulated with three alternatives which we investigate
The multivariate SSD
Let \((\Omega, F, P)\) denote a probability space and let \(X\) and \(Y\) be two random variables having as cumulative distribution functions \(F_X\) and \(F_Y\).

Let’s define the **twice cumulative distribution function** as

\[
F_X^{(2)}(\eta) = \int_{-\infty}^{\eta} F_X(\alpha) d\alpha
\]

We say that \(X\) dominates \(Y\) in the Second order Stochastic Dominance (SSD) sense, \(X >_{SSD} Y\), if

\[
F_X^{(2)}(\eta) \leq F_Y^{(2)}(\eta), \quad \forall \eta \in \mathbb{R}
\]

If the random variables are **discrete** and then represented by random vectors \(X\) and \(Y\), and if the realizations are **equiprobable**, then the SSD is equivalent to

\[
X \leq WY
\]

where \(W\) is a double stochastic matrix.
When we consider **multivariate** random variables, we need to re-think the SSD relation.

Assume that a multivariate random variable \mathbf{X} has T dimensions and then we observe $X_t, t = 1, \ldots, T$ univariate random variables.

If the random variable is **discrete**, each univariate random variable X_t can be represented with with a vector \mathbf{x}_t, then \mathbf{X} can be represented with a matrix \mathbf{X} having T columns, one for each dimension:

$$
\mathbf{X} =
\begin{bmatrix}
 x_{1,1} & \ldots & x_{1,T} \\
 \vdots & \ddots & \vdots \\
 x_{S,1} & \ldots & x_{S,T}
\end{bmatrix}
$$

The meaning of $\mathbf{X} \succ_{SSD} \mathbf{Y}$ is not unique and can be declined in various ways. We analyze three of them.
Component-wise Multivariate SSD (C-MSSD)

\[X \succ_{SSD} Y \iff X_t \succ_{SSD_t} Y_t \quad \forall t \text{ (disjointly)} \]

\[\succ_{SSD_1} \quad \succ_{SSD_2} \quad \succ_{SSD_3} \]
Linear Multivariate SSD (Lin-MSSD)

\[X \gtrsim^{\text{lin}}_{\text{SSD}} Y \iff \sum_{t=1}^{T} \bar{X}_t \cdot c_t \gtrsim_{\text{SSD}} \sum_{t=1}^{T} c_t \sum_{t=1}^{T} Y_t, \forall c_t \geq 0 \]
MultiDimension Multivariate SSD (MD-MSSD)

\[X \succ_{SSD} Y \iff X_t \succ_{SSD} Y_t \quad \forall t \text{ (jointly)} \]
Multivariate SSD

The three possible definitions:

- **The Component-wise Multivariate SSD (C-MSSD):**
 \[X \succ_{SSD} Y \ 	ext{iff} \ X_t \succ_{SSD_t} Y_t \ orall t \text{ (disjointly)} \]
 \[X_t \leq W_t Y_t, \ orall t \]

- **The Linear Multivariate SSD (Lin-MSSD):**
 Dencheva and Ruszczynski (2009), Dentcheva and Wolfhagen (2015, 2016)
 \[X \succ_{SSD}^{\text{lin}} Y \ 	ext{iff} \ \sum_{t=1}^{T} c_t X_t \succ_{SSD} \sum_{t=1}^{T} c_t Y_t, \ orall c_t \geq 0 | \sum_{t=1}^{T} c_t = 1 \]
 \[c^T X \leq W(c) c^T Y, \ orall c \geq 0, \sum_{t=1}^{T} c_t = 1 \]

- **The MultiDimension Multivariate SSD (MD-MSSD):**
 \[X \succ_{SSD} Y \ 	ext{iff} \ X_t \succ_{SSD} Y_t \ orall t \text{ (jointly)} \]
 \[X_t \leq W Y_t, \ orall t \]
Multivariate SSD

The three possible definitions:

• The Component-wise Multivariate SSD (C-MSSD):
 \[X \succ_{SSD} Y \iff X_t \succ_{SSD} Y_t \quad \forall t \text{ (disjointly)} \]
 \[X_t \leq W_t Y_t, \quad \forall t \]

• The Linear Multivariate SSD (Lin-MSSD):
 Dencheva and Ruszczynski (2009), Dentcheva and Wolffhagen (2015, 2016)
 \[X \succ_{SSD}^\text{lin} Y \iff \sum_{t=1}^T c_t X_t \succ_{SSD} \sum_{t=1}^T c_t Y_t, \quad \forall c_t \geq 0 \mid \sum_{t=1}^T c_t = 1 \]
 \[c^T X \leq W c^T Y, \quad \forall c \geq 0, \quad \sum_{t=1}^T c_t = 1 \]

• The MultiDimension Multivariate SSD (MD-MSSD):
 \[X \succ_{SSD} Y \iff X_t \succ_{SSD} Y_t \quad \forall t \text{ (jointly)} \]
 \[X_t \leq W Y_t, \quad \forall t \]
The ALM model
Approach structure

- **Financial Datafeed**
 - Portfolio Universe
 - Risk factors

- **Simulation input**
 - Econometric model definition
 - Econometric model estimation
 - Population model setting
 - Stochastic tree structure

- **Monte Carlo simulator**
 - Nodal financial coefficient generation
 - Monte Carlo scenario generation
 - Population actuarial simulation

- **Stochastic Programming**
 - Dynamic portfolio model
 - Stochastic program solution

- **Solution analysis**
Extended Asset Universe

<table>
<thead>
<tr>
<th>Asset Class</th>
<th>Asset List</th>
<th>Lower & Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash</td>
<td>Cash</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>Floaters</td>
<td>0%</td>
</tr>
<tr>
<td>Treasuries</td>
<td>Treasury 1-3y</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>Treasury 3-5y</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>Treasury 5-7y</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>Treasury 7-10y</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>Treasury 10+y</td>
<td>0%</td>
</tr>
<tr>
<td>Securitized</td>
<td>Securitized</td>
<td>0%</td>
</tr>
<tr>
<td>Corporate</td>
<td>Corporate Inv Grade</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>Corporate High Yield</td>
<td>0%</td>
</tr>
<tr>
<td>Public Equity</td>
<td>Public Equity</td>
<td>0%</td>
</tr>
<tr>
<td>Real Estate</td>
<td>Real Estate</td>
<td>0%</td>
</tr>
</tbody>
</table>
Notation for sets

- Time partition from time 0 to year 20
 \[T = \{ t_0 = 0, 1, 2, ..., H \} \]

- Set of decision times
 \[T_d = \{ t_0 = 0, 1, 2, 3, 5, 10, H \} \]

- Set of intermediate stages
 \[T_{int} = T \setminus \{ T_d \} = \{ 4, 6, 7, 8, 9, 11, ..., 19 \} \]
Notation for investment variables

Buying decision in stage t, scenario s, of asset i

\[x_{i,t,s}^+ \]

Selling in stage t, scenario s, of asset i that was bought in h

\[x_{i,h,t,s}^- \]

Expiry of a fixed-income asset in stage t, scenario s, of asset i that was bought in h

\[x_{i,h,t,s}^{\text{exp}} \]

Holding in stage t, scenario s, of asset i that was bought in h

\[x_{i,h,t,s} \]

Cash account in stage t, scenario s

\[z_{t,s} = z_{t,s}^+ - z_{t,s}^- \]

Sponsors’ unexpected contributions

\[\Phi_{t,s}^k \]
Variable definitions

<table>
<thead>
<tr>
<th>Variable</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net pension payments</td>
<td>$L_{t,s}^{NET}$</td>
</tr>
<tr>
<td>Defined benefit obligation (DBO)</td>
<td>$\Lambda_{t,s}$</td>
</tr>
<tr>
<td>Asset value</td>
<td>$X_{i,t,s} = \sum_{h < t_j} x_{i,h,t_j,s}$</td>
</tr>
<tr>
<td>Asset portfolio value</td>
<td>$CX_{t_j,s} = \sum_{i \in I} X_{i,t_j,s} + z_{t_j,s}^{+}$</td>
</tr>
<tr>
<td>Net Defined benefit obligation</td>
<td>$B_{t_j,s} = \Lambda_{t_j,s} - CX_{t_j,s}$</td>
</tr>
<tr>
<td>Intermediate net payments</td>
<td>$L_{t_j,s}^{Z} = \sum_{h < t_j, h \in T} x_{i,h,t_j-1} \cdot \xi_{i,t_j,s} +$</td>
</tr>
<tr>
<td></td>
<td>$\sum_{h < t_j, t_j-h \geq T_i} x_{i,h,t_j,s}^{exp} - L_{t,j,s}^{NET}$</td>
</tr>
</tbody>
</table>
Variable definitions

Liquidity gap plus ALM risk

\[\Psi_{t,j,s} = \Omega_{t,j,s} + K^1_{t,j,s} + \Psi_{t_{j-1},s}, \quad \Psi_{t,0,s} = 0 \]

Liquidity gap

\[\Omega_{t,j,s} = L_{t,j,s}^{NET} - \sum_{t_{j-1} < h < t_j} L^Z_{h,s} (1 + \zeta_{t,s}) \]

ALM risk

\[K^1_{t,j,s} = dr^+ \cdot (t_j - t_{j-1}) \cdot (\Delta^x_{t,j,s} - \Delta^A_{t,j,s})^+ \]
\[- dr^- \cdot (t_j - t_{j-1}) \cdot (\Delta^x_{t,j,s} - \Delta^A_{t,j,s})^- \]
Variable definitions

<table>
<thead>
<tr>
<th>Variable</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Realized portfolio return</td>
<td>(\Pi_{t,j,s}^{INV}) (= \Pi_{t,j,s}^{1,INV} + G_{t,j,s})</td>
</tr>
<tr>
<td>Coupon return</td>
<td>...</td>
</tr>
<tr>
<td>Capital gain return</td>
<td>...</td>
</tr>
<tr>
<td>Total portfolio return</td>
<td>(\Pi_{t,j,s} = \Pi_{t,j,s}^{INV} + UGL_{t,j,s} - UGL_{t,0,s})</td>
</tr>
<tr>
<td>Unrealized gain and losses</td>
<td>(UGL_{t,j,s} = \sum_{i \in I} \sum_{h < t_j, h \in T} \chi_{i,h,t,j,s} \cdot \chi_{i,h,t,j,s})</td>
</tr>
<tr>
<td>Cumulated realized portfolio return</td>
<td>(\Pi_{t,s}^{INV,cum} = \sum_{t_k \leq t_j} \Pi_{t,k,s}^{INV})</td>
</tr>
<tr>
<td>Cumulated total portfolio return</td>
<td>(\Pi_{t,s}^{cum} = \Pi_{t,s}^{INV,cum} + UGL_{t,j,s} - UGL_{t,0,s})</td>
</tr>
</tbody>
</table>
Variable definitions

Total risk capital

\[K_{t,j,s} = K_{t,j,s}^{TEC} + K_{t,j,s}^{INV} \]

Actuarial risk capital

\[K_{t,j,s}^{TEC} = \phi \cdot \Lambda_{t,s} \]

Investment risk capital

\[K_{t,j,s}^{INV} = K_{t,j,s}^{1} + K_{t,j,s}^{M} + K_{t,j-1,s}^{INV} \]

Market risk

\[K_{t,j,s}^{M} = \sum_{n=2,...,12} \sum_{h<t_j,h\in T_d} (x_{n,h,t_j,s}) \cdot k_n \cdot (t_j - t_{j-1}) \]

ALM risk

\[K_{t,j,s}^{1} = dr^+ \cdot (t_j - t_{j-1}) \cdot (\Delta x_{t,j,s} - \Delta^\Lambda_{t,j,s})^+ \]
\[- dr^- \cdot (t_j - t_{j-1}) \cdot (\Delta x_{t,j,s} - \Delta^\Lambda_{t,j,s})^- \]
Variable definitions

- **Total portfolio return per unit tail risk**

 \[Z_{t,j,s} = \frac{\Pi_{t,j,s}^{cum}}{K_{t,j,s}^{INV} + \Phi_{t,j,s}^k} \]

- **Total extraordinary plan sponsors’ contributions**

 \[\Phi_{t,j,s} = \Phi_{t,j,s}^k + \Phi_{t,j-1,s} \]
Other constraints

- Inventory balance constraints at time $t_0 = 0$, root node
- Inventory balance constraints at time t_j
- Cash balance constraints at time $t_0 = 0$, root node
- Cash balance constraints at time t_j
- Single asset upper bound
- Single asset lower bound
- Asset class upper bound
- Asset class lower bound
- Turnover constraint
- Liquidity constraint
Objective formulation

Objective function:

$\text{MAX} \quad \text{Expected Value} \quad \text{MIN} \quad \text{Expected Shortfall}$

$$\left(1 - \alpha\right) \sum \lambda_j \mathbb{E}[Y_{j,t}] - \alpha \sum \lambda_j \mathbb{E}[Y_j - Y_{j,t}|Y_{j,t} < \bar{Y}_j]$$

- **Short-term profitability**
 - Liquidity Gap + ALM Risk
 - H&N: 10%

- **Industrial plan target**
 - RORAC
 - 30%

- **Long-term sustainability**
 - Sponsor Injection
 - Net DBO
 - 20%
Dynamic Asset Allocation

Existent Portfolio

- Real Estate: 10%
- Public Equity: 25%
- Corporates: 13%
- Securitized: 6%
- Treasuries: 31%
- Cash: 15%

H&N Optimal Solution

- Real Estate: 10%
- Public Equity: 36%
- Corporates: 11%
- Securitized: 6%
- Treasuries: 6%
- Cash: 30%

Cutting-edge stochastic optimization framework

Benchmark portfolio

Dynamic Optimal Solution
Results – Benchmark

<table>
<thead>
<tr>
<th>Actual Alloc.</th>
<th>SSD 7</th>
<th>C-MSSD 6-7</th>
<th>C-MSSD 5-7</th>
<th>MD-MSSD 6-7</th>
<th>MD-MSSD 5-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>10% 25% 13% 6% 31% 15%</td>
<td>10% 5% 13% 20% 23% 30%</td>
<td>10% 9% 19% 6% 48% 7%</td>
<td>10% 11% 15% 7% 57% 7%</td>
<td>10% 9% 19% 6% 48% 57%</td>
<td>10% 11% 15% 6% 48% 57%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mean</th>
<th>Std Dev</th>
<th>V@R</th>
<th>AV@R</th>
<th>Obj Val</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>242,783</td>
<td>248,066</td>
<td>551,419</td>
<td>1,014,506</td>
<td>551,426</td>
<td>1,014,435</td>
</tr>
<tr>
<td>239,930</td>
<td>243,017</td>
<td>441,119</td>
<td>690,723</td>
<td>441,025</td>
<td>690,490</td>
</tr>
<tr>
<td>4,675</td>
<td>9,190</td>
<td>120,375</td>
<td>314,693</td>
<td>120,373</td>
<td>314,620</td>
</tr>
<tr>
<td>555</td>
<td>1,644</td>
<td>79,387</td>
<td>254,560</td>
<td>79,455</td>
<td>254,689</td>
</tr>
<tr>
<td>-31,950</td>
<td>-31,973</td>
<td>-59,747</td>
<td>-123,889</td>
<td>-59.748</td>
<td>-123,890</td>
</tr>
<tr>
<td>166</td>
<td>232</td>
<td>421</td>
<td>335</td>
<td>1,622</td>
<td>1,956</td>
</tr>
</tbody>
</table>
Results – Benchmark 2

<table>
<thead>
<tr>
<th>Actual Alloc.</th>
<th>SSD</th>
<th>C-MSSD 6-7</th>
<th>C-MSSD 5-7</th>
<th>MD-MSSD 6-7</th>
<th>MD-MSSD 5-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>242,783</td>
<td>496,286</td>
<td>1,310,899</td>
<td>2,398,575</td>
<td>1,310,899</td>
</tr>
<tr>
<td>Std Dev</td>
<td>239,930</td>
<td>545,782</td>
<td>897,851</td>
<td>1,412,045</td>
<td>897,851</td>
</tr>
<tr>
<td>V@R</td>
<td>4,675</td>
<td>53,442</td>
<td>377,758</td>
<td>867,990</td>
<td>377,758</td>
</tr>
<tr>
<td>AV@R</td>
<td>555</td>
<td>27,055</td>
<td>302,775</td>
<td>760,485</td>
<td>302,775</td>
</tr>
<tr>
<td>Time</td>
<td>166</td>
<td>771</td>
<td>859</td>
<td>650</td>
<td>2391</td>
</tr>
<tr>
<td>SSD</td>
<td>C-MSSD 6-7</td>
<td>C-MSSD 5-7</td>
<td>MD-MSSD 6-7</td>
<td>MD-MSSD 5-7</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
<td>------------</td>
<td>-------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3,673,643</td>
<td>2,059,912</td>
<td>3,673,642</td>
<td>2,084,574</td>
<td></td>
</tr>
<tr>
<td>6-7</td>
<td>2,059,915</td>
<td>1,329,444</td>
<td>2,059,912</td>
<td>1,346,306</td>
<td></td>
</tr>
<tr>
<td>5-7</td>
<td>1,346,306</td>
<td>644,790</td>
<td>1,346,306</td>
<td>1,111,726</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1,329,444</td>
<td>644,790</td>
<td>1,329,444</td>
<td>1,111,726</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2,084,574</td>
<td>1,346,306</td>
<td>2,084,574</td>
<td>1,111,726</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Actual Alloc.</th>
<th>SSD</th>
<th>C-MSSD</th>
<th>C-MSSD</th>
<th>MD-MSSD</th>
<th>MD-MSSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>10% Real Estate</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>25% Public Equity</td>
<td>5%</td>
<td>19%</td>
<td>25%</td>
<td>19%</td>
<td>25%</td>
</tr>
<tr>
<td>13% Corporates</td>
<td>13%</td>
<td>13%</td>
<td>13%</td>
<td>13%</td>
<td>13%</td>
</tr>
<tr>
<td>6% Securitized</td>
<td>23%</td>
<td>6%</td>
<td>6%</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td>31% Treasuries</td>
<td>30%</td>
<td>53%</td>
<td>48%</td>
<td>53%</td>
<td>48%</td>
</tr>
<tr>
<td>15% Cash</td>
<td>41%</td>
<td>53%</td>
<td>48%</td>
<td>53%</td>
<td>48%</td>
</tr>
</tbody>
</table>

- **Mean:**
 - SSD: 242,783
 - C-MSSD: 745,815
 - C-MSSD: 3,673,643
 - MD-MSSD: 2,059,912
 - MD-MSSD: 3,673,642

- **Std Dev:**
 - SSD: 239,930
 - C-MSSD: 848,462
 - C-MSSD: 2,084,549
 - MD-MSSD: 1,329,444
 - MD-MSSD: 2,084,574

- **V@R:**
 - SSD: 4,675
 - C-MSSD: 95,059
 - C-MSSD: 1,346,306
 - MD-MSSD: 644,790
 - MD-MSSD: 1,111,726

- **AV@R:**
 - SSD: 555
 - C-MSSD: 55,136
 - C-MSSD: 485,869
 - MD-MSSD: 485,882
 - MD-MSSD: 1,111,726

- **Obj Val:**
 - SSD: -31,950
 - C-MSSD: -72,798
 - C-MSSD: -623,047
 - MD-MSSD: -283,463
 - MD-MSSD: -623,047

- **Time:**
 - SSD: 166
 - C-MSSD: 1,416
 - C-MSSD: 387
 - MD-MSSD: 1097
 - MD-MSSD: 1380
<table>
<thead>
<tr>
<th>Real Estate</th>
<th>Public Equity</th>
<th>Corporates</th>
<th>Securitized</th>
<th>Treasuries</th>
<th>Cash</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benchmark</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSD</td>
<td>C</td>
<td>C</td>
<td>MD</td>
<td>MD</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>6-7</td>
<td>5-7</td>
<td>6-7</td>
<td>5-7</td>
<td></td>
</tr>
<tr>
<td>Benchmark 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSD</td>
<td>C</td>
<td>C</td>
<td>MD</td>
<td>MD</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>6-7</td>
<td>5-7</td>
<td>6-7</td>
<td>5-7</td>
<td></td>
</tr>
<tr>
<td>Benchmark 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSD</td>
<td>C</td>
<td>C</td>
<td>MD</td>
<td>MD</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>6-7</td>
<td>5-7</td>
<td>6-7</td>
<td>5-7</td>
<td></td>
</tr>
</tbody>
</table>

Summary Table

<table>
<thead>
<tr>
<th>Actual Alloc.</th>
<th>Benchmark</th>
<th>Benchmark 2</th>
<th>Benchmark 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSD</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>C</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>C</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>MD</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>MD</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
</tr>
</tbody>
</table>

- **Benchmark:** SSD 7, C 6-7, C 5-7, MD 6-7, MD 5-7
- **Benchmark 2:** SSD 7, C 6-7, C 5-7, MD 6-7, MD 5-7
- **Benchmark 3:** SSD 7, C 6-7, C 5-7, MD 6-7, MD 5-7
Conclusions

The alternative versions of the Multivariate SSD are very close to each other.

The MD-MSSD is a stronger condition and its meaning is more clear and reasonable.

The MD-MSSD is more computational demanding, but still tractable.

Bibliography – Stochastic Dominance

Thank you