

Local FEMs for the Fractional Laplacian

Jens Markus Melenk¹ L. Banjai² R. Nochetto³ E. Otarola⁴ A. Salgado⁵ C. Schwab⁶

We discuss several Finite Element Methods (FEMs) applied to the Caffarelli-Silvestre extension that localizes the fractional powers of symmetric, coercive,linear elliptic operators in bounded domains with Dirichlet boundary conditions. We consider open, bounded, polygonal not necessarily convex domains $\Omega \subset \mathbb{R}^2$. First, we discretize with continuous, piecewise linear, Lagrangian FEM (P_1 -FEM) with mesh refinement near corners, and prove that the full convergence rate can be attained. Second, we also prove that tensorization of a P_1 -FEM in Ω with a suitable hp-FEM in the extended variable achieves log-linear complexity with respect to the number of degrees of freedom in the domain Ω . Third, we propose a sparse tensor product FEM based on a multilevel P_1 -FEM in Ω and on a P_1 FEM on radical–geometric meshes in the extended variable; this approach also achieves log-linear complexity with respect to N_{Ω} . Fourth, under stronger (analyticity) assumptions on the data (including the geometry Ω), we establish exponential rates of convergence of hp-FEM for spectral, fractional diffusion operators by discretizing with high order elements.

- ³ University of Maryland, rhn@math.umd.edu
- ⁴ Universidad Federico Santa Maria, enrique.otarola@usm.cl
- ⁵ University of Tennessee, asalgad1@utk.edu
- ⁶ ETH Zurich, schwab@sam.math.ethz.ch

¹ TU Wien, Institute for Analysis and Scientific Computing, Wien, Austria, melenk@tuwien.ac.at

² Heriot Watt University, l.banjai@hw.ac.uk

^{1.}banjal@nw.ac.uk