Discretization of Elliptic Differential Equations Using Sparse Grids and Prewavelets

Christoph Pflaum1 \quad Rainer Hartmann2

Sparse grids can be used to discretize elliptic differential equations of second order on a \(d\)-dimensional cube. Using the Galerkin discretization, one obtains a linear equation system with \(O(N(\log N)^{d-1})\) unknowns. The corresponding discretization error is \(O(N^{-1}(\log N)^{d-1})\) in the \(H^1\)-norm. A major difficulty in using this sparse grid discretization is the complexity of the related stiffness matrix. As a consequence only PDE’s with constant coefficients can be efficiently be discretized using the standard sparse grid discretization with \(d > 2\). To reduce the complexity of the sparse grid discretization matrix, we apply prewavelets. This simplifies the implementation of the corresponding algorithms. Furthermore, we present a new sparse grid discretization for the discretization of elliptic differential equations with variable coefficients. This discretization utilizes a semi-orthogonality property. The convergence rate and stability of the discretization is proven for arbitrary dimensions \(d\).

1Friedrich-Alexander-Universität Erlangen-Nürnberg, christoph.pflaum@fau.de
2Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen Graduate School in Advanced Optical Technologies, rainer.hartmann@fau.de