

Numerical analysis of a quasilinear Neumann equation under minimal regularity of the data

Vili Dhamo¹ Eduardo Casas²

We consider the finite element approximation of the following quasilinear Neumann problem

$$\begin{cases} -\operatorname{div}[a(x, u(x))\nabla u(x)] + f(x, u(x)) = 0 & \text{in } \Omega, \\ a(x, u(x))\partial_\nu u(x) = g(x) & \text{on } \Gamma. \end{cases} \quad (1)$$

The consideration is restricted to polygonal domains of dimension two and polyhedral domains of dimension three. For numerical purposes we discretize Ω by a regular triangulation and the mesh on Γ is induced by that on Ω . We approximate the PDE (1) by linear and continuous finite elements.

In spite that f is considered monotone nondecreasing with respect to u , the above equation is not monotone because of the dependence of the coefficients of the operator with respect to the function u . This lack of monotonicity causes the main difficulty in the numerical analysis of the above equation: the uniqueness of a solution of the discretized version of (1) is an open question, even though (1) has a unique solution. This non-monotonicity also complicates the discussion of any linearization of (1) which is needed, in particular, to apply the well-known Aubin-Nitsche trick for optimal L^2 error estimates for the approximation of (1).

In contrast to well-known results in the literature, the C^2 regularity and the boundedness of the coefficient a are not necessary to derive error estimates. In most of the cases it suffices to require only a local Lipschitz property of a .

The boundary datum g is supposed to be in $L^s(\Gamma)$ ($s \geq 2$), therefore the regularity of the solution u of (1) cannot be $H^2(\Omega)$ but only $H^{3/2}(\Omega)$. Because of this lower regularity of u , the analysis becomes more difficult than in the regular case.

The assumption on Ω introduces a new difficulty: the regularity of elliptic equations in corner domains needs special care. For this reason, we distinguish two cases: whether Ω is convex or not. These two different situations yield different order of convergence for the discretization of equation (1) in the $L^2(\Omega)$ norm.

The main aims of this talk are twofold. First, error estimates in different function spaces are presented and second the issue of uniqueness of a solution to the approximate discrete equation is addressed.

¹ Technische Universität Berlin, D-10623 Berlin, Germany,
vdhamo@math.tu-berlin.de

² Universidad de Cantabria, 39005 Santander, Spain,
eduardo.casas@unican.es