

# Numerical Computation of Effective Properties for Heterogeneous Materials in Linear Elasticity and Fluid Dynamics

Felix Ospald<sup>1</sup> Matti Schneider<sup>2</sup>

For the simulation of materials and fluids involving several constituents at the microscopic level, homogenization methods are usually applied to obtain a homogeneous effective material. We investigate an approach based on the Lippmann-Schwinger equation to compute the effective stiffness of short-fiber reinforced materials as well as the effective viscosity of fiber suspensions in a Stokesian flow regime. The equations are solved within a representative volume element (RVE) with periodic boundary conditions using a non-conforming (Fourier-)Galerkin method, originally proposed by Moulinec and Suquet [1]. The numerical results are compared to existing analytical solutions. Problems with infinite contrast require regularization, which is discussed in terms of a numerical convergence study. Further we discuss some aspects of the implementation, parallelization and scalability of the method.

## References:

[1] H. Moulinec and P. Suquet: *A numerical method for computing the overall response of nonlinear composites with complex microstructure*. Comp. Meth. Appl. Mech. Engng., 157 (1998) 69-94.

<sup>1</sup> TU Chemnitz, Reichenhainer Str. 41, 09107 Chemnitz,  
[feo@tu-chemnitz.eu](mailto:feo@tu-chemnitz.eu)

<sup>2</sup> TU Chemnitz,  
[matti.schneider@mb.tu-chemnitz.de](mailto:matti.schneider@mb.tu-chemnitz.de)