Nonlinear Optimization

Exercises 4

1. (4) Prove Lemma III. 4 (by following the dog-leg-path the step size is nondecreasing and the model value nonincreasing).
2. (2) Denote by p_{k+1} the step direction that is generated in iteration k by the linear CG algorithm for $f(x)=\frac{1}{2} x^{T} A x-b^{T} x$ with $A \succ 0$. Prove that p_{k+1} is a descent direction.
3. Given $A \in \mathbb{R}^{n \times n}$ positive definit and vectors $p_{0}, \ldots, p_{n-1} \in \mathbb{R}^{n} \backslash\{0\}$ that are conjugate with respect to $A\left(v_{i}^{T} A v_{j}=0\right.$ for $\left.i \neq j\right)$. Prove:
(a) (1) p_{0}, \ldots, p_{n-1} are linearly independent.
(b) (3) Given the the minimization problem $\min _{x \in \mathbb{R}^{n}} \frac{1}{2} x^{T} A x-b^{T} x$ and some starting point $x_{0} \in \mathbb{R}^{n}$, the sequence x_{k} given by the iteration

$$
x_{k+1}=x_{k}+\alpha_{k} p_{k} \quad \text { with } \quad r_{k}=A x_{k}-b \quad \text { and } \quad \alpha_{k}=-\frac{r_{k}^{T} p_{k}}{p_{k}^{T} A p_{k}}
$$

converges in at most n steps to the optimum x^{*} and $x^{*}=\sum_{i=0}^{n-1}\left(\frac{p_{i}^{T} b}{p_{i}^{T} A p_{i}}\right) p_{i}$.
(c) (2) The points x_{k} defined in (b) satisfy

$$
x_{k+1}=\arg \min _{x \in\left\{x_{0}\right\}+\operatorname{span}\left\{p_{0}, \ldots, p_{k}\right\}} \frac{1}{2} x^{T} A x-b^{T} x .
$$

4. (2) Prove Corollary IV.2.
5. (6) Rosen's projected gradient method: Given the optimization problem

$$
\min f(x) \quad \text { s.t. } \quad A x=b
$$

with $A \in \mathbb{R}^{m \times n}$ having full row rank. Show that the step direction $p=-(I-$ $\left.A^{T}\left(A A^{T}\right)^{-1} A\right) \nabla f(x)(x$ feasible, i.e. $A x=b)$ yields a feasible descent direction if there is one (hint: $I-A^{T}\left(A A^{T}\right)^{-1} A$ is the projection matrix onto the null space of A). Using this step direction, develop a globally convergent optimization method for this problem (under suitable conditions on f) [a practical implementation is encouraged but not required here].

