Nonlinear Optimization

Exercises 7

1. (2) Given $c \in \mathbb{R}^{n}$, determine analytically the optimal solution of the problem

$$
\begin{array}{ll}
\min & \sum_{i=1}^{n} x_{i} \ln x_{i}-c^{T} x, \\
\text { s.t. } & \sum_{i=1}^{n} x_{i}=1, \\
& x>0 .
\end{array}
$$

2. (4) Prove Theorem IX.8: There is no direction $d \in F_{1}(\bar{x})$ for which $d^{T} \nabla f(\bar{x})<0$ if and only if there exists a vector $\lambda \in \mathbb{R}^{n}$ so that

$$
\nabla f(\bar{x})=\sum_{i \in \mathcal{A}(\bar{x})} \lambda_{i} \nabla c_{i}(\bar{x}) \quad \text { with } \lambda_{i} \geq 0 \text { for } i \in \mathcal{A}(\bar{x}) \cap \mathcal{I} .
$$

Hint: Use Farkas' Lemma.
3. (4) Given the setting of the proof of Theorem IX.13, show that the following matrix is regular,

$$
\left[\begin{array}{cc}
\nabla^{2} f\left(x^{*}\right)-\sum \lambda_{i}^{*} \nabla^{2} c_{i}\left(x^{*}\right) & -\left[\nabla c_{1}\left(x^{*}\right), \ldots, \nabla c_{m}\left(x^{*}\right)\right] \\
{\left[\nabla c_{1}\left(x^{*}\right), \ldots, \nabla c_{m}\left(x^{*}\right)\right]^{T}} & 0
\end{array}\right] .
$$

4. (2) Given a smooth concave function $c: \mathbb{R}^{n} \rightarrow \mathbb{R}$, show that for all $x, y \in \mathbb{R}^{n}$

$$
c(y) \leq c(x)+\nabla c(x)^{T}(y-x)
$$

5. (2) Given a smooth concave function $c: \mathbb{R}^{n} \rightarrow \mathbb{R}$, show that $-\log (c(x))$ is convex on $\left\{x \in \mathbb{R}^{n}: c(x)>0\right\}$.
6. (6) Consider the following quadratic program in \mathbb{R}^{2}

$$
\begin{array}{lr}
\text { min } & \frac{1}{2} x^{T} Q x-b x \\
\text { s.t. } & x_{1}+1 \geq 0 \\
& -x_{1}+1 \geq 0 \\
& x_{2}+1 \geq 0 \\
& -x_{2}+1 \geq 0 .
\end{array}
$$

Determine optimal solutions, Lagrange multipiers and (strongly/weakly) active index sets for the cases
(a) $Q=\left[\begin{array}{ll}4 & 1 \\ 1 & 2\end{array}\right], b=\left[\begin{array}{c}14 \\ 7\end{array}\right]$
(b) $\quad Q=\left[\begin{array}{ll}3 & 0 \\ 0 & 2\end{array}\right], b=\left[\begin{array}{l}6 \\ 1\end{array}\right]$
(c) $\quad Q=\left[\begin{array}{ll}3 & 0 \\ 0 & 2\end{array}\right], b=\left[\begin{array}{l}6 \\ 2\end{array}\right]$

What is the infinitesimal change of the value of the optimal solution in each case, if the right hand side is shifted by some small $d \in \mathbb{R}^{4}$ (use Th.IX.13).

