Nonlinear Optimization

Exercises 2

- 1. (2) Given a convex set $C \subseteq \mathbb{R}^n$. A function $f: C \to \mathbb{R}$ is quasiconvex, if $f(\alpha x_1 + (1 \alpha)x_2) \le \max\{f(x_1), f(x_2)\}$ for all $x_1, x_2 \in C$ and all $\alpha \in (0, 1)$. Prove: f is quasiconvex if and only if all level sets $S_f(r) = \{x \in C : f(x) \le r\}$ are convex. Are all local minima global ones as well?
- 2. (3) Given a convex set $C \subseteq \mathbb{R}^n$. A quasiconvex function $f: C \to \mathbb{R}$ is strictly quasiconvex, if for each $x_1, x_2 \in C$ with $f(x_1) \neq f(x_2)$ we have $f(\alpha x_1 + (1 \alpha)x_2) < \max\{f(x_1), f(x_2)\}$ for all $\alpha \in (0, 1)$. Prove: If f is strictly quasiconvex, any local minimum is also a global minimum and the set of minima $\operatorname{Argmin}(f)$ is convex. What is lost, if in the definition of strict quasiconvexity the requirement is dropped that f is quasiconvex?
- 3. (3) Given a strictly quasiconvex $f : [a, b] \to \mathbb{R}$ and $a \le \lambda < \mu \le b$, prove: If $f(\lambda) < f(\mu)$, then $f(\alpha) \ge f(\mu)$ for $\alpha \in [\mu, b]$, otherwise $f(\alpha) \ge f(\lambda)$ for $\alpha \in [a, \lambda]$.
- 4. (4) Derivative free line-search: Let a strictly quasiconvex $f:[a,b] \to \mathbb{R}$ be given by a 0^{th} order oracle.
 - (a) Describe an algorithm with the following property: In iteration $0 \le k \le n-1$ the search interval $[a_k, b_k]$ for the minimum is reduced by exploiting 3 after evaluating the function in

$$\lambda_k = a_k + \frac{F_{n-k-1}}{F_{n-k+1}}(b_k - a_k) \text{ and } \mu_k = a_k + \frac{F_{n-k}}{F_{n-k+1}}(b_k - a_k),$$

where $F_0 = F_1 = 1$ and $F_{n+2} = F_{n+1} + F_n$, $n \in \mathbb{N}_0$, is the Fibonacci sequence. What is the total number of evaluations needed?

(b) The Golden Section Method: Now use $\theta = \frac{\sqrt{5}-1}{2}$ and

$$\lambda_k = a_k + (1 - \theta)(b_k - a_k), \quad \mu_k = a_k + \theta(b_k - a_k).$$

By how much is the search interval reduced per iteration?

5. (8) Develop and implement in matlab a line search function of the form

[npoint,nval,ngrad]=linesearch(@fun,cpoint,dir,maxa,cval,cgrad,c1,c2);

For a continuously differentiable function f it should perform an interpolation search on $f(x_c + \alpha p)$ for $\alpha \in [0, \bar{\alpha}]$ so that the Wolfe conditions are satisfied for parameters c_1 and c_2 . The parameters of the routine are fun for f, cpoint for x_c , dir for the descent direction p, maxa for $\bar{\alpha}$, cval for $f(x_c)$ and cgrad for $\nabla f(x_c)$. Return values are the new point, the new function value and the new gradient. All vectors/points are column vectors. For fun it must be possible to plug in an arbitrary function of the form

(type "help feval" in matlab)

Send *.m files to helmberg@mathematik.tu-chemnitz.de