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Scientific topics:

The symposium is devoted to all aspects of finite elements and wavelet methods in partial
differential equations.

The topics include (but are not limited to)

• adaptive methods,

• parallel implementation,

• high order methods.

This year we particularly encourage talks on

• variational inequalities - contact and free boundary value problems,

• partial differential equations in optimization and optimal control,

• special treatment of singularities and singularly perturbed problems,

• parabolic and time-dependent problems.

Invited Speakers:

Gert Lube (Göttingen)

Reinhold Schneider (Kiel)

Fredi Tröltzsch (Berlin)

Barbara Wohlmuth (Stuttgart)
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Programme for Monday, September 19, 2005
————————————————————————————————

Start at 09:00

————————————————————————————————

Chairman: A. Meyer

9:00 – 9:05 A. Meyer

Welcome

9:05 – 9:50 B. Wohlmuth

Hybrid discretization techniques for variational inequalities

10:00 – 10:15 R. Unger

Subspace cg-techniques for innner-domain-restrictions

10:20 – 10:45 S. Geyn

A Boundary Element Method for an elastoplastic contact
problem

————————————————————————————————

cookie break

————————————————————————————————

Chairman: B. Wohlmuth

11:10 – 11:35 S. Nepomnyaschikh

Domain decomposition preconditioning for elliptic problems
with jumps in coefficients

11:40 – 12:05 S. Beuchler

New shape functions for triangular p-FEM using integrated
Jacobi polynomials

12:10 – 12:35 M. Bebendorf

Computing approximate LU decompositions of FE discretiza-
tions with almost linear complexity

————————————————————————————————

Lunch

————————————————————————————————

Chairman: S. Nepomnyaschikh

14:30 – 15:15 R. Schneider

Wavelets for linear scaling computation in electronic structure
calculation

15:25 – 15:40 U. Kähler

H2 matrix based Wavelet Galerkin BEM
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————————————————————————————————

Tea and coffee break

————————————————————————————————

Chairman: M. Bebendorf

16:05 – 16:30 H. Harbrecht

Adaptive Wavelet Galerkin BEM

16:35 – 17:00 F. Leydecker

An Adaptive Finite Element / Boundary Element Coupling
Method for Electromagnetic Problems

17:05 – 17:30 K. Schmidt

Mixed hp-adaptive FEM of the eddy current model

————————————————————————————————

short break

————————————————————————————————

Chairman: R. Schneider

17:45 – 18:10 S. Grosman

Convergence of adaptive FEM on anisotropic meshes for sin-
gularly perturbed reaction-diffusion equation

18:15 – 18:40 Y. Kondratyuk

Adaptive Finite Element Algorithms of Optimal Complexity
for the Stokes Problem

18:45 – 19:10 W. Dörfler

A convergent adaptive hp-strategy

————————————————————————————————

Dinner

————————————————————————————————

20:00 Wine reception
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Programme for Tuesday, September 20, 2005
————————————————————————————————

Start at 09:00

————————————————————————————————

Chairman: M. Jung

09:00 – 09:45 G. Lube

Finite element methods for parabolic problems with emphasis
on the singularly perturbed case

09:55 – 10:20 M. Bause

Higher order mixed finite element methods for elliptic and
parabolic equations with solutions of low regularity

10:25 – 10:50 J. Rang

A comparison of time-discretization/linearization approaches
for the incompressible Navier-Stokes equations

————————————————————————————————

cookie break

————————————————————————————————

Chairman: G. Lube

11:15 – 11:40 G. Matthies

Solving the Navier-Stokes equations by multigrid methods
using quasi divergence free functions

11:45 – 12:10 F. Schieweck

On the reference mapping for quadrilateral and hexahedral
elements on multilevel adaptive grids

12:15 – 12:40 T. Linß

Anisotropic meshes and streamline-diffusion stabilization

————————————————————————————————

Lunch

————————————————————————————————
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Chairman: G. Matthies

14:15 – 14:40 V. Liseikin

New Approaches for Generating Adaptive Numerical Grids

14:45 – 15:10 F. Lippold

FENFLOSS - a parallel implementation of the FEM in CFD-
Engineering

————————————————————————————————

15:30 Excursion

————————————————————————————————

Dinner

————————————————————————————————
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Programme for Wednesday, September 21, 2005
————————————————————————————————

Start at 09:00

————————————————————————————————

Chairman: W. Dörfler

09:00 – 09:45 F. Tröltzsch

Optimal control of PDEs – from optimality conditions to nu-
merical methods

09:55 – 10:20 A. Rösch

On the numerical verification of optimality conditions for op-
timal control problems

10:25 – 10:50 J. Saak

An LQR approach to tracking control for parabolic systems

————————————————————————————————

cookie break

————————————————————————————————

Chairman: T. Apel

11.15 – 11:40 C. Pester

On the computation of singularity exponents

11:45 – 12:00 G. Winkler

Optimal Control Problem on non-convex Domains

————————————————————————————————

short break

————————————————————————————————

Chairman: B. Heinrich

12:15 – 12:40 B. Jung

Nitsche- and Fourier-finite-element method for the Poisson
equation in axisymmetric domains with re-entrant edges

12:45 – 13:10 V. Rukavishnikov

The Finite Element Method for the Boundary Value Problem
with Strong Singularity of Solution

13:15 – 13:20 A. Meyer

Closing

————————————————————————————————

Lunch

————————————————————————————————
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Higher order mixed finite element methods for

elliptic and parabolic equations with solutions of low

regularity

Markus Bause1

In this talk a higher order finite element approach to the coupled variably saturated

groundwater flow and bioreactive contaminant transport model is considered. Higher order
techniques have proved advantageous in the reliable numerical simulation of biochemically
reacting transport processes, due to their less inherent numerical diffusion. For the calcu-
lation of the groundwater flow field mixed finite element methods are prefered due to their
inherent conservation properties and since they provide a flux approximation as part of
the formulation itself. Typically, lowest order mixed Raviart–Thomas elements are used
for solving the parabolic-elliptic degenerate Richards equation describing the motion of
groundwater, since this model admits solutions of low regularity only.

Here, our numerical results obtained by a higher order mixed finite element approach
of Brezzi-Douglas-Marini type to elliptic, parabolic and degenerate partial differential
equations with solutions of low regularity are presented and carefully compared to cor-
responding results based on lowest order Raviart–Thomas mixed finite element calcula-
tions. The application of the mixed Brezzi-Douglas-Marini finite element technique to the
nonlinear degenerate Richards equation and its implementation in the parallel software

environment M++ is also addressed.

References:

[1] M. Bause, P. Knabner. Computation of variably saturated subsurface flow by adaptive mixed
hybrid finite element methods, Adv. Water Resour., 27:565–581, 2004.
[2] M. Bause, P. Knabner. Numerical simulation of contaminant biodegradation by higher order
methods and adaptive time stepping, Comput. Visual. Sci., 7:61–78, 2004.

1Universität Erlangen-Nürnberg, Institut für Angewandte Mathematik, Martensstr. 3, 91058 Er-
langen, Germany,
bause@am.uni-erlangen.de
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Computing approximate LU decompositions of FE

discretizations with almost linear complexity

Mario Bebendorf1

Although the asymptotic complexity of direct methods for the solution of large sparse
finite element systems arising from second-order elliptic partial differential operators is
far from being optimal, these methods are often preferred over modern iterative methods.
This is mainly due to their robustness. In this article it is shown that an (approximate)
LU decomposition can be computed in the algebra of hierarchical matrices with almost
linear complexity and with the same robustness as the classical LU decomposition.

1Univ. of Leipzig, Fakultaet fuer Mathematik und Informatik, Augustusplatz 10/11, 04109 Leipzig,
Germany,
bebendorf@math.uni-leipzig.de
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New shape functions for triangular p-FEM using

integrated Jacobi polynomials

Sven Beuchler1 Joachim Schoeberl2

In this talk, the second order boundary value problem −∇ · (A(x, y)∇u) = f is dis-
cretized by the Finite Element Method using piecewise polynomial functions of degree p
on a triangular mesh. On the reference element, we define integrated Jacobi polynomials
as interior ansatz functions. If A is a constant function on each triangle and each triangle
has straight edges, we are able to show that the element stiffness matrix has not more
than 25/2p2 nonzero matrix entries.

The proof of this result requires several properties of Jacobi polynomials. We will
present the most important relations for Jacobi polynomials which are needed.

Finally, two applications of this result are presented.

1Kepler-University Linz, Institute of Computational Mathematics, Altenberger Strasse 69, 4040
Linz-Auhof, Austria,
sven.beuchler@numa.uni-linz.ac.at

2Johann Radon Institute for Computational and Applied Mathematics, Austrian Academy of Sci-
ences, Altenberger Strasse 69, 4040 Linz-Auhof, Austria,
joachim.schoeberl@oeaw.ac.at
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A convergent adaptive hp-strategy

Willi Dörfler1

We develop a strategy that allows to decide between h- and p- refinement in the finite
element solution of the Poisson problem. It can be proved that the method is convergent
if the error indicators are both reliable and efficient uniformly in h and p.

1Univ. Karlsruhe, 79128 Karlsruhe, Germany,
doerfler@math.uni-karlsruhe.de
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A Boundary Element Method for an elastoplastic

contact problem

Sergey Geyn1 Matthias Maischak2 Ernst P. Stephan3

We consider an elastoplastic two body contact problem with friction under small strain,
plain strain theories in 2D. An interaction of bodies is described by the penetration the-
ory, J2 flow theory with isotropic/kinematic hardening for plasticity is used. The Galerkin
Boundary element method with Newton potentials is used to obtain a weak formulation
of the elastoplastic contact problem. Newton potentials occur due to plastic deforma-
tions that introduce additional terms in the representation formula for displacement and
stresses. Those terms are nothing more than integration of plastic part of strain tensor
over domain with specific singular kernels. We obtain a discrete nonlinear system under
plastic and contact constrains. These system is solved with the Newton method. The
Advantage of the BE approach with respect to FE is a smaller number of unknowns that
one has to manage to obtain the discrete approximation of the solution. Using boundary
elements one has to overcome difficulties dealing with the boundary integrals with sin-
gular and hyper singular kernels. For polynomial functions such integrals can be easily
regularized by integration by parts. Therefore recursion formulas can be used for numer-
ical realization. All implementation was done with the scientific package maiprogs using
Fortran F95. Simulation showed good agreement FEM with BEM solutions.

1University of Hannover, Institute for Applied Mathematics, Welfengarten 1, 30167 Hannover, Ger-
many,
gein@ifam.uni-hannover.de

2University of Hannover, Institute for Applied Mathematics, Welfengarten 1, 30167 Hannover, Ger-
many,
maischak@ifam.uni-hannover.de

3University of Hannover, Institute for Applied Mathematics, Welfengarten 1, 30167 Hannover, Ger-
many,
stephan@ifam.uni-hannover.de
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Convergence of adaptive FEM on anisotropic meshes

for singularly perturbed reaction-diffusion equation

Sergey Grosman1

Singularly perturbed reaction-diffusion problems exhibit in general solutions with
anisotropic features, e.g. strong boundary and/or interior layers. This anisotropy is
reflected in the discretization by using meshes with anisotropic elements. By means of
a posteriori error estimation we develop an adaptive Finite Element Method, employing
special anisotropic adaptive partitions. This algorithm produces well-suited meshes; we
show that it converges uniformly in the energy norm.

1Uniwersität der Bundeswehr München ,
sergey.grosman@unibw-muenchen.de
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Adaptive Wavelet Galerkin BEM

Helmut Harbrecht1 W. Dahmen2 Rob Stevenson3

This talk is concerned with developing numerical techniques for the adaptive applica-
tion of global operators of potential type in wavelet coordinates. This is a core ingredient
for a new type of adaptive solvers that has so far been explored primarily for PDEs. We
shall show how to realize asymptotically optimal complexity in the present context of
global operators. Asymptotically optimal means here that any target accuracy can be
achieved at a computational expense that stays proportional to the number of degrees of
freedom (within the setting determined by an underlying wavelet basis) that would ideally
be necessary for realizing that target accuracy if full knowledge about the unknown solu-
tion were given. The theoretical findings are supported and quantified by first numerical
experiments.

1University of Kiel, Institute of Computer Science and Applied Mathematics, Olshausenstr. 40,
24098 KIEL, GERMANY,
hh@numerik.uni-kiel.de

2Institut fuer Geometrie und Praktische Mathematik, , RWTH Aachen, Aachen, Germany,
dahmen@igpm.rwth-aachen.de

3Department of Mathematics , Utrecht University, Utrecht, The Netherlands,
stevenson@math.uu.nl
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Nitsche- and Fourier-finite-element method for the

Poisson equation in axisymmetric domains with

re-entrant edges

Beate Jung1 Bernd Heinrich2

In this talk we present a combination of the Fourier-finite-element method with the
Nitsche-finite-element method (as a mortar method). The approach is applied to the
Dirichlet problem of the Poisson equation in three-dimensional axisymmetric domains
with re-entrant edges entailing singularities of the solution. We use a non-tensor product
representation of singularities.
The approximating Fourier method yields a splitting of the 3D-problem into 2D-problems.
For solving the 2D-problems on the meridian plane Ωa, the Nitsche-finite-element method
with non-matching meshes is applied. In order to improve the accuracy of the method in
presence of singularities, these meshes are provided with local grading. The solution of
the 3D-problem is obtained by Fourier synthesis of the 2D-solution.
The rate of convergence in some H1-like norm is proved to be of the type O(hα + N−1)
(h: mesh size on Ωa, N : length of the Fourier sum), where α = 1 in case of appropriate
mesh grading, i.e. the same convergence rate as for a regular solution of the BVP can be
achieved. Moreover, we prove that the convergence rate in the L2-norm is of the order
O(h2α + N−2).

1Technische Universität Chemnitz, Fakultät für Mathematik, Reichenhainer Str. 41, 09126 Chem-
nitz, Germany,
beate.jung@hrz.tu-chemnitz.de

2Technische Universität Chemnitz, Fakultät für Mathematik, Reichenhainer Str. 41, 09126 Chem-
nitz, Germany,
bernd.heinrich@mathematik.tu-chemnitz.de
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H2 matrix based Wavelet Galerkin BEM

Ulf Kähler1

This talk is devoted to the fast solution of boundary integral equations on unstructured
meshes by the Galerkin scheme. To avoid the quadratic costs of traditional discretizations
with their densely populated system matrices it is necessary to use fast techniques such
as hierarchical matrices, the multipole method or wavelet matrix compression, which will
be the topic of the talk.

On the given, possibly unstructured, mesh we construct a wavelet basis providing
vanishing moments with respect to the traces of polynomials in the space. With this
basis at hand, the system matrix in wavelet coordinates can be compressed to O(N log N)
relevant matrix coefficients, where N denotes the number of unknowns.

For the computation of the compressed system matrix with suboptimal complexity
we will present a new method based on the strong similarities of substructures of the H2

matrices and the used wavelet basis.

1TU Chemnitz, Fakultät für Mathematik, 09126 Chemnitz, Germany,
ulka@mathematik.tu-chemnitz.de
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Adaptive Finite Element Algorithms of Optimal

Complexity for the Stokes Problem.

Yaroslav Kondratyuk1

Nowadays adaptive finite element algorithms are recognized as powerful techniques for
solving PDEs. The general structure of the loop of an adaptive algorithm is Solve - Esti-
mate - Refine, Derefine. Especially the analysis of the last step of this loop is important
for showing the optimality of the method. In ”Adaptive Finite Element Methods with
Convergence Rates” [Numer. Math., 97,(2004), pp.219-268], Binev, Dahmen and DeVore
and in ”An Optimal Adaptive Finite Element Method” [to appear in SIAM J. Numer.
Anal.], Stevenson showed optimality of adaptive FEM algorithms for elliptic problems.

Concerning the solution of mixed variational problems, the situation is more com-
plecated, and we are not aware of any theoretical study of optimality of finite element
algorithms.

In ”An Adaptive Uzawa FEM for the Stokes Problem: Convergence without the Inf-
Sup Condition” [SIAM J. Numer. Anal., 40, (2002), pp. 1207-1229], Bänch, Morin
and Nochetto introduced an adaptive FEM algorithm for the Stokes problem. Although
they proved convergence of the algorithm, and numerical experiments showed (quasi-)
optimal triangulations for some values of the parameters, a theoretical analysis whether
the algorithm is optimal is missing.

In this talk, we present a detailed design of adaptive FEM algorithms for the Stokes
problem, and an analysis of their computational complexity. We apply a fixed point
iteration to an infinite dimensional Schur complement operator, where to approximate
the inverse of the elliptic operator we use a convergent adaptive finite element method.
Further, we apply a Chebyshev acceleration of this fixed point iteration, and show that
the overall method has optimal computational complexity.

1Utrecht University, Faculty of Mathematics and Computer Sciences, PO-Box 80010, Budapestlaan
6 , 3508TA Utrecht, The Netherlands,
Kondratyuk@math.uu.nl
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AN ADAPTIVE FINITE ELEMENT /

BOUNDARY ELEMENT COUPLING METHOD

FOR ELECTROMAGNETIC PROBLEMS

Florian Leydecker1 Matthias Maischak2 Ernst P. Stephan3

We present an hp-version of the finite element / boundary element coupling method
to solve time-harmonic scattering problems and eddy current problems in IR3. We use
H(rot, Ω)–conforming vector-valued polynomials to approximate the electric field in the
conductor Ω and H(divΓ, Γ)–conforming polynomials on the boundary Γ of Ω to approx-
imate the twisted tangential trace of the magnetic field. We present both a priori and a
posteriori error estimates together with an adaptive algorithm to compute the fem/bem
coupling solution on suitably refined meshes. We present numerical results.

1University of Hannover, Institute for Applied Mathematics, Welfengarten 1, 30167 Hannover, Ger-
many,
leydecke@ifam.uni-hannover.de

2University of Hannover, Institute for Applied Mathematics, Welfengarten 1, 30167 Hannover, Ger-
many,
maischak@ifam.uni-hannover.de

3University of Hannover, Institute for Applied Mathematics, Welfengarten 1, 30167 Hannover, Ger-
many,
stephan@ifam.uni-hannover.de
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Anisotropic meshes and streamline-diffusion

stabilization

Torsten Linß1

We study a convection-diffusion problem with dominant convection. Anisotropic
streamline aligned meshes with high aspect ratios are recommended to resolve character-
istic interior and boundary layers and to achieve high accuracy. We address the question
of how the stabilization parameter in the streamline-diffusion FEM (SDFEM) should be
chosen inside the layers. Using a residual free bubbles approach, we show that within the
layers the stabilization must be drastically reduced.

1Technische Universität Dresden, Institut für Numerische Mathematik, 01062 Dresden,
torsten@math.tu-dresden.de
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FENFLOSS - a parallel implementation of the FEM

in CFD-Engineering

Felix Lippold1 Stefan Borowski2

1 FENFLOSS - a parallel implementation of the FEM

in CFD-Engineering

Simulation of flow phenomena in engineering applications gained more and more im-
portance in the last two decades. The limiting factor in most cases was the available
computing time and storage capacity. Nowadays, very complex flow problems can be sim-
ulated within acceptable time. However, the demand for more computing power still lasts,
and simulation codes and algorithms have be adapted to the respective architectures.

The unsteady Reynolds averaged Navier Stokes solver FENFLOSS (Finite Element
based Numerical FLOw Simulation System) is being developped at the University of
Stuttgart, Institute of Fluid Mechanics and Hydraulic Machinery (IHS), since early 80s.
Main applications are steady and unsteady turbulent flow problems of incompressible
fluids in complex three dimensional geometries. To model the physical problem, a Q1P0
Petrov-Galerkin-formulation on hexahedral elements is applied. A Richardson-iteration
folded by a time loop is used to solve the global non-linear problem. The linearised
equations are solved by an iterative BICGStab-solver. In order to appropriately model
turbulence, two-equation models or enhanced, adaptive turbulence models are available.
Furthermore, a special formulation for rotating frames of reference is implemented.

Today, the typical problem size is about one to ten million or more grid points which
means up to 60 million unknowns. Besides special matrix storage methods, this requires
an appropriate size of available computing time and memory. In this case, the best way
to reduce the absolute time to obtain a solution is parallel processing.

FENFLOSS uses a distributed memory (DMP) approach based on MPI. The domain
decomposition technique is based on the METIS-library to guarantee good load balancing
between the single processes. Communication is applied directly in the matrix-vector and
scalar product of the solver. The main advantage of this approach, besides a very good
speed-up ratio, is the independence of solution from the number of partitions. This allows
the usage of massively parallel architectures such as PC-clusters.

In order to exploit the power of highly specialised vector computer architectures, such
as the new NEC SX-8 installed at the HPC-Centre in Stuttgart, the code provides special
storage schemes and loop orderings for vector processing. Though already vectorised,
the solver of FENFLOSS is still further optimised and matrix reorderings yield another
improvement in performance. Another way to use modern hybrid SMP-DMP architectures
is the combination of shared memory parallisation (SMP) and DMP.

1Universität Stuttgart, Institut fuer Strömungsmechanik und Hydraulische Strömungsmaschinen,
lippold@ihs.uni-stuttgart.de

2NEC - Europe,
sborowski@hpce.nec.de
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Performance measurements on the new SX-8 vector system for the diffent code optimi-
sation steps will be discussed for a chosen example. Furthermore, the changes made in the
code will be presented in detail and the issue of indirect addressing in vector computing
will be addressed.

References:

[1] 1. NEC:NEC SX-Series Programming Environment - Ready Reference

[2] 2. Maihöfer:
[3] Effiziente Verfahren zur Berechnung dreidimensionaler Strömungen mit nichtpassenden Git-

tern, Dissertation, Universität Stuttgart, IHS 2002.
[4] 3. Ruprecht, A. Finite Elemente zur Berechnung dreidimensionaler turbulenter Strömungen

in komplexen Geometrien.

[5] Dissertation, Universität Stuttgart, IHS, 1989
[6] 4. van der Vorst, H. A. BI-CGSTAB: A fast and smoothly converging variant of BI-CG

for the solution of nonsymmetric linear systems.

[7] SIAM J.Sci.Stat.Comp, Vol.13(2), 1992.
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New Approaches for Generating Adaptive Numerical

Grids

Vladimir Liseikin1 A.H. Glasser2 I.A. Kitaeva, Yu.V. Likhanova3

The paper presents recent results related to the development of algorithms and codes
for generating both structured and unstructured grids with the use of operator Beltrami.
An original description of the method was given in the monograph V.D. Liseikin Ä Com-
putaional Differential Geometry Approach to Grid Generation”, 2004, Berlin, Springer.
Control of grid properties is realized by monitor metrics introduced in the physical ge-
ometry under consideration. The metrics for generating grids adapting to vector fields,
gradients, and/or values of physical quantities are presented. Applications of adaptive
grids to fluid dynamics and plasma related problems are demonstrated.

The work over the paper and participation in conferences are supported by CRDF
(grant RU-M1-2579).

1Institute of Computational Technologies Siberian Branch of Russian Academy of Scencies, Numer-
ical Mathematics, Lavrent’eva, 6, 630090 Novosibirsk, Russia,
lvd@ict.nsc.ru

2Los Alamos National Laboratory,
ahg@lanl.gov

3Novosibirsk State University, Institute of Computational Technologies Siberian Branch of Russian
Academy of Scencies,
kit@gorodok.net, ula@gorodok.net
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Finite element methods for parabolic problems with

emphasis on the singularly perturbed case

Gert Lube1

In the main part of the talk, we consider the linear parabolic advection-diffusion-
reaction model

∂tu − ǫ∇ · (a∇u) + (b · ∇)u + cu = f in (0, T ) × Ω ⊂ R × Rd (1)

with ǫ ∈ (0, 1]. The singularly perturbed case 0 < ǫ ≪ 1 is often of special interest
in applications. A plain FEM-semidiscretization in space leads to a very large stiff and
dissipative ODE-system. A proper implicit discretization in time gives a large set of
algebraic equations to be solved within each time step, see [1]. Typical requirements are
stability of the time discretization (A-stability, eventually B-stability) , high accuracy in
time and space, adaptive time step control (hopefully with adaptive control of the spatial
mesh) and efficient solvability of the algebraic systems.

First we discuss these aspects for the standard θ-scheme as an example of a low-order
scheme in time, see [2]. Then we consider higher-order schemes in time, in particular
B-stable Runge-Kutta methods and discontinuous Galerkin methods in time [3]. From
the view-point of adaptivity, we propose to consider the time discretization in an outer
loop, see also [4]. In the singularly perturbed case, one is also interested in robustness of
a-priori and a-posteriori estimates with respect to the parameter ǫ. We will discuss dif-
ficulties which appear if standard residual-based stabilization techniques (like streamline
upwinding) are applied. Recent stabilization methods, e.g. the edge-stabilization or local
projection schemes, avoid some of these problems.

In applications, the model problem (1) will appear only as an auxiliary problem. In
the final part of the talk, we will briefly discuss a suitable approach to time-dependent,
thermally-coupled, incompressible and turbulent flow problems [5].

References

[1] V. Thomee: Galerkin Finite Element Methods for Parabolic Problems, Springer 1997

[2] R. Verfürth: A posteriori error estimates for linear parabolic equations, Ruhr-Universität
Bochum, Fakultät für Mathematik, Preprint 2004

[3] K. Svadlenka, M. Feistauer: Space-time discontinuous Galerkin method for solving non-
stationary convection-diffusion reaction, Charles University Prague, Preprint MATH-knm-
2005/2

[4] J. Lang: Adaptive Multilevel Solution of Nonlinear Parabolic PDE systems, Springer 2001

[5] T. Knopp, G. Lube, R. Gritzki, M. Rösler: A near-wall strategy for buoyancy-affected tur-

bulent flows using stabilized FEM with applications to indoor air flow simulation, Comput.

Methods Appl. Mech. Engr. 194 (2005), 3797-3816

1University of Göttingen, Math. Department, Institute of Numerical and Applied Mathematics,
Lotzestraße 16-18, 37083 Göttingen, Germany,
lube@math.uni-goettingen.de
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Solving the Navier-Stokes equations by multigrid

methods using quasi divergence free functions

Gunar Matthies1 Friedhelm Schieweck2

We consider higher order finite element discretisations for solving the Navier–Stokes
problem by means of discontinuous elements for the pressure and suitable conforming
elements for the velocity such that the global and the local inf-sup condition are satisfied.

Higher order finite element discretisations have proved to be very efficient for the
numerical solution of incompressible flow problems. However, the block Gauss-Seidel
smoothers of existing coupled multi-level solvers become quite expensive for higher order
discretisations, especially in the 3D case.

We will present a new multigrid solver that allows to use a smoother with low com-
putational costs. The idea is to switch inside of the multigrid method to a new velocity
basis which leads to a system with a much lower number of unknowns as well as a very
small number of couplings between them. We call this new basis quasi divergence free
since most of the basis functions are discretely divergence free which implies that they
do not have any coupling to the pressure. The quasi divergence free basis functions can
be constructed locally during the assembling process of the stiffness matrix by means of
local projection operators.

The discrete problem which uses the quasi divergence free basis functions is decom-
posed into two subproblems. The first one is a problem for the element bubble part
of the velocity solution. It can be solved independently from the remaining part in an
element-wise way already during the assembling process of the stiffness matrix. The sec-
ond problem of the decomposition is a reduced problem for the piecewise constant part
of the pressure solution and the remaining velocity part. This system has a much smaller
dimension than the original discrete Ossen problem. The remaining pressure part can be
computed at the end by an element-wise post-processing procedure.

Furthermore, we will show how the multigrid solver constructed for the Oseen equa-
tions can be used for solving a discrete problem of a streamline diffusion method inside
of a modified Picard-type iteration.

1Ruhr-Universität Bochum, Fakultät für Mathematik, Universitätsstr. 150, 44780 Bochum, Ger-
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Domain decomposition preconditioning for elliptic

problems with jumps in coefficients

Sergey V. Nepomnyaschikh1

In this talk, we propose an effective iterative preconditioning method to solve elliptic
problems with jumps in coefficients. The algorithm is based on the additive Schwarz
method (ASM). First, we consider a domain decomposition method without cross points
on interfaces between subdomains and the second is the cross points case. In both cases
the main computational cost is an implementation of preconditioners for the Laplace
operator in whole domain and in subdomains. Iterative convergence is independent of
jumps in coefficients and mesh size.

1ICM & MG, Russian Academy of Sciences ,
svnep@oapmg.sscc.ru
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On the computation of singularity exponents

Cornelia Pester1

In this talk we give an introduction to boundary value problems with singular be-
haviour of the solution. Singularities occur, for example, near concave corners in the
domain, at points of changing boundary conditions or when the differential operator is
discontinuous. In three-dimensional domains, we have to distinguish in addition between
edge and corner singularities and interacting edge and corner singularities. We present
strategies for the computation of the singularities near two- or three-dimensional corners
and discuss the convergence behaviour of the Finite Element Method.

1Universität der Bundeswehr München, 85579, Neubiberg, Germany,
cornelia.pester@unibw-muenchen.de
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A comparison of time-discretization/linearization

approaches for the incompressible Navier-Stokes

equations

Joachim Rang1 Volker John2 Gunar Matthies3

This talk presents a numerical study of two ways for discretizing and linearizing the
time-dependent incompressible Navier-Stokes equations. One approach consists in first
applying a semi-discretization in time by a fully implicit θ-scheme. Then, in each discrete
time, the equations are linearized by a fixed point iteration. The number of iterations
to reach a given stopping criterion is a priori unknown in this approach. In the second
approach, Rosenbrock schemes with s stages are used as temporal discretization. The non-
linearity of the Navier-Stokes equations is treated internally in the Rosenbrock methods.
In each discrete time, exactly s linear systems of equations have to be solved. The
numerical study considers five two-dimensional problems with distinct features. Four
implicit time stepping schemes and five Rosenbrock methods are involved.

1TU Clausthal, Institute of Mathematics, Erzstr. 1, 38678 Clausthal-Zellerfeld, Germany,
major@math.tu-clausthal.de

2Universität des Saarlandes, Postfach 15 11 50, 66041 Saarbrücken ,
john@math.uni-sb.de

3Fakultät für Mathematik, Ruhr-Universität Bochum, Universitätsstrase 150, 44780 Bochum,
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On the numerical verification of optimality

conditions for optimal control problems

Arnd Rösch1 Daniel Wachsmuth2

Optimality conditions are the base of all numerical methods. For instance, the first-
order necessary optimality conditions can be solved by Newton-type algorithms. The
second-order sufficient optimality condition (definiteness, coercivity) ensure the local
quadratic convergence of such methods. However, the verification of second-order suf-
ficient optimality condition is still a challenge.

In this talk, we will shed light on the numerical verification of optimality conditions.
We will present interesting cases where numerical solutions guarantee the existence of a
solution of the undiscretized problem in a well determined neighborhood of the numerical
solution.

1RICAM Linz, Group Inverse Problems, Altenberger Str. 69, A-4040 Linz, Austria,
arnd.roesch@oeaw.ac.at
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The Finite Element Method for the Boundary Value

Problem with Strong Singularity of Solution

V.A. Rukavishnikov1 H.I. Rukavishnikova2

Mathematical models for a number of physical processes lead to the differential prob-
lems in which the strong singularity of solution is caused by the singularity of initial
data (the coefficients of the equation, the right hand sides of the equation and bound-
ary conditions). For the boundary value problem of this type, for which the generalized
(weak) solution can not be defined, or it does not have necessary regularity, we offered
to define the solution as the Rν-generalized one. Such a concept of solution led to dis-
tinction of two classes of boundary value problems: the problems with co-ordinated and
non-co-ordinated degeneration of initial data. For these classes of problems this approach
allowed to investigate the existence, uniqueness, coercivity, differential properties of the
Rν-generalized solution in the weighted Sobolev spaces. We construct and investigate
the h-version and the h − p-version of the finite element method for these problems. We
introduce the special regularizor and the finite element space which contains the singular
functions, having the singularity depending on the space, to which the Rν-generalized so-
lution of the problem belongs. Using these elements we prove the estimate of the rate of
convergence of the approximate solution to the exact Rν-generalized solution in the norm
of the weighted space. Numerical analysis of the modeling problems with singularity was
made with elements of parallelizing the process of computing.

Acknowledgement. The work by Russian Foundation for Basic Research (code of
project 04-01-97004).
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An LQR approach to tracking control for parabolic

systems

Jens Saak1 Peter Benner2

We present a linear-quadratic regulator design for tracking reference states of parabolic
systems. It is shown that the solution strategy is closely related to an earlier approach
where the LQR approach was used to achieve asymptotic zero stabilization. That means,
here we want to regulate the state to a given stationary state. We discuss theoretical
extensions to the earlier approach needed to complete this task and compare numerical
results for both approaches.
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On the reference mapping for quadrilateral and

hexahedral elements on multilevel adaptive grids

Friedhelm Schieweck1 Gunar Matthies2

We study the properties of a general non-affine family of quadrilateral and hexahedral
meshes with possibly hanging nodes which are typically generated by an adaptive finite
element method starting from a regular coarse mesh. It turns out that for such meshes
the reference mapping, which maps a fixed reference element to an arbitrary element of
the mesh, behaves nearly like an affine mapping up to a perturbation of the magnitude of
the mesh-size. This result may be useful for the finite element analysis since it allows to
generalize by means of a perturbation argument some existing results that are proved in
the literature only for the special case of an affine equivalent quadrilateral and hexahedral
finite element mesh. However, from the practical point of view, the assumption of an
affine equivalent mesh is too restrictive for quadrilateral and hexahedral mesh cells since
it would admit only parallelograms or parallelepipeds. As an application we show how
the local inf-sup condition for the (Qr, Pr−1) element can be proved via transformation
from a known inf-sup condition on the unit cube.

1Otto-von-Guericke Universität Magdeburg, Institut für Analysis und Numerik, Postfach 4120,
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Friedhelm.Schieweck@mathematik.uni-magdeburg.de

2Ruhr-Universität Bochum, Fakultät für Mathematik, Raum NA 2/69, D-44780 Bochum,
Gunar.Matthies@ruhr-uni-bochum.de

32



Mixed hp-adaptive FEM of the eddy current model

Kersten Schmidt1

We are interested in the electromagnetic field generated by an alternating current
density, in the computational domain Ω with dielectric media. In many situations the
quasi-static eddy current model is reliable. The E-field is determined in H(curl, Ω) only
up to gradients of potential functions φ in H1(Ω0), where Ω0 is the sub-domain of non-
conducting materials. However, by introducing additional constraints a uniquely solvable
mixed formulation for E and φ in H(curl, Ω) × H1(Ω0) results.

The space H(curl, Ω)×H1(Ω0) is discretised by W ×S, consisting of fully hp-adaptive
edge and nodal element spaces on a quadrilateral mesh. To ensure unique solvability of
the discrete problem the space of the discrete gradients of the potentials have to coincide
with the kernel of the discrete curl operator applied to W . This implies relations of the
polynomial degrees of W and S and enforces a so-called minimum rule.

The talk focuses on developing an algorithm, which delivers small supported basis
functions satisfying the minimum rule.

In the presented numerical results interface effects are accurately resolved by anisotropic
polynomial degrees and non-conforming meshes at low computational costs. Extension to
three dimensions and other mixed formulations follows similarly.
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Wavelets for linear scaling computation in electronic

structure calculation

Reinhold Schneider1

In the present talk we consider effictive one particle models for the ground state calcu-
lation of the electronic Schrödinger equation for molecular systems with N electrons, like
Kohn-Sham equations based on density functional theory as well as the classical Hartree-
Fock model. Instead of computing the orbitals, we compute the so called density matrix

which represents the kernel function in R
6 the spectral projection operator. We consider

systematic basis functions subordinated to different scales e.g. wavelets for the discreti-
sation. We exploit the potential of wavelets for hyperbolic cross approximation in high
dimensional spaces together with their ability for sparse representation of nonlocal oper-
ators to achieve linear scaling with respect to the number of particles and basis functions
(in a suitable setting). Optionally a new concept of Kronecker-product approximation
introduced by Beylkin et al. and Tyrtyshnikov et al. of operators will be presented.
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Optimal control of PDEs – from optimality

conditions to numerical methods

Fredi Tröltzsch1

The talk surveys basic numerical ideas for solving optimal control problems governed
by elliptic equations. Necessary optimality conditions and related numerical methods
are explained in parallel for problems with increasing difficulty. Starting from convex
problems for linear elliptic equations without additional constraints, finally nonconvex
problems with semilinear equation and some inequality constraints are considered. In
particular, gradient methods, primal-dual active set strategies, SQP-and interior point
methods are addressed.
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Subspace cg-techniques for

innner-domain-restrictions

Roman Unger1

Subspace-cg-techniques with projection methods are useful for an easy extension of
an arbitrary finite element code with error estimation and adaptive strategies to an algo-
rithm for solving restricted problems like contact problems between an elastic body and
obstacles.

In this talk the usage of this method to apply restrictions in the inner domain of an
elastic body, not on the boundary will considered.

Some practical applications of this method and numerical examples will be shown.
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Optimal Control Problem on non-convex Domains

Gunter Winkler1 Thomas Apel2 Arnd Rösch3

In a recent paper Meyer and Rösch prove superconvergence properties in the control
variable for linear-quadratic optimal control problems in convex domains. We generalize
these results for non-convex domains. The corner singularities are treated by a-priori
mesh grading such that we are able to prove results of the same quality as in the case of
regular solutions. Numerical examples are presented.
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Hybrid discretization techniques for variational

inequalities

Barbara Wohlmuth1

Hybrid discretization techniques provide a powerful tool for the numerical approxima-
tion of variational inequalities. Variational inequalities such as contact problems can be
easily analyzed within the abstract framework of saddle point problems. A priori results
for the displacements and the stresses can be obtained. The Lagrange multiplier plays the
role of the contact pressure and enters as additional variable in the weak formulation. In
terms of a local basis transformation, static condensation can be carried out. Numerical
examples include incompressible materials, Coulomb friction, non-linear material laws,
large deformations and thermo-mechanical coupling.
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