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In [HKL2010,HKL2013] anisotropic mesh adaptation methods for elliptic problems
are studied. In a next step, we have investigated the influence of anisotropic meshes
upon the time stepping and the conditioning of the linear systems arising from linear
finite element approximations of linear parabolic equations. Here, we present stability
results and estimates for the condition number. Both explicit and implicit time integra-
tion schemes are considered. For stabilized explicit Runge-Kutta methods, it is shown
that the allowed maximal step size depends only on the number of the elements in the
mesh and a measure of the non-uniformity of the mesh viewed in the metric speci-
fied by the inverse of the diffusion matrix. Particularly, it is independent of the mesh
non-uniformity in volume measured in the Euclidean metric [HKL2016]. For the implicit
time stepping situation, bounds are established for the condition number of the result-
ing linear system with and without diagonal preconditioning for the implicit Euler (the
simplest implicit RK method) and general implicit RK methods. It is shown that the con-
ditioning of an implicit RK method behaves like that of the implicit Euler method. The
obtained bounds for the condition number have explicit geometric interpretations and
take the interplay between the diffusion matrix and the mesh geometry into full con-
sideration. They show that there are three mesh-dependent factors that can affect the
conditioning: the number of elements, the mesh non-uniformity measured in the Eu-
clidean metric, and the mesh non-uniformity with respect to the inverse of the diffusion
matrix. They also reveal that the preconditioning using the diagonal of the system ma-
trix, the mass matrix, or the lumped mass matrix can effectively eliminate the effects
of the mesh non-uniformity measured in the Euclidean metric [HKL2017]. Illustrative
numerical examples are given.
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