Nonlinear Optimization

Exercises 5

1. (2) Suppose the values of a function f contain roundoff errors u. Show that a suitable value for the perturbation ϵ in the central-difference formula is $\epsilon=u^{1 / 3}$ (up to some function dependent constants).
2. (3) Given the function $f: \mathbb{R}^{8} \rightarrow \mathbb{R}^{6}$

$$
f\left(x_{1}, \ldots, x_{8}\right)=\left(\begin{array}{c}
x_{1}^{2} e^{x_{3}^{2}} \cos x_{2} \\
x_{1}^{2} e^{x_{3}^{2}} \sin x_{4} \\
e^{x_{3}^{2}} \cos x_{2}+\sqrt{x_{7}} \\
e^{x_{3}^{2}} \sin x_{4} / x_{5} \\
x_{6}^{3} x_{7}^{\frac{1}{2}} x_{8}^{2} \\
x_{6}^{3} x_{8}^{2} / x_{5}
\end{array}\right),
$$

how many function evaluations are needed in order to compute an approximate Jacobian by finite differences? (Hint: build the graph and find its chromatic number, i.e., a coloring with minimum number of colors.)
3. (3) Prove the formula

$$
\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(x)=\frac{f\left(x+\varepsilon e_{i}+\varepsilon e_{j}\right)-f\left(x+\varepsilon e_{i}\right)-f\left(x+\varepsilon e_{j}\right)+f(x)}{\varepsilon^{2}}+O(\varepsilon) .
$$

4. (6) Develop a forward mode for calculating $p^{T} \nabla^{2} f q$ for given directions p, q. For this purpose introduce for each node i the values $d_{i}^{p}=\nabla x_{i}^{T} p, d_{i}^{q}=\nabla x_{i}^{T} q$, and $d_{i}^{p q}=p^{T} \nabla^{2} x_{i} q$ and show how to compute them for,$+^{*}$, and a unary function $g: \mathbb{R} \rightarrow \mathbb{R}$ where first and second derivative g^{\prime} and $g^{\prime \prime}$ are supposed to be available.
5. (6) Show that in the proof of Theorem VI. 1 (inexact Newton method) linear / superlinear / quadratic convergence of the gradients to zero is equivalent to linear / superlinear / quadratic convergence of the points to x^{*} with respect to the $\left[\nabla^{2} f\left(x^{*}\right)\right]^{2}$ norm.
