Mixed fem-bem coupling for non-linear transmission problems with Signorini contact

Matthias Maischak

Here we generalize the approach in [4] and discuss an interface problem consisting of a non-linear partial differential equation in \(\Omega \subset \mathbb{R}^n \) (bounded, Lipschitz, \(n \geq 2 \)) and the Laplace equation in the unbounded exterior domain \(\Omega_c := \mathbb{R}^n \setminus \bar{\Omega} \) fulfilling some radiation condition, which are coupled by transmission conditions and Signorini conditions imposed on the interface. The interior PDE is discretized by a mixed formulation, whereas the exterior part of the interface problem is rewritten using a Neumann to Dirichlet mapping (NtD) given in terms of boundary integral operators.

We treat the general numerical approximation of the resulting variational inequality and discuss the non-trivial discretization of the NtD mapping. Assuming some abstract approximation properties and a discrete inf-sup condition we prove existence and uniqueness and show an a-priori estimate, which generalizes the results in [4]. Choosing Raviart-Thomas elements and piecewise constants in \(\Omega \) and hat functions on \(\partial \Omega \) the discrete inf-sup condition is satisfied [1]. We present a solver based on a modified Uzawa algorithm, reducing the solution procedure of the non-linear saddle point problem with an inequality constraint to the repeated solution of a standard non-linear saddle point problem and the solution of a variational inequality based on an elliptic operator. Finally, we present a residual based a-posteriori error estimator compatible with the Signorini condition and a corresponding adaptive scheme, see [5].

Some numerical experiments are shown which illustrate the convergence behavior of the uniform h-version with triangles and rectangles and the adaptive scheme as well as the bounded iteration numbers of the modified Uzawa algorithm, underlining the theoretical results.

REFERENCES

1Brunel University, School of Information Systems, Computing & Mathematics, UB8 3PH Uxbridge, UK, Matthias.Maischak@brunel.ac.uk