Nonlinear Optimization

Exercises 3

1. (3) Complete the proof of the Kantorovich inequality: Given $0<\lambda_{1} \leq \cdots \leq \lambda_{n}$, then

$$
\max _{\xi_{i} \geq 0, \sum \xi_{i}=1}\left(\sum_{i=1}^{n} \xi_{i} \lambda_{i}\right)\left(\sum_{i=1}^{n} \xi_{i} \frac{1}{\lambda_{i}}\right)=\frac{1}{4} \frac{\left(\lambda_{1}+\lambda_{n}\right)^{2}}{\lambda_{1} \lambda_{n}} .
$$

2. (2) Given the optimization problem $\min f(x, y)$ with $f(x, y)=\frac{c x^{2}+y^{2}}{2}, \quad(x, y) \in$ $\mathbb{R}^{2}, \quad 0<c<1$ and starting point $x_{0}=(1, c)$, prove that steepest descent with exact line search generates the sequence

$$
x_{k}=\left(q^{k},(-1)^{k} c q^{k}\right), \quad k=1,2,3, \ldots
$$

where $q=\frac{1-c}{1+c}$. How many iterations are needed in order to get within 10^{-6} of the optimum for $c=10^{-3}$?
3. (1) Prove that Newton's method is scale invariant: Given a sequence $\left\{x_{k}\right\}$ of points generated by Newton's method for some function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, given a regular matrix $A \in \mathbb{R}^{n \times n}$, put $\Phi(y)=f(A y)$ and $y_{0}=A^{-1} x_{0}$.
Then $y_{k+1}:=y_{k}-\left[\nabla^{2} \Phi\left(y_{k}\right)\right]^{-1} \nabla \Phi\left(y_{k}\right)=A^{-1} x_{k+1}$ for all k.
4. (4) Complete the proof of Theorem II. 6 by showing
(a) $\left\|x_{k}+p_{k}-x^{*}\right\|=O\left(\left\|x_{k}-x^{*}\right\|^{2}\right)+o\left(\left\|p_{k}\right\|\right) \quad \Rightarrow \quad\left\|p_{k}\right\|=O\left(\left\|x_{k}-x^{*}\right\|\right)$
(b) $\left\|x_{k}+p_{k}-x^{*}\right\|=o\left(\left\|x_{k}-x^{*}\right\|\right) \Rightarrow\left\|p_{k}\right\|=O\left(\left\|x_{k}-x^{*}\right\|\right)$ and $\left\|p_{k}-p_{k}^{N}\right\|=o\left(\left\|p_{k}\right\|\right)$
5. (2) Let $X \in \mathbb{R}^{n \times n}$ denote a symmetric matrix variable and define the inner matrix product of matrices $A, B \in \mathbb{R}^{m \times n}$ by $\langle A, B\rangle=\sum_{i, j} a_{i j} b_{i j}$. Prove:
(a) Any $n \times n$ matrix C can be decomposed orthogonally into a symmetric and a skew symmetric part by $C=\frac{1}{2}\left(C+C^{T}\right)+\frac{1}{2}\left(C-C^{T}\right)$. In particular, $\langle C, X\rangle=$ $\frac{1}{2}\left\langle C+C^{T}, X\right\rangle$ and $\frac{1}{2}\left\langle C-C^{T^{2}}, X\right\rangle=0$.
(b) For $f(X)=\frac{1}{2}\langle Q X Q, X\rangle+\langle H, X\rangle$ with $Q \succ 0, H \in \mathbb{R}^{n \times n}$ the slightly incorrect but standard expression for stationarity $\nabla f(X)=Q X Q+\frac{1}{2}\left(H+H^{T}\right)=0$ does indeed produce the correct result.
6. (8) Implement a BFGS-Quasi-Newton-method in Matlab with calling sequence
[xsol]=bfgsnewton(@fun, xstart)
using your line search routine of the last exercises. As before, fun represents an arbitrary sufficiently smooth function $f(x)$ of the form
[fval,fgrad]=function_name(x)
with $\mathrm{fval}=f(x)$ and $\mathrm{fgrad}=\nabla f(x)$. Test it in on the Rosenbrock function for different starting points.

