Nonlinear Optimization Exercises 1

- 1. (3) Compute the first and second derivative of
 - (a) $f(x) = x^T Q x + b^T x$, with $Q^T = Q \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^n$, $x \in \mathbb{R}^n$,
 - (b) $f(x) = 100(x_2 x_1^2)^2 + (1 x_1)^2, \quad x \in \mathbb{R}^2$ (Rosenbrock function),
 - (c) f(Ax) for $f: \mathbb{R}^m \to \mathbb{R}^k$ and $A \in \mathbb{R}^{m \times n}$.
- 2. (3) Let A be a symmetric matrix of order n. Show that the following statements are equivalent:
 - (i) A is positive semidefinite $(A \succeq 0)$, i.e., $v^T A v \geq 0 \ \forall v \in \mathbb{R}^n$.
 - (ii) $\lambda_i \geq 0$ where λ_i is an eigenvalue of A, i = 1, 2, ..., n.
 - (iii) $\exists C \in \mathbb{R}^{m \times n}$ such that $A = C^T C$ (and rank(C) = rank(A)).

What changes if A is positive definite $(A \succ 0 \text{ or } v^T A v > 0 \ \forall v \in \mathbb{R}^n \setminus \{0\})$?

- 4. (3) Using Matlab, have a look at the contour plot of the Rosenbrock function and write a routine that generates for an arbitrary point in $[-1,2] \times [-\frac{1}{2},3]$ a mesh plot of the Rosenbrock function with its linear and quadratic model.
- 5. (6) Landau Symbols: For $g: \mathbb{R}^n \to \mathbb{R}$, $a \in \mathbb{R}^n$ and $B_{\varepsilon}(a) = \{x: ||x a|| \le \varepsilon\}$,
 - $O(g) = \{ f : \mathbb{R}^n \to \mathbb{R} \mid \exists c > 0 \,\exists \varepsilon > 0 \,\forall x \in B_{\varepsilon}(a) : |f(x)| \le c|g(x)| \},$
 - $\mathbf{o}(g) = \{ f : \mathbb{R}^n \to \mathbb{R} \mid \forall c > 0 \,\exists \, \varepsilon > 0 \,\forall \, x \in B_{\varepsilon}(a) : |f(x)| \le c|g(x)| \},$
 - $\Theta(g) = \{f: \mathbb{R}^n \to \mathbb{R} \mid \exists c_1, c_2 > 0 \,\exists \, \varepsilon > 0 \,\forall \, x \in B_{\varepsilon}(a) : c_1|g(x)| \leq |f(x)| \leq c_2|g(x)| \}.$

Given $f, g : \mathbb{R}^n \to \mathbb{R}$ and $a \in \mathbb{R}^n$ prove that for $x \to a$

- (a) O(f) + O(g) = O(|f| + |g|),
- (b) O(f)O(g) = O(fg),
- (c) if f(x) > 0 for $x \in B_{\varepsilon}(a)$ for some $\varepsilon > 0$ then $f \cdot O(g) = O(fg)$.

Note, it is general practice to write f = O(g) instead of $f \in O(g)$.

6. (2) Show that for $f \in C^2(\mathbb{R}^n)$ and $h \to 0$ it holds that

$$f(x+h) = f(x) + \nabla f(x)^T h + o(||h||),$$

$$f(x+h) = f(x) + \nabla f(x)^T h + O(\|h\|^2).$$

Send *.m files to helmberg@mathematik.tu-chemnitz.de