Example: QPex1.java

This example is almost identical to LPex1.java using only the function populatebyrow() to create the model. Also, this function differs only in the creation of the objective from its LPex1.java counterpart. Here the objective function is created and added to the model like this:

IloNumExpr x00 = model.prod( 33, model.square(x[0]));

IloNumExpr x11 = model.prod( 22, model.square(x[1]));

IloNumExpr x22 = model.prod( 11, model.square(x[2]));

IloNumExpr x01 = model.prod(-12, model.prod(x[0], x[1]));

IloNumExpr x12 = model.prod(-23, model.prod(x[1], x[2]));

IloNumExpr Q = model.prod(0.5, model.sum(x00, x11, x22, x01, x12));

double[] objvals = {1.0, 2.0, 3.0};

model.add(model.maximize(model.diff(model.scalProd(x, objvals), Q)));

A quadratic objective may be built with square, prod or sum methods. Note that inclusion of IloPiecewiseLinear will change the model from a QP to a MIQP.

Complete Program: QPex1.java

  // --------------------------------------------------------------------------
  // File: examples/src/QPex1.java
  // Version 8.1
  // --------------------------------------------------------------------------
  //  Copyright (C) 2001-2002 by ILOG.
  //  All Rights Reserved.
  //  Permission is expressly granted to use this example in the
  //  course of developing applications that use ILOG products.
  // --------------------------------------------------------------------------
  //
  // QPex1.java - Entering and optimizing a QP problem
  
  import ilog.concert.*;
  import ilog.cplex.*;
  
  
  public class QPex1 {
     public static void main(String[] args) {
        try {
           IloCplex cplex = new IloCplex();
           IloLPMatrix lp = populateByRow(cplex);
  
           if ( cplex.solve() ) {
              double[] x     = cplex.getValues(lp);
              double[] dj    = cplex.getReducedCosts(lp);
              double[] pi    = cplex.getDuals(lp);
              double[] slack = cplex.getSlacks(lp);
  
              System.out.println("Solution status = " + cplex.getStatus());
              System.out.println("Solution value  = " + cplex.getObjValue());
  
              int ncols = lp.getNcols();
              for (int j = 0; j < ncols; ++j) {
                 System.out.println("Column: " + j +
                                    " Value = " + x[j] +
                                    " Reduced cost = " + dj[j]);
              }
  
              int nrows = lp.getNrows();
              for (int i = 0; i < nrows; ++i) {
                 System.out.println("Row   : " + i +
                                    " Slack = " + slack[i] +
                                    " Pi = " + pi[i]);
              }
  
              cplex.exportModel("qpex1.lp");
           }
           cplex.end();
        }
        catch (IloException e) {
           System.err.println("Concert exception '" + e + "' caught");
        }
     }
  
     static IloLPMatrix populateByRow(IloMPModeler model) throws IloException {
        IloLPMatrix lp = model.addLPMatrix();
  
        double[]    lb = {0.0, 0.0, 0.0};
        double[]    ub = {40.0, Double.MAX_VALUE, Double.MAX_VALUE};
        IloNumVar[] x  = model.numVarArray(model.columnArray(lp, 3), lb, ub);
  
        double[]   lhs = {-Double.MAX_VALUE, -Double.MAX_VALUE};
        double[]   rhs = {20.0, 30.0};
        double[][] val = { {-1.0,  1.0,  1.0},
                           { 1.0, -3.0,  1.0} };
        int[][]    ind = { {0, 1, 2},
                           {0, 1, 2} };
        lp.addRows(lhs, rhs, ind, val);
  
        // Q = 0.5 ( 33*x0*x0 + 22*x1*x1 + 11*x2*x2 - 12*x0*x1 - 23*x1*x2 )
        IloNumExpr x00 = model.prod( 33, model.square(x[0]));
        IloNumExpr x11 = model.prod( 22, model.square(x[1]));
        IloNumExpr x22 = model.prod( 11, model.square(x[2]));
        IloNumExpr x01 = model.prod(-12, model.prod(x[0], x[1]));
        IloNumExpr x12 = model.prod(-23, model.prod(x[1], x[2]));
        IloNumExpr Q   = model.prod(0.5, model.sum(x00, x11, x22, x01, x12));
  
        double[] objvals = {1.0, 2.0, 3.0};
        model.add(model.maximize(model.diff(model.scalProd(x, objvals), Q)));
  
        return (lp);
     }
  }
  Example: qpex1.c

In the routine setproblemdata(), there are parameters for qmatbeg, qmatcnt, qmatind, and qmatval to fill the quadratic coefficient matrix. The Callable Library routine CPXcopyquad() copies this data into the problem object created by the Callable Library routine CPXcreateprob().

In this example, the problem is a maximization, so we handle that fact by specifying the objective sense of CPX_MAX.

The off-diagonal terms in the matrix Q are one-half the value of the terms x1x2, and x2x3 as they appear in the algebraic form of the example.

Instead of calling CPXlpopt() to find a solution as we do for the linear programming problem in lpex1.c, this time we call CPXqpopt() to optimize this quadratic programming problem.

Complete Program: qpex1.c

The complete program, qpex1.c, appears here and online in the standard distribution.

  /*------------------------------------------------------------------------*/
  /*  File: examples/src/qpex1.c                                            */
  /*  Version 8.1                                                           */
  /*------------------------------------------------------------------------*/
  /*  Copyright (C) 1997-2002 by ILOG.                                      */
  /*  All Rights Reserved.                                                  */
  /*  Permission is expressly granted to use this example in the            */
  /*  course of developing applications that use ILOG products.             */
  /*------------------------------------------------------------------------*/
  
  /* qpex1.c - Entering and optimizing a quadratic programming problem */
  
  /* Bring in the CPLEX function declarations and the C library
     header file stdio.h with include of cplex.h. */
  
  #include <ilcplex/cplex.h>
  #include <stdlib.h>
  
  /* Bring in the declarations for the string functions */
  
  #include <string.h>
  
  /* Include declaration for function at end of program */
  
  static int
     setproblemdata (char **probname_p, int *numcols_p, int *numrows_p,
                     int *objsen_p, double **obj_p, double **rhs_p,
                     char **sense_p, int **matbeg_p, int **matcnt_p,
                     int **matind_p, double **matval_p, double **lb_p,
                     double **ub_p, int **qmatbeg_p, int **qmatcnt_p,
                     int **qmatind_p, double **qmatval_p);
  
  static void
     free_and_null (char **ptr);
  
  
  /* The problem we are optimizing will have 2 rows, 3 columns,
     6 nonzeros, and 7 nonzeros in the quadratic coefficient matrix. */
  
  #define NUMROWS    2
  #define NUMCOLS    3
  #define NUMNZ      6
  #define NUMQNZ     7
  
  
  int
  main (void)
  {
     /* Declare pointers for the variables and arrays that will contain
        the data which define the LP problem.  The setproblemdata() routine
        allocates space for the problem data.  */
  
     char     *probname = NULL;
     int      numcols;
     int      numrows;
     int      objsen;
     double   *obj = NULL;
     double   *rhs = NULL;
     char     *sense = NULL;
     int      *matbeg = NULL;
     int      *matcnt = NULL;
     int      *matind = NULL;
     double   *matval = NULL;
     double   *lb = NULL;
     double   *ub = NULL;
     int      *qmatbeg = NULL;
     int      *qmatcnt = NULL;
     int      *qmatind = NULL;
     double   *qmatval = NULL;
  
     /* Declare and allocate space for the variables and arrays where we
        will store the optimization results including the status, objective
        value, variable values, dual values, row slacks and variable
        reduced costs. */
  
     int      solstat;
     double   objval;
     double   x[NUMCOLS];
     double   pi[NUMROWS];
     double   slack[NUMROWS];
     double   dj[NUMCOLS];
  
  
     CPXENVptr     env = NULL;
     CPXLPptr      lp = NULL;
     int           status;
     int           i, j;
     int           cur_numrows, cur_numcols;
  
     /* Initialize the CPLEX environment */
  
     env = CPXopenCPLEX (&status);
  
     /* If an error occurs, the status value indicates the reason for
        failure.  A call to CPXgeterrorstring will produce the text of
        the error message.  Note that CPXopenCPLEX produces no output,
        so the only way to see the cause of the error is to use
        CPXgeterrorstring.  For other CPLEX routines, the errors will
        be seen if the CPX_PARAM_SCRIND indicator is set to CPX_ON.  */
  
     if ( env == NULL ) {
     char  errmsg[1024];
        fprintf (stderr, "Could not open CPLEX environment.\n");
        CPXgeterrorstring (env, status, errmsg);
        fprintf (stderr, "%s", errmsg);
        goto TERMINATE;
     }
  
     /* Turn on output to the screen */
  
     status = CPXsetintparam (env, CPX_PARAM_SCRIND, CPX_ON);
     if ( status ) {
        fprintf (stderr,
                 "Failure to turn on screen indicator, error %d.\n", status);
        goto TERMINATE;
     }
  
     /* Fill in the data for the problem.  */
  
     status = setproblemdata (&probname, &numcols, &numrows, &objsen, &obj,
                              &rhs, &sense, &matbeg, &matcnt, &matind,
                              &matval, &lb, &ub, &qmatbeg, &qmatcnt,
                              &qmatind, &qmatval);
     if ( status ) {
        fprintf (stderr, "Failed to build problem data arrays.\n");
        goto TERMINATE;
     }
  
     /* Create the problem. */
  
     lp = CPXcreateprob (env, &status, probname);
  
     /* A returned pointer of NULL may mean that not enough memory
        was available or there was some other problem.  In the case of
        failure, an error message will have been written to the error
        channel from inside CPLEX.  In this example, the setting of
        the parameter CPX_PARAM_SCRIND causes the error message to
        appear on stdout.  */
  
     if ( lp == NULL ) {
        fprintf (stderr, "Failed to create problem.\n");
        goto TERMINATE;
     }
  
     /* Now copy the LP part of the problem data into the lp */
  
     status = CPXcopylp (env, lp, numcols, numrows, objsen, obj, rhs,
                         sense, matbeg, matcnt, matind, matval,
                         lb, ub, NULL);
  
     if ( status ) {
        fprintf (stderr, "Failed to copy problem data.\n");
        goto TERMINATE;
     }
  
     status = CPXcopyquad (env, lp, qmatbeg, qmatcnt, qmatind, qmatval);
     if ( status ) {
        fprintf (stderr, "Failed to copy quadratic matrix.\n");
        goto TERMINATE;
     }
  
  
     /* Optimize the problem and obtain solution. */
  
     status = CPXqpopt (env, lp);
     if ( status ) {
        fprintf (stderr, "Failed to optimize QP.\n");
        goto TERMINATE;
     }
  
     status = CPXsolution (env, lp, &solstat, &objval, x, pi, slack, dj);
     if ( status ) {
        fprintf (stderr, "Failed to obtain solution.\n");
        goto TERMINATE;
     }
  
  
     /* Write the output to the screen. */
  
     printf ("\nSolution status = %d\n", solstat);
     printf ("Solution value  = %f\n\n", objval);
  
     /* The size of the problem should be obtained by asking CPLEX what
        the actual size is, rather than using what was passed to CPXcopylp.
        cur_numrows and cur_numcols store the current number of rows and
        columns, respectively.  */
  
     cur_numrows = CPXgetnumrows (env, lp);
     cur_numcols = CPXgetnumcols (env, lp);
     for (i = 0; i < cur_numrows; i++) {
        printf ("Row %d:  Slack = %10f  Pi = %10f\n", i, slack[i], pi[i]);
     }
  
     for (j = 0; j < cur_numcols; j++) {
        printf ("Column %d:  Value = %10f  Reduced cost = %10f\n",
                j, x[j], dj[j]);
     }
  
     /* Finally, write a copy of the problem to a file. */
  
     status = CPXwriteprob (env, lp, "qpex1.lp", NULL);
     if ( status ) {
        fprintf (stderr, "Failed to write LP to disk.\n");
        goto TERMINATE;
     }
  
  
  TERMINATE:
  
     /* Free up the problem as allocated by CPXcreateprob, if necessary */
  
     if ( lp != NULL ) {
        status = CPXfreeprob (env, &lp);
        if ( status ) {
           fprintf (stderr, "CPXfreeprob failed, error code %d.\n", status);
        }
     }
  
     /* Free up the CPLEX environment, if necessary */
  
     if ( env != NULL ) {
        status = CPXcloseCPLEX (&env);
  
        /* Note that CPXcloseCPLEX produces no output,
           so the only way to see the cause of the error is to use
           CPXgeterrorstring.  For other CPLEX routines, the errors will
           be seen if the CPX_PARAM_SCRIND indicator is set to CPX_ON. */
  
        if ( status ) {
           char  errmsg[1024];
           fprintf (stderr, "Could not close CPLEX environment.\n");
           CPXgeterrorstring (env, status, errmsg);
           fprintf (stderr, "%s", errmsg);
        }
     }
  
     /* Free up the problem data arrays, if necessary. */
  
     free_and_null ((char **) &probname);
     free_and_null ((char **) &obj);
     free_and_null ((char **) &rhs);
     free_and_null ((char **) &sense);
     free_and_null ((char **) &matbeg);
     free_and_null ((char **) &matcnt);
     free_and_null ((char **) &matind);
     free_and_null ((char **) &matval);
     free_and_null ((char **) &lb);
     free_and_null ((char **) &ub);
     free_and_null ((char **) &qmatbeg);
     free_and_null ((char **) &qmatcnt);
     free_and_null ((char **) &qmatind);
     free_and_null ((char **) &qmatval);
  
     return (status);
  
  }  /* END main */
  
  
  /* This function fills in the data structures for the quadratic program:
  
        Maximize
         obj: x1 + 2 x2 + 3 x3
                - 0.5 ( 33x1*x1 + 22*x2*x2 + 11*x3*x3
                     -  12*x1*x2 - 23*x2*x3 )
        Subject To
         c1: - x1 + x2 + x3 <= 20
         c2: x1 - 3 x2 + x3 <= 30
        Bounds
         0 <= x1 <= 40
        End
   */
  
  
  static int
  setproblemdata (char **probname_p, int *numcols_p, int *numrows_p,
                  int *objsen_p, double **obj_p, double **rhs_p,
                  char **sense_p, int **matbeg_p, int **matcnt_p,
                  int **matind_p, double **matval_p, double **lb_p,
                  double **ub_p, int **qmatbeg_p, int **qmatcnt_p,
                  int **qmatind_p, double **qmatval_p)
  {
     char     *zprobname = NULL;     /* Problem name <= 16 characters */
     double   *zobj = NULL;
     double   *zrhs = NULL;
     char     *zsense = NULL;
     int      *zmatbeg = NULL;
     int      *zmatcnt = NULL;
     int      *zmatind = NULL;
     double   *zmatval = NULL;
     double   *zlb = NULL;
     double   *zub = NULL;
     int      *zqmatbeg = NULL;
     int      *zqmatcnt = NULL;
     int      *zqmatind = NULL;
     double   *zqmatval = NULL;
     int      status = 0;
  
     zprobname = (char *) malloc (16 * sizeof(char));
     zobj      = (double *) malloc (NUMCOLS * sizeof(double));
     zrhs      = (double *) malloc (NUMROWS * sizeof(double));
     zsense    = (char *) malloc (NUMROWS * sizeof(char));
     zmatbeg   = (int *) malloc (NUMCOLS * sizeof(int));
     zmatcnt   = (int *) malloc (NUMCOLS * sizeof(int));
     zmatind   = (int *) malloc (NUMNZ * sizeof(int));
     zmatval   = (double *) malloc (NUMNZ * sizeof(double));
     zlb       = (double *) malloc (NUMCOLS * sizeof(double));
     zub       = (double *) malloc (NUMCOLS * sizeof(double));
     zqmatbeg  = (int *) malloc (NUMCOLS * sizeof(int));
     zqmatcnt  = (int *) malloc (NUMCOLS * sizeof(int));
     zqmatind  = (int *) malloc (NUMQNZ * sizeof(int));
     zqmatval  = (double *) malloc (NUMQNZ * sizeof(double));
  
     if ( zprobname == NULL || zobj     == NULL ||
          zrhs      == NULL || zsense   == NULL ||
          zmatbeg   == NULL || zmatcnt  == NULL ||
          zmatind   == NULL || zmatval  == NULL ||
          zlb       == NULL || zub      == NULL ||
          zqmatbeg  == NULL || zqmatcnt == NULL ||
          zqmatind  == NULL || zqmatval == NULL  )  {
        status = 1;
        goto TERMINATE;
     }
  
     strcpy (zprobname, "example");
  
     /* The code is formatted to make a visual correspondence
        between the mathematical linear program and the specific data
        items.   */
  
       zobj[0]  = 1.0;   zobj[1]   = 2.0;   zobj[2] = 3.0;
  
     zmatbeg[0] = 0;     zmatbeg[1] = 2;    zmatbeg[2] = 4;
     zmatcnt[0] = 2;     zmatcnt[1] = 2;    zmatcnt[2] = 2;
  
     zmatind[0] = 0;     zmatind[2] = 0;    zmatind[4] = 0;     zsense[0] = 'L';
     zmatval[0] = -1.0;  zmatval[2] = 1.0;  zmatval[4] = 1.0;   zrhs[0]   = 20.0;
  
     zmatind[1] = 1;     zmatind[3] = 1;    zmatind[5] = 1;     zsense[1] = 'L';
     zmatval[1] = 1.0;   zmatval[3] = -3.0; zmatval[5] = 1.0;   zrhs[1]   = 30.0;
  
         zlb[0] = 0.0;       zlb[1] = 0.0;          zlb[2] = 0.0;
         zub[0] = 40.0;      zub[1] = CPX_INFBOUND; zub[2] = CPX_INFBOUND;
  
     /* Now set up the Q matrix.  Note that we set the values knowing that
      * we're doing a maximization problem, so negative values go on
      * the diagonal.  Also, the off diagonal terms are each repeated,
      * by taking the algebraic term and dividing by 2 */
  
     zqmatbeg[0] = 0;     zqmatbeg[1] = 2;     zqmatbeg[2] = 5;
     zqmatcnt[0] = 2;     zqmatcnt[1] = 3;     zqmatcnt[2] = 2;
  
     /* Matrix is set up visually.  Note that the x1*x3 term is 0, and is
      * left out of the matrix.  */
  
     zqmatind[0] = 0;     zqmatind[2] = 0;
     zqmatval[0] = -33.0; zqmatval[2] = 6.0;
  
     zqmatind[1] = 1;     zqmatind[3] = 1;     zqmatind[5] = 1;
     zqmatval[1] = 6.0;   zqmatval[3] = -22.0; zqmatval[5] = 11.5;
  
                          zqmatind[4] = 2;     zqmatind[6] = 2;
                          zqmatval[4] = 11.5;  zqmatval[6] = -11.0;
  
  TERMINATE:
  
     if ( status ) {
        free_and_null ((char **) &zprobname);
        free_and_null ((char **) &zobj);
        free_and_null ((char **) &zrhs);
        free_and_null ((char **) &zsense);
        free_and_null ((char **) &zmatbeg);
        free_and_null ((char **) &zmatcnt);
        free_and_null ((char **) &zmatind);
        free_and_null ((char **) &zmatval);
        free_and_null ((char **) &zlb);
        free_and_null ((char **) &zub);
        free_and_null ((char **) &zqmatbeg);
        free_and_null ((char **) &zqmatcnt);
        free_and_null ((char **) &zqmatind);
        free_and_null ((char **) &zqmatval);
     }
     else {
        *numcols_p   = NUMCOLS;
        *numrows_p   = NUMROWS;
        *objsen_p    = CPX_MAX;   /* The problem is maximization */
  
        *probname_p  = zprobname;
        *obj_p       = zobj;
        *rhs_p       = zrhs;
        *sense_p     = zsense;
        *matbeg_p    = zmatbeg;
        *matcnt_p    = zmatcnt;
        *matind_p    = zmatind;
        *matval_p    = zmatval;
        *lb_p        = zlb;
        *ub_p        = zub;
        *qmatbeg_p   = zqmatbeg;
        *qmatcnt_p   = zqmatcnt;
        *qmatind_p   = zqmatind;
        *qmatval_p   = zqmatval;
     }
     return (status);
  
  }  /* END setproblemdata */
  
  
  
  /* This simple routine frees up the pointer *ptr, and sets *ptr to NULL */
  
  static void
  free_and_null (char **ptr)
  {
     if ( *ptr != NULL ) {
        free (*ptr);
        *ptr = NULL;
     }
  } /* END free_and_null */
  
  


Previous Page: Example: iloqpex1.cpp  Return to Top Next Page: Example: Reading a QP from a File