Nonlinear Optimization

Exercises 6

1. (4) Show for the Line-Search Newton-CG method that the generated step directions are descent directions.
2. (4) Prove: In the Trust-Region Steihaug-CG method the length of the step is nondecreasing. In the notation of the algorithm, $0=\left\|p_{0}\right\|<\cdots<\left\|p_{j}\right\|<\cdots<\|p\|=\Delta$.
3. (5) Nonlinear Systems of Equations: Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be of the form

$$
F(x)=\binom{x^{T} A_{1} x+b_{1}^{T} x+c_{1}}{x^{T} A_{2} x+b_{2}^{T} x+c_{2}} .
$$

with $A_{i} \in \mathbb{R}^{2 \times 2}$ symmetric, $b_{i} \in \mathbb{R}^{2}, c_{i} \in \mathbb{R}$ for $i \in\{1,2\}$ and Jacobian $J(x)$. Denote the set of degenerate (non regular) points by $D=\left\{x \in \mathbb{R}^{2}: J(x)\right.$ singular $\}$. If possible, give a choice of coefficientes A_{i}, b_{i}, c_{i} so that
(a) (1) $D=\emptyset$
(b) (1) $D=\mathbb{R}^{2}$
(c) (1) $|D|=1$
(d) (2) $D=\left\{x: a_{1}^{T} x=0\right\} \cup\left\{x: a_{2}^{T} x=0\right\}$ for given $a_{1}, a_{2} \in \mathbb{R}^{2}$.
4. (4) Consider the optimization problem

$$
\begin{array}{ll}
\min & c^{T} x \\
\text { s.t. } & \frac{1}{2} x^{T} A x \leq b_{1} \\
& a^{T} x \leq b_{2} \\
& x \in \mathbb{R}^{3}
\end{array}
$$

Give the set of opitmal solutions. Describe the set of limiting directions for the point $\bar{x}=(1,0,0)$, the linearised tangent cone $F_{1}(\bar{x})$, and its consequences on the existence of Lagrange multipliers. Provide a description of the feasible set, so that Lagrange-multipliers exist for all optimal solutions.
5. (3) A mathematical program with equilibrium constraints (MPEC) is an optimization problem of the form

$$
\begin{array}{lll}
\min & f(x) \\
\text { s.t. } & g(x) \leq 0, h(x)=0, & f: \mathbb{R}^{n} \rightarrow \mathbb{R} \\
& G(x) \geq 0, H(x) \geq 0, G(x)^{T} H(x)=0
\end{array} \quad \text { with } \begin{aligned}
& g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p} \\
& \\
& \\
& G, H: \mathbb{R}^{n} \rightarrow \mathbb{R}^{M}
\end{aligned}
$$

Prove that for an MPEC there is no feasilbe point in which LICQ holds.

