

hp-FEM for a Stabilized Three-field Formulation of the Biharmonic Problem

Jan Petsche¹ Lothar Banz² Andreas Schröder³

In this talk, we present a stabilized three-field formulation of the biharmonic problem $\Delta^2 u = f$. The need for a discrete inf-sup-condition for the resulting saddle point problem is circumvented by least-squares-like consistent stabilization terms. A priori error estimates for appropriate norms are derived and a reliable and efficient residual error estimator based on an implicit H^2 -reconstruction is shown. Several numerical examples confirm the applicability of the proposed techniques.

¹ University of Salzburg, Department of Mathematics, Salzburg, Austria, jan.petsche@sbg.ac.at

² University of Salzburg, Department of Mathematics, Salzburg, Austria, lothar.banz@sbg.ac.at

³ University of Salzburg, Department of Mathematics, Salzburg, Austria, andreas.schroeder@sbg.ac.at