Nonlinear Optimization Exercises 3

1. (3) Complete the proof of the Kantorovich inequality: Given $0 < \lambda_1 \leq \cdots \leq \lambda_n$, then

$$\max_{\xi_i \ge 0, \sum \xi_i = 1} (\sum_{i=1}^n \xi_i \lambda_i) (\sum_{i=1}^n \xi_i \frac{1}{\lambda_i}) = \frac{1}{4} \frac{(\lambda_1 + \lambda_n)^2}{\lambda_1 \lambda_n}.$$

2. (3) Given the optimization problem $\min f(x, y)$ with $f(x, y) = \frac{cx^2+y^2}{2}$, $(x, y) \in \mathbb{R}^2$, 0 < c < 1 and starting point $x_0 = (1, c)$, prove that steepest descent with exact line search generates the sequence

$$x_k = (q^k, (-1)^k c q^k), \qquad k = 1, 2, 3, \dots$$

where $q = \frac{1-c}{1+c}$. How many iterations are needed in order to get within 10^{-6} of the optimum for $c = 10^{-3}$?

3. (4) Complete the proof of Theorem II.6 by showing

(a)
$$||x_k + p_k - x^*|| = O(||x_k - x^*||^2) + o(||p_k||) \implies ||p_k|| = O(||x_k - x^*||)$$

(b)
$$||x_k + p_k - x^*|| = o(||x_k - x^*||) \Rightarrow ||p_k|| = O(||x_k - x^*||) \text{ and } ||p_k - p_k^N|| = o(||p_k||)$$

- 4. (2) Let $X \in \mathbb{R}^{n \times n}$ denote a symmetric matrix variable and define the inner matrix product of matrices $A, B \in \mathbb{R}^{m \times n}$ by $\langle A, B \rangle = \sum_{i,j} a_{ij} b_{ij}$. Prove:
 - (a) Any $n \times n$ matrix C can be decomposed orthogonally into a symmetric and a skew symmetric part by $C = \frac{1}{2}(C + C^T) + \frac{1}{2}(C C^T)$. In particular, $\langle C, X \rangle = \frac{1}{2} \langle C + C^T, X \rangle$ and $\frac{1}{2} \langle C C^T, X \rangle = 0$.
 - (b) For $f(X) = \frac{1}{2} \langle QXQ, X \rangle + \langle H, X \rangle$ with $Q \succ 0$, $H \in \mathbb{R}^{n \times n}$ the slightly incorrect but standard expression for stationarity $\nabla f(X) = QXQ + \frac{1}{2}(H + H^T) = 0$ does indeed produce the correct result.
- 5. (8) Implement a BFGS-Quasi-Newton-method in Matlab with calling sequence

[xsol]=bfgsnewton(@fun,xstart)

using your line search routine of the last exercises. As before, fun represents an arbitrary sufficiently smooth function f(x) of the form

[fval,fgrad]=function_name(x)

with fval = f(x) and $fgrad = \nabla f(x)$. Test it on the Rosenbrock function for different starting points.