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The classical Cahn-Hilliard equation [1] is a non-linear, fourth order in space, parabolic
par- tial differential equation which is often used as a diffuse interface model for the
phase separation of a binary alloy. Despite the widespread adoption of the model, there
are good reasons for preferring models in which fractional spatial derivatives appear
[2,3]. We consider two such Fractional Cahn-Hilliard equations (FCHE). The first [4] cor-
responds to considering a gradient flow of the free energy functional in a negative order
Sobolev space H−α , α ∈ [0, 1] where the choice α = 1 corresponds to the classical
Cahn-Hilliard equation whilst the choice α = 0 recovers the Allen-Cahn equation. It is
shown that the equation preserves mass for all positive values of fractional order and
that it indeed reduces the free energy. The well-posedness of the problem is established
in the sense that the H1-norm of the solution remains uniformly bounded. We then turn
to the delicate question of the L∞ boundedness of the solution and establish an L∞
bound for the FCHE in the case where the non-linearity is a quartic polynomial. As a
consequence of the estimates, we are able to show that the Fourier-Galerkin method
delivers a spectral rate of convergence for the FCHE in the case of a semi-discrete ap-
proximation scheme. Finally, we present results obtained using computational simu-
lation of the FCHE for a variety of choices of fractional order α. We then consider an
alternative FCHE [3,5] in which the free energy functional involves a fractional order
derivative.
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