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Scientific topics:

The symposium is devoted to all aspects of finite elements and wavelet methods in partial
differential equations.

The topics include (but are not limited to)

• adaptive methods,

• parallel implementation,

• high order methods.

This year we particularly encourage talks on

• error estimation,

• fem with stochastic data,

• singular complement methods,

• sparse approximation, H-matrices.

Invited Speakers:

Patrick Ciarlet (Paris)

Wolfgang Hackbusch (Leipzig)

Hermann G. Matthies (Braunschweig)

Rolf Rannacher (Heidelberg)
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Programme for Monday, September 20, 2004
————————————————————————————————

Start at 10:00

————————————————————————————————

Chairman: A. Meyer

10:00 – 10:05 A. Meyer

Welcome

10:05 – 10:50 R. Rannacher

Adaptive finite elements for eigenvalue problems

11:00 – 11:15 S. Oestmann

A residual error estimator for the 3-d FEM-BEM

11:20 – 11:35 R. Schneider

Anisotropic mesh adaption based on a posteriori estimates
and optimisation of node positions

————————————————————————————————

short break

————————————————————————————————

Chairman: H. Blum

11:50 – 12:05 J. Kienesberger

Computational plasticity: An efficient solution algorithm and
its first implementation for h and p elastoplastic interface
adaptivity

12:10 – 12:35 Y. Kondratyuk

Uniformly Convergent Adaptive Finite Element Algorithm for
a Singularly Perturbed Reaction-Diffusion Equation

12:40 – 13:05 M. Grajewski

Concepts of patchwise mesh refinement in the context of DWR
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————————————————————————————————

Lunch

————————————————————————————————

Chairman: R. Rannacher

14:30 – 14:45 J. Schöberl

Primal-Dual a posteriori error estimates for high order finite
elements (Part I)

14:50 – 15:05 A. Becirovic

Primal-Dual a posteriori error estimates for high order finite
elements (Part II)

15:10 – 15:35 F.T. Suttmeier

Consistent error estimation of FE-approximations of varia-
tional inequalities

————————————————————————————————

Tea and coffee break

————————————————————————————————

Chairman: P. Benner

16:00 – 16:45 W. Hackbusch

Introduction to Hierarchical Matrices

17:00 – 17:25 B.N. Khoromskij

Data-Sparse Schur Complement Domain Decomposition

17:30 – 17:45 U. Baur

Factorized solution of Lyapunov equations using H-matrix
arithmetic

17:50 – 18:15 D. Kressner

Arnoldi-type Algorithms for Solving Algebraic Riccati
Equations

————————————————————————————————

Dinner

————————————————————————————————

20:00 Wine reception

5



Programme for Tuesday, September 21, 2004
————————————————————————————————

Start at 09:00

————————————————————————————————

Chairman: W. Hackbusch

09:00 – 09:45 H.G. Matthies

Numerical simulation of stochastic elliptic partial differential
equations

10:00 – 10:25 S. Kube

The Stochastic Finite Element Method (SFEM) for
Advection-Diffusion Equations

10:30 – 10:55 J. Gwinner

FEM-Discretization for unilateral problems with random data

————————————————————————————————

short break

————————————————————————————————

Chairman: H.G. Matthies

11:15 – 11:40 M. Braack

A multiscale method towards turbulent flow based on local
projection stabilization

11:45 – 12:10 G. Lube

Residual-based stabilized higher-order FEM for advection-
dominated problems

12:15 – 12:40 M. Köster

An Optimal-Order Multigrid Method for Quadratic Conform-
ing Finite Elements
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————————————————————————————————

short break

————————————————————————————————

Chairman: G. Lube

13:00 – 13:25 G. Matthies

Inf-sup stable non-conforming finite elements of arbitrary or-
der on triangles

13:30 – 13:55 S. Beuchler

An inexact Domain Decomposition preconditioner for p-FEM
in 2D using methods of multi-resolution analysis

————————————————————————————————

Lunch

————————————————————————————————

15:00 Excursion

————————————————————————————————

Dinner

————————————————————————————————
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Programme for Wednesday, September 22, 2004
————————————————————————————————

Start at 09:00

————————————————————————————————

Chairman: Th. Apel

09:00 – 09:45 P. Ciarlet

The Singular Complement Method for solving Maxwell
equations

10:00 – 10:25 S. Labrunie

Poisson’s and Maxwell’s equations in axisymmetric domains:
the Fourier-Singular Complement Method

10:30 – 10:55 C. Pester

Finite element methods for the computation of 3D corner
singularities

————————————————————————————————

short break

————————————————————————————————

Chairman: B. Heinrich

11.15 – 11:40 M. Maischak

Numerical simulation of electrostatic spray painting

11:45 – 12:10 G. Of

Efficient Iterative Solvers for Boundary Element Tearing and
Interconnecting Methods

12:15 – 12:40 L. Angermann

Analysis of a Petrov-Galerkin FEM for a problem arising in
option valuation

12:45 – 13:10 I. Greff

Some box schemes on rectangular meshes

13:15 – 13:25 R. Iankov

Application of generelized finite element formulation to metal
forming technological processes

13:30 – 13:35 A. Meyer

Closing

————————————————————————————————

Lunch

————————————————————————————————
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Analysis of a Petrov-Galerkin FEM for a problem

arising in option valuation

Lutz Angermann1

An analysis of a numerical method for a degenerate PDE, called the Black-Scholes
equation, governing option pricing is given. The method is based on the vertical method
of lines, where the spatial discretization is formulated as a Petrov-Galerkin finite element
method with each basis function of the trial space being determined by local two-point
boundary value problems.

The stability and an error bound of the solution of the fully discretized system are
established.

1TU Clausthal, Institut f. Mathematik, Erzstr. 1, D-38678 Clausthal-Zellerfeld,
angermann@math.tu-clausthal.de
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Factorized solution of Lyapunov equations using

H-matrix arithmetic

Ulrike Baur1 Peter Benner2

We investigate the numerical solution of the Lyapunov equation

AX + XAT + BBT = 0 (1)

for given A ∈ R
n×n, B ∈ R

n×m.
We assume that A is stable and n ≫ m, where A comes from a FEM or BEM discretiza-
tion of some elliptic differential operator. The standard methods for (1) are too expensive
in terms of computation time (O(n3)) and memory requirements (O(n2)).
We discuss approaches based on an H-matrix implementation of the sign function method
which allows to reduce the computational cost to
O(k2 nlog(n)3) and the memory requirements to O(k nlog(n)). Here k denotes the maxi-
mal block rank in the H-matrix approximation.
Rather than approximating X itself by an H-matrix, we propose to compute a factorized
solution. Often the solution factors are what is really needed for applications in control
and systems theory, in particular in model reduction algorithms.
The proposed method is based on a partitioned Newton iteration for the matrix sign
function, where one part of the iteration uses formatted arithmetic for the hierarchical
matrices while the other part converges to an approximate full-rank factor of the solution.

1Technische Universität Berlin, Institut für Mathematik,
baur@math.tu-berlin.de

2Technische Universität Chemnitz, Fakultät für Mathematik,
benner@mathematik.tu-chemnitz.de
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Primal-Dual a posteriori error estimates for high

order finite elements (Part II)

Almedin Becirovic1

1Johannes Kepler University Linz, Computational Mathematics, Altenbergerstrasse 69, Austria,
ab@jku.at
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Multi-level pre-conditioners for the p-Version of the

Finite Element Method

Sven Beuchler1

In this talk, we discretize a uniformly elliptic second order boundary value problem in
2D by the p-version of the finite element method. An inexact Dirichlet-Dirichlet domain
decomposition pre-conditioner for the system of linear algebraic equations is investigated.
The ingredients of such a pre-conditioner are an pre-conditioner for the Schur complement,
an pre-conditioner for the sub-domains and an extension operator operating from the
edges of the elements into their interior. Using methods of multi-resolution analysis, we
propose a new method in order to compute the extension efficiently. This type of extension
is optimal, i.e. the H1(Ω)-norm of the extended function is bounded by the H0.5(∂Ω)-
norm of the given function. Numerical experiments show the optimal performance of the
presented extension.

1Austrian Academy of Sciences, Johann Radon Institute for Computational and Applied Mathe-
matics, Altenberger Strasse 69, 4040 Linz, Austria,
sven.beuchler@oeaw.ac.at
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A multiscale method towards turbulent flow based on

local projection stabilization

Malte Braack1 Erik Burman2

We propose to apply the recently introduced local projection stabilization to the nu-
merical computation of the Navier-Stokes equation at high Reynolds number. The dis-
cretization is done by nested finite element spaces. We show how this method may be cast
in the framework of variational multiscale methods. We indicate what modelling assump-
tions must be made to use the method for large eddy simulations. Using a priori error
estimation techniques we prove the convergence of the method in the case of a linearized
model problem. The a priori estimates are independent of the local Peclet number and
give a sufficient condition for the size of the subgrid viscosity parameter in order to insure
optimality of the approximation when the exact solution is smooth.

1Institute of Applied Mathematics, University of Heidelberg,, INF 294, 69120 Heidelberg, Germany,
malte.braack@iwr.uni-heidelberg.de

2École Polytechnique Fédérale de Lausanne,, Institute of Analysis,, Modelling and Scientific Com-
puting,, CH-1015 Lausanne, Switzerland,
erik.burman@epfl.ch
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The Singular Complement Method for solving

Maxwell equations

Patrick Ciarlet1

The Singular Complement Method (SCM) was originally developed to solve Maxwell
equations in bounded non-convex domains, with a piecewise smooth boundary. When the
domain is either convex or with a smooth boundary, all components of the electromag-
netic field belong to H1(Ω). This feature guarantees the convergence of Finite Element
techniques, based on the continuous P1 or P2 Lagrange Finite Element approximation.
But when there are geometrical singularities, such as reentrant corners in 2D, or reentrant
edges and/or non-convex vertices in 3D, the components of the electromagnetic field do
not belong in general to H1(Ω). What is more, the subspace of all H1(Ω)-smooth fields
is closed in the space of admissible electromagnetic fields. Since the continuous Lagrange
FE approximation always belongs to the regular subspace, this prevents convergence.
To address this difficulty, one possibility is to enrich the space of test-fields by singular

fields, which reflect accurately the behaviour of the electromagnetic field in the neighbor-
hood of the geometrical singularities. Interestingly, this method works for both the static
and time-dependent Maxwell equations.
Since the singular behavior of the electromagnetic field is related to the behavior of sin-
gular solutions of the Poisson problem, we will first recall some results concerning this
scalar problem. Then, we shall explain how they can be used to build the SCM for solv-
ing Maxwell equations. Numerical results will be presented, and comparisons with other
numerical approximations schemes for the electromagnetic field will be discussed.

1Ecole Nationale Suprieure de Techniques Avances, 32, boulevard Victor, 75739 Paris Cedex 15,
France,
ciarlet@ensta.fr
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Concepts of patchwise mesh refinement in the

context of DWR

M. Grajewski1 S. Turek2

The performance of the new FEM-package FEAST in connection with the hierachical
solver concept ScaRC as generalised multigrid/domain decomposition approach is based
upon special data structures requiring meshes consisting of (many) generalized tensor
product grids (makros). This has impact on the adaptive refinement procedure of such
grids, as the special grid structure and the underlying data structures do not allow the
elementwise refinement commonly used in existing adaptive codes. We introduce concepts
of corresponding grid refinement strategies which allow adaptive refinement preserving the
high speed of FEAST. The refinement strategies rely on three main techniques:

• adjust the coarse grid level by varying the number of makros

• refine the grid adaptively in a patchwise manner allowing hanging makro nodes

• apply local grid deformation if the error source is highly located.

The criteria for mesh refinement stem from error estimation by the DWR (dual weighted
residual based)-method. We address the problem of the reliability of such estimation
by numerical examples and present approaches to guarantee reliable goal-oriented error
estimation.

1University of Dortmund,
Matthias.Grajewski@mathematik.uni-dortmund.de

2University of Dortmund,
Stefan.Turek@mathematik.uni-dortmund.de
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Some box schemes on rectangular meshes

I. Greff1

We are interested in the design of numerical schemes which combine the advantages
of the finite volume and of the finite element mixed methods. These schemes generalize
Keller’s box scheme on 2D domain, [3]. Recently, some work has been done on box
schemes on triangular meshes [1, 2]. Here we introduce different box schemes for the 2D
Poisson problem on a rectangular domain with rectangular meshes. The box scheme is
defined by the following formulation: find (ph, uh) ∈ X1,h × M1,h such that

(∇ · ph + f, vh)0,h = 0 , ∀vh ∈ M2,h

(ph −∇uh, qh)0,h = 0 , ∀qh ∈ X2,h .
(2)

This formulation is of mixed Petrov-Galerkin type in the sense that the trial and test
spaces are different. The trial spaces X1,h, M1,h are non-conforming, whereas the test
spaces X2,h, M2,h are of discontinuous Galerkin type. The fundamental difficulty is to
find trial spaces and test spaces which satisfy the relation

dim X1,h + dim M1,h = dim X2,h + dim M2,h.

We present several box schemes using the lowest order Raviart-Thomas space on rectan-
gles to approximate the flux p and the non-conforming Q1 space or the Rannacher-Turek
space [4] to approximate u. We prove existence and uniqueness of the solution of problem
(1), its equivalence to a non-conforming scheme in uh and a local reconstruction formula
of ph (in function of uh and the data f) and give a priori error estimates. The method is
demonstrated by some numerical results.

References

[1] B. Courbet, J-P. Croisille, Finite volume-box schemes on triangular meshes,
M2AN, 32,5,631-649, (1998).

[2] J-P. Croisille, I. Greff, Some box-schemes for elliptic problems, Numer. Meth.
Partial Diff. Equations,18, 355-373, (2002).

[3] H.B. Keller, A new difference scheme for parabolic problems, Num. sol. of PDE,
II, B. Hubbard ed., Acad. press, 1971, 327-350.

[4] R. Rannacher, S. Turek, Simple Non-conforming Quadrilateral Stokes Element,
Numer. Meth. Partial Diff. Equations, 8, 97-111, (1992).

1Max-Planck-Institute for Mathematics in the Sciences, Inselstr. 22-26, D-04103 Leipzig, Germany
,
greff@mis.mpg.de
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FEM-Discretization for unilateral problems with

random data

J. Gwinner1

As a model problem we treat the following unilateral problem: Find a function u in a
bounded domain D ⊂ Rd (d = 2, 3) with its boundary ∂D such that







−∇.(S ∇u) + u = Rf in D

p = −S ∇u · ν on ∂D

u ≤ Qg, p ≥ 0, (u − Qg)p = 0 on ∂D

Here f and g are given data in the domain, respectively on its boundary, randomness
enters in the problem by the given real-valued random variables Q,R and S. In contrast
to earlier work (appeared in Stochastic Analysis and Applications, vol. 19, 2000) we
admit a random obstacle in decoupled form Qg. These problems lead to a class of ran-
dom variational inequalities for which a theory of combined probabilistic – deterministic
discretization is developped that includes nonconforming approximation of the unilateral
constraints. Without any regularity assumptions on the solution, norm convergence of
the full approximation procedure is established. In the application to the model problem,
Galerkin discretization is realized by finite element approximation.

1Universität der Bundeswehr München,
joachim.gwinner@unibw-muenchen.de
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Introduction to Hierarchical Matrices

Wolfgang Hackbusch1

We introduce the construction of hierarchical matrices, the performance of matrix
operations and their cost and recompression techniques. We give applications to FEM,
BEM, functions of matrices and problems to high spatial dimension.

1MPI für Mathematik in den Naturwissenschaften, Scientific Computing, Inselstrasse 22 , 04103
Leipzig, Germany,
wh@mis.mpg.de
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Application of the generelized plain finite element

formulation to metal forming technological processes.

Dr. R. Iankov1

A generalized plain strain finite element formulation is presented for numerical simu-
lation of metal forming technological processes. A multi-pass profile rolling of wire and
rod rolling are considered. The thermo coupled rigid-plastic and elastic-plastic material
models are assumed for describing the plastic deformation. The process of plastic de-
formation, strain field distribution and temperature field due to the different profile of
groves are investigated. The coupled effect like grain size distribution is included into
the model. The boundary value problems for wire drawing and rod rolling simulation
are solved based on MSC.MARC software. The user subroutine technique is developed
for extension the material model and including the some coupled effects. The results of
numerical simulation are presented.

1Institute of Mechanics, Sofia, Bulgaria,
iankovr@yahoo.com
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Data-Sparse Schur Complement Domain

Decomposition

B.N. Khoromskij1 W. Hackbusch2 R. Kriemann3

A class of hierarchical matrices (H-matrices) allows the data-sparse approximation
to integral and more general nonlocal operators (say, the Poincaré-Steklov operators)
with almost linear cost. We consider the H-matrix-based approximation to the Schur
complement on the interface [2] corresponding to the FEM discretisation of an elliptic
operator L with jumping coefficients in R

d. As with the standard Schur complement
domain decomposition methods, we split the elliptic inverse L−1 as a sum of local inverses
associated with subdomains (this can be implemented in parallel), and the corresponding
Poincaré-Steklov operator on the interface.

Using the hierarchical formats based on either standard or weakened admissibility
criteria (cf. [1]) we elaborate the approximate Schur complement inverse in an explicit
form that is proved to have a linear-logarithmic cost O(NΓ logq NΓ), where NΓ is the
number of degrees of freedom on the interface. The H-matrix-based preconditioner can
be also applied.

Numerical tests confirm the almost linear cost of our parallel direct Schur complement

method. In particular, we consider examples with brick and mortar structure of the
coefficients.

References

[1] W. Hackbusch, B.N. Khoromskij and R. Kriemann. Hierarchical Matrices Based on

Weak Admissibility Criterion. Preprint MPI MIS no. 2, Leipzig, 2003; Computing (to
appear).

[2] W. Hackbusch, B.N. Khoromskij and R. Kriemann. Direct Schur Complement Method

by Domain Decomposition based on Hierarchical Matrix Approximation. Preprint MPI
MIS no. 25, Leipzig, 2004 (submitted).

1Max-Planck-Institute for Mathematics in the Sciences, Inselstr. 22-26, D-04103 Leipzig, Germany
,
bokh@mis.mpg.de

2Max-Planck-Institute for Mathematics in the Sciences, Inselstr. 22-26, D-04103 Leipzig, Germany,
wh@mis.mpg.de

3Max-Planck-Institute for Mathematics in the Sciences, Inselstr. 22-26, D-04103 Leipzig, Germany
,
rok@mis.mpg.de
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Computational plasticity: An efficient solution

algorithm and its first implementation for h and p

elastoplastic interface adaptivity

Johanna Kienesberger1 Jan Valdman2

One time step of the primal formulation in elastoplasticity leads to a convex but
nonsmooth minimization problem with unknown displacement and plastic strain. Our
algorithm is based on a Schur-Complement system for the displacement which is solved
by a multigrid preconditioned conjugate gradient method.

Motivated by the work of Prof. Rank’s group (TU Munich) initial steps towards hp
adaptivity were taken. First results using high order fem methods with a fixed polynomial
degree as well as a simple approach on elastoplastic interface adaptivity in terms of h
refinement will be presented.

1University of Linz,
johanna.kienesberger@jku.at

2University of Linz,
jan.valdman@sfb013.uni-linz.ac.at
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An Optimal-Order Multigrid Method for Quadratic

Conforming Finite Elements

Köster, Michael1 Turek, Stefan2

Quadratic and higher order finite elements are interesting candidates for the numer-
ical solution of PDE’s due to their improved approximation properties in comparison to
linear/bilinear approaches. The linear systems that arise from the discretization of the un-
derlying differential equation are very often solved by iterative solvers like CG-, BiCGStab,
GMRES or others. Multigrid solvers are rarely used, which might be caused by the high
effort that is associated with the appropriate numerical realization of smoothers and in-
tergrid transfer operators.

In this talk we discuss the numerical analysis of the quadratic conforming finite element
Q2 in a multigrid solver. Numerical tests indicate that – if the problem is smooth enough
and the correct grid transfer operator is provided – this element provides much better
convergence rates than the use of linear/bilinear finite element spaces like Q1: If m denotes
the number of smoothing steps, the convergence rates behave like O( 1

m2 ) in contrast to
O( 1

m
) for first order FEM.

1University of Dortmund,, Department of Applied Mathematics,, Vogelpothsweg 87,, 44227 Dort-
mund,
michael.koester@mathematik.uni-dortmund.de

2stefan.turek@mathematik.uni-dortmund.de
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Uniformly Convergent Adaptive Finite Element

Algorithm for a Singularly Perturbed

Reaction-Diffusion Equation

Yaroslav Kondratyuk1 Rob Stevenson2

For solving elliptic boundary value problems with a solution that has singularities,
adaptive finite element methods are able to reduce the computational cost enormously
compared to non-adaptive methods. Although adaptive finite element methods indeed
exhibit such a reduction, their convergence is often not proven. In this talk we present an
adaptive finite element algorithm for a singularly perturbed reaction-diffusion equation
that, in the energy norm, converges uniformly in the size of the reaction term. In partic-
ular, the analysis includes also the inexact solution of the arising Galerkin systems by an
iterative solver. Preconditioning is based on the transformation to a wavelet basis. The
number of arithmetic operations is of the order of the number of triangles in the final tri-
angulation. Finally, we report on numerical experiments and analyse the computational
complexity of the algorithm.

1Faculty of Mathematics and Computer Sciences, Utrecht University, The Netherlands,
Kondratyuk@math.uu.nl

2Faculty of Mathematics and Computer Sciences, Utrecht University, The Netherlands,
Stevenson@math.uu.nl
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Arnoldi-type Algorithms for Solving Algebraic

Riccati Equations

D. Kressner1 P. Benner2

Several optimal and robust control problems for instationary partial differential equa-
tions require the solution of operator Riccati equations. The usual computational ap-
proaches to address such equations firstly use a Galerkin-type spatial semi-discretization
method leading to finite-dimensional, algebraic Riccati equations with highly structured
coefficient matrices. The exact nature of this structure depends on the employed dis-
cretization technique. Finite element methods typically yield large and sparse coefficient
matrices. Other discretization techniques may lead to other types of structures, such as
hierarchical matrices. We will present new variants of Arnoldi’s method to solve these
nonlinear matrix equations by respecting the underlying structure. Combined with re-
cently developed restarting strategies, these methods are inexpensive in terms of memory
and runtime requirements; they thus represent viable alternatives to existing approaches.
Numerical examples will be given to compare the discussed methods.

1TU Berlin,
kressner@math.tu-berlin.de

2Peter.Benner@mathematik.tu-chemnitz.de
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The Stochastic Finite Element Method (SFEM) for

Advection-Diffusion Equations

Susanna Kube1

In subsurface flow simulation, transport processes are modeled by the advection-
diffusion equation. In general, one assumes complete knowledge of the problem data, such
as boundary conditions, initial data, coefficients, and source terms. However, in many
cases the available information is limited, i.e. the data suffer from uncertainties. To
reflect the propagation of uncertainties to the simulation output, the advection-diffusion
equation is considered as a stochastic partial differential equation in which the functions
are stochastic processes. They are assumed to depend on a small number of independent
random variables. To solve the equation, the stochastic finite element method is applied.
Several methods exist for a finite dimensional approximation of the random space. I follow
the approach proposed by Babuska who uses global polynomials in the random variables.
These polynomials are required to fulfill an orthogonality relation in order to compute
the matrices efficiently. It turns out that this approach is especially useful for the model
problem where the diffusion-dispersion tensor depends quadratically on the velocity field
which is chosen as stochastic input. I concentrate on advection-dominated problems and
show how a stochastic velocity and a stochastic diffusion influence the solution.

1TU Bergakademie Freiberg,
kube s@student.tu-freiberg.de
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Solving Poisson’s and Maxwell’s equations by the

Fourier–Singular Complement Method

Simon Labrunie1 Patrick Ciarlet2 Beate Jung3

The Singular Complement Method (SCM) was developed [1,2] as an alternative to the
“usual” edge element and finite volume methods, in order to solve Maxwell’s equations
in singular domains. It can also serve as an accelerator of convergence for the usual P1

element method for Poisson’s equation, as well as for the Lamé and Stokes problems.
The SCM is based on a splitting of the “natural” spaces of solutions into a regular part
(which has the regularity expected for a smooth or convex domain) and a singular part
(which needs some special representation). It incorporates the well-known computation
of singularity coefficients (a.k.a. “stress intensity factors” in mechanics).
However, the SCM had so far been implemented only in two-dimensional situations. This
limitation stemmed from the difficulties of practical description of the singular spaces in
general three-dimensional geometries.
We show how the SCM can be extended to some simple, but genuinely three-dimensional
situations: prismatic or axisymmetric domains with arbitrary data. In this case, the
splitting w.r.t. regularity can be combined by a Fourier expansion in the longitudinal or
azimuthal coordinate.
This Fourier–Singular Complement Method (FSCM) achieves a good compromise between
simplicity and efficiency: it has the optimal convergence rate for P1 element methods with
an L2 data [3], and the least computational cost among the optimally convergent methods.
It can be easily extended to the time-dependent Maxwell equations [4].

References:

[1] F. Assous, P. Ciarlet Jr., J. Segré, Numerical solution to the time-dependent Maxwell
equations in two-dimensional singular domains : the singular complement method. J. Comput.

Phys. 161 (2000) 218–249.
[2] C. Hazard, S. Lohrengel, A singular field method for Maxwell’s equations: numerical
aspects in two dimensions. SIAM J. Appl. Math. 40 (2002) 1021–1040.
[3] P. Ciarlet Jr., B. Jung, S. Kaddouri, S. Labrunie, J. Zou, The Fourier–Singular Com-
plement method for Poisson’s equation. Part I: prismatic domains. Submitted to Numer. Math.

Available online at: http://www.iecn.u-nancy.fr/~labrunie/pubs/prisma.pdf Part II: ax-
isymmetric domains. Submitted to Numer. Math.

Available online at: http://www.iecn.u-nancy.fr/Preprint/publis/Textes/2004-18.pdf

Part III: numerical implementation. In preparation.

[4] S. Labrunie, La méthode du complément singulier avec Fourier pour les équations de
Maxwell en domaine axisymétrique, Submitted to Compte Rendu Mathématique. Available on-
line at: http://www.iecn.u-nancy.fr/~labrunie/pubs/cras04.ps

1INRIA Lorraine, Nancy, France,
labrunie@iecn.u-nancy.fr

2Ecole nationale suprieure de Techniques avances, Paris, France,
ciarlet@ensta.fr

3Technische Universität Chemnitz, Germany,
beate.jung@hrz.tu-chemnitz.de
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Residual-based stabilized higher-order FEM for

advection-dominated problems

Lube, Gert1 Rapin, Gerd2

The numerical solution of the nonstationary, incompressible and non-isothermal Navier-
Stokes problem with standard turbulence models can be splitted into linearized auxiliary
problems of Oseen and of advection-diffusion-reaction type. An important ingredient of
this approach is a proper stabilization of the latter model. Here we present the numer-
ical analysis of a hp-version of stabilized Galerkin methods of streamline-diffusion type
(SUPG) together with shock-capturing stabilization in crosswind directions. The analysis
is supported by some numerical experiments.

1Georg-August University Goettingen, Math. Department, NAM,
lube@math.uni-goettingen.de

2Georg-August University Goettingen, Math. Department, NAM,
grapin@math.uni-goettingen.de

27



Numerical simulation of electrostatic spray painting

Matthias Maischak1

We investigate the electrostatic subproblem of the electrostatic spray painting process.
Between the target and at least one electrode a high voltage is applied. Due to the small
diameter of the tip of the electrode a hugh electrical field strength leads to the existence of
a charge cloud around the electrod, i.e. to the corona emission of electrons from the metal
surface. This charges are transported in a convection process along the electrical field lines.
The boundary condition for the charge transport problem is given indirectly by the Peek
field strength, which means that the charge density on the emitting surface takes a value
such that the electrical field strength on the surface equals the Peek field strength, which
is determined by the geometry. We solve this nonlinear coupled problem iteratively by
modeling the electrostatic problem by Poissons equation discretized by FEM or a FEM-
BEM coupling procedure and the charge transport problem by a nonlinear convection
equation discretized by a Least-Squares approach or the Method of Characteristics. We
will present numbers for both cases and compare.

1Institut für Angewandte Mathematik, Universitt Hannover,
maischak@ifam.uni-hannover.de
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Numerische Simulation von stochastischen

elliptischen partiellen Differentialgleichungen

Hermann G. Matthies1

Erst werden Verfahren zur Ermittlung von Statistiken der Lösung betrachtet; diese
können zum einen direkt als hoch-dimensionale Integrale angesehen werden, und die
Auswertung durch ”dünne” (Smolyak-)Quadratur, Monte Carlo, und Quasi Monte Carlo
wird angerissen.

Als alternativer Weg werden Galerkin-Verfahren aufgezeigt, um die Lösung als Element
in einem stochastischen Ansatz-Raum zu erhalten. Hierbei sind Gleichungssysteme in
Tensorprodukt-Räumen zu lösen, was auf sehr strukturierte riesige Gleichungssysteme
führt. Es werden verschieden Ansätze zur Lösung betrachtet.

Alternativ koennen die Koeffizienten im Ansatz auch ”direkt” berechnet werden durch
orthogonale Projektion. Dies ist wieder etwas ähnlich zu den originalen Monte Carlo
Ideen.

References:

[1] http://opus.tu-bs.de/opus/volltexte/2003/489/

1Technische Universtität Braunschweig, Institut für Wissenschaftliches Rechnen, Hans-Sommer-
Straße 65, D-38106 Braunschweig,
wire@tu-bs.de
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Inf-sup stable non-conforming finite elements of

arbitrary order on triangles

Gunar Matthies1 Lutz Tobiska2

First we introduce a family of scalar non-conforming finite elements of arbitrary order
k ≥ 1 with respect to the H1-norm on triangles and show that the local function space is
unisolvent with respect to the used nodal functionals.

After recalling a general convergence result for non-conforming discretisations of the
Stokes problem we consider consistency and stability and prove that the vector-valued
versions of the defined scalar finite element generates together with a discontinuous pres-
sure approximation of order k − 1 an inf-sup stable finite element pair of order k for the
Stokes problem in the energy norm. For k = 1 the well-known Crouzeix-Raviart element
is recovered.

We present numerical results which confirm our theoretical predictions and compare
the new finite element pairs with conforming finite element pairs.

References:

[1] Preprint 12/2004, Fakultät für Mathematik, Otto-von-Guericke-Universität Magdeburg

1Ruhr-Universität Bochum, Fakultät für Mathematik, Universitätsstr. 150, 44780 Bochum,
Gunar.Matthies@ruhr-uni-bochum.de

2Otto-von-Guericke-Universität Bochum, Institut fü Analysis und Numerik, PSF 4120, 39016
Magdeburg,
Lutz.Tobiska@mathematik.uni-magdeburg.de
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A residual error estimator for the 3-d FEM-BEM

coupling

Stephan Oestmann1 Matthias Maischak2 Ernst P. Stephan3

We consider the 3-dimensional finite element and boundary element coupling method
for an elasticity problem. We present an a posteriori residual error estimator, which
we use to steer an adaptive refinement algorithm. Due to the singular behaviour of the
appearing boundary integral operators, we use modified representations of some operators
to compute the error terms in a more convenient way. For the adaptive refinement of a
hexahedral mesh we allow hanging nodes to enable better local refinement. Numerical
examples show the efficient use of nonconforming meshes and the reliability of the residual
error estimator.

1Institute for Applied Mathematics, University of Hannover, Welfengarten 1, 30167 Hannover,
oestmann@ifam.uni-hannover.de

2Institute for Applied Mathematics, University of Hannover, Welfengarten 1, 30167 Hannover,
maischak@ifam.uni-hannover.de

3Institute for Applied Mathematics, University of Hannover, Welfengarten 1, 30167 Hannover,
stephan@ifam.uni-hannover.de
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Efficient Iterative Solvers for Boundary Element

Tearing and Interconnecting Methods

G. Of1 O. Steinbach2

The Boundary Element Tearing and Interconnecting (BETI) methods have recently
been introduced as boundary element counterparts of the well-established Finite Element
Tearing and Interconnecting (FETI) methods. As domain decomposition methods, the
BETI methods are efficient parallel solvers for large scale boundary element equations.
Several systems of linear equations for the BETI formulation, namely a Schur complement
system, a saddle point problem and a twofold saddle point problem, are discussed and
compared to each other. Efficient preconditioners are used for the local boundary integral
operators and the realization of BETI preconditioners is discussed. Sparse approximations
of the occurring boundary integral operators are realized by the use of the Fast Multipole
Method.

References:

[1] U. Langer, O. Steinbach, Boundary element tearing and interconnecting
[2] methods. Computing 71 (2003) 205-228.

1Institut für Angewandte Analysis und Numerische Simulation, Universität Stuttgart,
ofgr@mathematik.uni-stuttgart.de

2Institut für Angewandte Analysis und Numerische Simulation, Universität Stuttgart , Institut für
Wissenschaftliches Rechnen , Technische Universität Dresden,
steinbach@mathematik.uni.stuttgart.de
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Finite element methods for the computation of 3D

corner singularities

Cornelia Pester1

For the analysis of the stress distribution at the top of a polyhedral corner or at a
crack tip, one typically expands the displacement in terms of the form krαu, where r is
the distance to the tip, u is a function of the spherical angles and k is the stress intensity
coefficient. The exponent α and the function u do not depend on the loading but only
on the geometry and the material parameters. They form an eigenpair of a quadratic
operator eigenvalue problem.

Since the eigenvalue problem can in general not be solved analytically, the finite ele-
ment method is used to solve it approximately. This method is flexible enough, such that
also anisotropic or composite materials can be treated. By the finite element approxima-
tion, the operator eigenvalue problem is transformed into a quadratic matrix eigenvalue
problem with a special structure. It can be reformulated as an eigenvalue problem of
a Hamiltonian, a skew-Hamiltonian or a symplectic matrix. There are special Arnoldi
and Lanczos algorithms which exploit the structure of the underlying eigenvalue problem.
In this talk, we introduce different methods of finite element discretization and present
recent numerical results.

1Universität der Bundeswehr München, Fakultät für Bauingenieur- und Vermessungswesen, Institut
für Mathematik und Bauinformatik, 85577 Neubiberg,
cornelia.pester@unibw-muenchen.de
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Adaptive finite elements for eigenvalue problems

Rolf Rannacher1 Vincent Heuveline2

We discuss the numerical solution of eigenvalue problems such as arising in hydrody-
namic stability theory. The goals are reliability and efficiency of the computation. To
this end, a posteriori error estimates are derived for discrete eigenvalues and eigenfunc-
tions. The key to these error estimates is the embedding of the eigenvalue approximation
into an abstract framework of Galerkin methods for nonlinear variational problems. The
theoretical results are illustrated by several examples.

1Institut für Angewandte Mathematik, Universität Heidelberg, INF 293/294, 69120 Heidelberg,
rolf.rannacher@iwr.uni-heidelberg.de

2Institut für Angewandte Mathematik, Universität Heidelberg, INF 293/294, 69120 Heidelberg,
vincent.heuveline@iwr.heidelberg.de
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Anisotropic mesh adaption based on a posteriori

estimates and optimisation of node positions

Rene Schneider1 Peter Jimack2

The benefits of anisotropic meshes have long been established for a variety of problems,
such as those featuring sharp layers in the solution for example. For many such problems
a priori knowledge is available as to how to design a mesh to efficiently deliver a good
solution to the problem, e.g. meshes of Shishkin type. Unfortunately, for many practical
problems a priori analysis can only deliver limited information and therefore anisotropic
mesh adaption based on suitable a posteriori error estimates is ultimately necessary.

Historically, the majority of work on automatic mesh adaption has focused on locally
uniform h-refinement which is clearly inappropriate for producing anisotropic meshes.
The development of efficient and reliable methods for generating suitable anisotropy in
the mesh has therefore become an important topic of research in recent years.

In this talk we will present some provisional results based upon a new approach to this
problem which aims to minimise an a posteriori error estimate for a quantity of interest
by moving the positions of the nodes of a mesh with fixed connectivity (r-refinement).
Utilisation of the discrete adjoint method for sensitivity analysis combined with hierarchi-
cal approaches allow a relatively cheap implementation of the method and indeed makes
it feasible for problems of practical interest. While this method is not intended to be
a substitute for well established h-refinement approaches it promises to be a valuable
enhancement for them.

Issues of reliability and performance of the new approach will be discussed for a number
of model problems.

1University of Leeds, School of Computing, Leeds, LS2 9JT, UK,
rschneid@comp.leeds.ac.uk

2University of Leeds, School of Computing, Leeds, LS2 9JT, UK,
pkj@comp.leeds.ac.uk
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Primal-Dual a posteriori error estimates for high

order finite elements (Part I)

Joachim Schöberl1

1Johannes Kepler University Linz, Computational Mathematics, Altenbergerstrasse 69, Austria,
js@jku.at
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Consistent error estimation of FE-approximations

Franz-Theo Suttmeier1

1Universitaet Dortmund, Inst. f. Angewandte Mathematik, Vogelpothsweg 87, 44221 Dortmund,
info@fem2m.de
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