

## Analysis and Numerics of a Generalised Steklov Eigenvalue Problem

Marco Zank<sup>1</sup> Olaf Steinbach<sup>2</sup>

In this talk we consider the generalised Steklov eigenvalue problem

$$-\Delta u = 0 \text{ in } \Omega,$$
  
 $\frac{\partial}{\partial n} u = \mu F u \text{ on } \partial \Omega =: I$ 

for a given operator  $F: H^{\frac{1}{2}}_*(\Gamma) \to H^{-\frac{1}{2}}_*(\Gamma)$  with the spaces

$$H^{-\frac{1}{2}}_{*}(\Gamma) := \left\{ w \in H^{-\frac{1}{2}}(\Gamma) : \langle w, \mathbf{1} \rangle_{\Gamma} = 0 \right\},$$
$$H^{\frac{1}{2}}_{*}(\Gamma) := \left\{ v \in H^{\frac{1}{2}}(\Gamma) : \langle w_{\text{eq}}, v \rangle_{\Gamma} = 0 \right\}$$

and with the natural density  $w_{eq} := V^{-1}\mathbf{1}$  where  $V^{-1}$  is the inverse simple layer operator. The generalised Steklov eigenvalue problem is examined for the inverse simple layer operator  $F = V^{-1}$  and for the hypersingular boundary integral operator F = D.

Spectral values of the underlying operators are linked to the spectral values of the operator  $\frac{1}{2}I + K$ with the double layer operator  $K: H^{\frac{1}{2}}(\Gamma) \to H^{\frac{1}{2}}(\Gamma)$ . We can also find a representation of the contraction rate  $c_K$  of the operator  $\frac{1}{2}I + K$ . Further, the existence of Steklov eigenfunctions and Steklov eigenvalues is proved for domains providing that the double layer operator K is compact.

At the end of the talk numerical examples will be presented not only for a smooth boundary  $\Gamma$  but also for a boundary  $\Gamma$  with corners.

<sup>&</sup>lt;sup>1</sup> Graz University of Technology, Institute of Computational Mathematics, Graz, Austria, zank@math.tugraz.at

<sup>&</sup>lt;sup>2</sup> Graz University of Technology, Institute of Computational Mathematics, Graz, Austria, o.steinbach@tugraz.at