Nonlinear Optimization Exercises 4

- 1. (2) Prove $\left(1 \frac{(g^{\top}g)^2}{g^{\top}Bg \, g^{\top}B^{-1}g}\right) \ge 0$ in the dog-leg Lemma III.4.
- 2. (2) Denote by p_{k+1} the step direction that is generated in iteration k by the linear CG algorithm for $f(x) = \frac{1}{2}x^T A x b^T x$ with $A \succ 0$. Prove that p_{k+1} is a descent direction.
- 3. (6) Given $A \in \mathbb{R}^{n \times n}$ positive definite and vectors $p_0, \ldots, p_{n-1} \in \mathbb{R}^n \setminus \{0\}$ that are conjugate with respect to $A(v_i^T A v_j = 0 \text{ for } i \neq j)$. Prove:
 - (a) (1) p_0, \ldots, p_{n-1} are linearly independent.
 - (b) (3) Given the minimization problem $\min_{x \in \mathbb{R}^n} \frac{1}{2} x^T A x b^T x$ and some starting point $x_0 \in \mathbb{R}^n$, the sequence x_k given by the iteration

$$x_{k+1} = x_k + \alpha_k p_k$$
 with $r_k = Ax_k - b$ and $\alpha_k = -\frac{r_k^T p_k}{p_k^T A p_k}$

converges in at most n steps to the optimum x^* and $x^* = \sum_{i=0}^{n-1} \left(\frac{p_i^T b}{p_i^T A p_i}\right) p_i$.

(c) (2) The points x_k defined in (b) satisfy

$$x_{k+1} = \arg \min_{x \in \{x_0\} + \operatorname{span}\{p_0, \dots, p_k\}} \frac{1}{2} x^T A x - b^T x.$$

4. (6) Rosen's projected gradient method: Given the optimization problem

$$\min f(x)$$
 s.t. $Ax = b$

with $A \in \mathbb{R}^{m \times n}$ having full row rank. Show that the step direction $p = -(I - A^T (AA^T)^{-1}A)\nabla f(x)$ (x feasible, i.e. Ax = b) yields a feasible descent direction if there is one (hint: $I - A^T (AA^T)^{-1}A$ is the projection matrix onto the null space of A). Using this step direction, develop a globally convergent optimization method for this problem (under suitable conditions on f)[a practical implementation is encouraged but not required here].