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Eikonal Solver
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The basis equations in cardiac electrophysiology are the bidomain equations de-
scribing the intercellular and the extracellular electrical potential via a system of two
PDEs coupled nonlinearly by a bunch of ODEs. Its difference, the transmembrane po-
tential, is responsible for the excitation of the heart and its steepest gradients form an
excitation wavefront propagating in time.

This arrival time ϕ(x) of the wavefront at some point x ∈ Ω can be approximated by
the Eikonal equation [1] √

(∇ϕ(x))T M(x)∇ϕ(x) = 1 x ∈ Ω

with given heterogeneous, anisotropic velocity information M . The domain Ω ⊂ R3 is
discretized by planar-sided tetrahedrons with a piecewise linear approximation of the
solution ϕ(x) inside each of them. The numerical solution of the Eikonal equation fol-
lows the fast iterative method [2] with its application for tetrahedral meshes [3]. Therein
the main operations in each discretization element τ contain various inner products in
the M -metric as 〈~ek,s, ~es,`〉Mτ ≡ ~eTk,s · M τ · ~es,` with ~es,` as connecting edge between
vertices s and ` in element τ . While the authors of [3] pass all coordinates of the tetra-
hedron together with the 6 entries of M τ we precompute these inner products and use
only them in the wave front computation. This first change requires less memory trans-
fers for each tetrahedron.

The second change is caused by the fact that 〈~ek,s, ~es,`〉Mτ (k 6= `) represents an
angle of a surface triangle whereas 〈~ek,s, ~ek,s〉Mτ represents the length of an edge in the
M -metric. Basic geometry as well as vector arithmetics yield to the conclusion that the
angle information can be expressed by the combination of three edge lengths. There-
fore we only have to precompute the 6 edge lengths of a tetrahedron and compute the
remaining 12 angle data on-the-fly which reduces the memory footprint per tetrahedron
to 6 numbers.

The efficient implementation of the two changes requires a local Gray-code number-
ing of edges in the tetrahedron and a bunch of bit shifts to assign the appropriate data.
Numerical experiments on CPUs and GPUs show that the reduced memory footprint
approach is faster by 40% than the original implementation.

Additionally, we will present our very recent domain decomposition algorithm for the
Eikonal equation. For large scale problems, the task based parallel model will run into
difficulties: There might be not enough (shared) memory on a single host or on a GPU,
the computing power of a single compute unit is not sufficient, or the parallel efficiency

1 Karl Franzens University of Graz, Institute for Mathematics and Scientific Computing, 8010, Graz, Austria,
daniel.ganellari@uni-graz.at

2 Karl Franzens University of Graz, Institute for Mathematics and Scientific Computing, 8010 , Graz, , Austria,
gundolf.haase@uni-graz.at

3 Friedrich-Schiller-Universität Jena, Institut für Angewandte Mathematik, 07743 Jena, Germany,
gerhard.zumbusch@uni-jena.de



30th Chemnitz FEM Symposium 2017

is not satisfactory. In all cases, a distributed memory model is needed. Hence a coarser
decomposition of the algorithm is needed, namely a domain decomposition approach.

The domain Ω is statically partitioned into a number of non-overlapping sub-domains
Ωi. Each of them is assigned to a single processor. Synchronization and communica-
tion of the processors is to be reduced to a minimum. In our case, a single processor i
can efficiently solve the Eikonal equation on Ωi, as long as its boundary data on ∂Ωi is
correct. However, this data may belong to the outer boundary ∂Ω or to other processors.
Hence inter-processor communication is needed.

We present two different strategies on load balancing in CUDA in order to achieve to
run the domain decomposition approach in one GPU. The first approach maps simply
one sub-domain to one thread block. Its scaling improves with an increased number
of sub-domains by reducing the overall host synchronization together with the preal-
location of the global memory. The second approach takes better advantage of the
GPU shared memory since it shares the workload of one sub-domain between many
thread blocks exploiting in this way the total shared memory space. This allows to
overcome the shared memory limitation with sufficient sub-domains which improves
the performance significantly. This works very well if enough GPU memory is available.
Otherwise we have to preallocate data for each block in each iteration which drops the
performance significantly with increased number of sub-domains. This GPU memory
limitations can be relaxed by allowing memory allocations only by the active blocks
computing for one active sub-domain in the wave front. Again this preallocation is per-
formed in each iteration but only from those blocks who are currently run on one SM.
As soon as the blocks finish their execution the memory is freed and ready to be used
by other active blocks waiting to be distributed on the idle SMs.

The domain decomposition approach is the first step towards the inter-process
communication implementation where the limitation of the global memory will be over-
come completely by using multiple accelerator cards and cluster computing. As a future
work, it will allow the preallocation of global memory which will enable the scalability on
large scale problems.
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