
Technische Universität Chemnitz Chemnitz, 26.10.2009
Prof. Dr. C. Helmberg, A. Lau

Optimierung für Nichtmathematiker
Übung 3

1. Einführung in die Modellierungssprache AMPL, vgl. Übung 2
Verwendung des NEOS-Solvers: http://neos.mcs.anl.gov/neos/solvers/index.html
Transportproblem: Gegeben sind m Lager, wobei jedes ki Waren enthält, und n Supermärkte,
die sj Waren benötigen. Durch die Transporte zwischen Lager und Supermarkt entstehen
Kosten pro Einheit tranportiertes Gut, welche auch von Start und Ziel abhängen. Gesucht
sind die optimalen Transporte, so dass alle Bedarfe gedeckt werden und kein Lager mehr
liefert, als es Kapazität hat.

Modell transport.mod:

set Lager;

set Supermarkt;

param Kosten{ i in Lager, j in Supermarkt };

param Lager_kap{ i in Lager };

param Supermarktbedarf{ j in Supermarkt };

var x { i in Lager, j in Supermarkt } integer;

minimize Gesamtkosten: sum { i in Lager, j in Supermarkt } Kosten[i,j]*x[i,j];

subject to Lagerkapazitaet { i in Lager }:

sum{ j in Supermarkt } x[i,j] <= Lager_kap[i];

subject to Bedarf_decken { j in Supermarkt }:

sum{ i in Lager } x[i,j] = Supermarktbedarf[j];

subject to Schranken { i in Lager, j in Supermarkt }: 0 <= x[i,j];

Beispieldaten transport.dat:

set Lager := L1 L2 L3;

param Lager_kap:= L1 300 L2 300 L3 200;

set Supermarkt := S1 S2 S3 S4;

param Supermarktbedarf := S1 100 S2 200 S3 250 S4 150;

param Kosten: S1 S2 S3 S4 :=

L1 100 150 50 200

L2 80 200 130 160

L3 120 160 70 100;

Neu:

• Es kann auch mehrdimensionale Indexmengen geben, z.B. var x { i in X, j in Y },
Zugriff auf Element xi,j : x[i,j]

Lösen Sie das Transportproblem mithilfe des NEOS-Solvers – verwenden Sie MINTO. Nutzen
Sie dazu die folgende Kommando-Datei transport.cmd:

1



solve;

display x, Gesamtkosten;

Was passiert mit der Lösung, wenn man die Ganzzahligkeit der Variablen nicht fordert?
Stimmt das auch in Aufgabe 2 aus Übung 2 (Rucksackproblem)?

2. Wiederholung Simplex

Implementieren Sie den (primalen) Simplexalgorithmus aus der Vorlesung. Nutzen Sie dazu
die Matlab-Datei simplex.m und ergänzen Sie die Funktion
function [x,basis] = simplex(A,b,c,basis,pricing). Dabei sind A,b,c die Daten des
linearen Programms

min cT x
s.t. Ax = b

x ≥ 0

und basis ist eine zulässige Startbasis. Mit pricing können Sie die eine Auswahl zwischen
den Strategien negativste reduzierte Kosten und Regel von Bland treffen.

Lösen Sie damit das Mozartproblem aus der Vorlesung und testen Sie die folgenden Ein-
gangsdaten

A =





1/4 −8 −1 9 1 0 0
1/2 −12 −1/2 3 0 1 0
0 0 1 0 0 0 1



 , b =





0
0
1



 ,

c = (−3/4 20 − 1/2 6 0 0 0)T und Startbasis {5, 6, 7}. Untersuchen Sie dabei das
Verhalten der zwei unterschiedlichen Auswahlstrategien.

3. Lösung des Rucksackproblem mit dynamischer Programmierung

Implementieren Sie mit Matlab einen Löser für das Rucksackproblem aus der zweiten Vor-
lesung. Nutzen Sie dabei das Konzept der dynamischen Programmierung. Testen Sie Ihr
Programm am Beispiel aus der Vorlesung und am Beispiel

b0 = 35, b = (5 4 7 8 5 3 4 4 6 8), ŷ = (10 9 8 7 6 5 4 3 2 1).

Wiederholung:

geg.: m Objekte mit Gewichten bi und Wert ŷi ≥ 0 (i = 1, . . . , m) (b und ŷ in Vektorform)
sowie ein Maximalgewicht b0 (Beachte: Objekte dürfen mehrfach gewählt werden.)

ges.: Auswahl der Objekte, sodass Gesamtwert maximal wird und Maximalgewicht nicht
überschritten wird

max ŷT s s.t. bT s ≤ b0, s ∈ N
m
0

Rekursion: Erstelle Matrix F mit den Zeilen b̄ = 0, . . . , b0 und Spalten k̄ = 0, . . . , m.
Anfangswert: F (0, 0) := 0 und F (b̄, k̄) := −∞ für (−b̄) ∈ N, k̄ = 0, . . . , m
Rekursion:

F (b̄, k̄) = max{F (b̄, k̄ − 1), F (b̄ − bk̄, k̄) + ŷk̄}, b̄ = 1, . . . , b0, k̄ = 1, . . . , m

Ausgabe: F (b0, m)

2


