Nonlinear Optimization

Exercises 2

1. (2) Given a convex set $C \subseteq \mathbb{R}^{n}$. A function $f: C \rightarrow \mathbb{R}$ is quasiconvex, if $f\left(\alpha x_{1}+(1-\right.$ $\left.\alpha) x_{2}\right) \leq \max \left\{f\left(x_{1}\right), f\left(x_{2}\right)\right\}$ for all $x_{1}, x_{2} \in C$ and all $\alpha \in(0,1)$. Prove: f is quasiconvex if and only if all level sets $S_{f}(r)=\{x \in C: f(x) \leq r\}$ are convex. Are all local minima global ones as well?
2. (3) Given a convex set $C \subseteq \mathbb{R}^{n}$. A quasiconvex function $f: C \rightarrow \mathbb{R}$ is strictly quasiconvex, if for each $x_{1}, x_{2} \in C$ with $f\left(x_{1}\right) \neq f\left(x_{2}\right)$ we have $f\left(\alpha x_{1}+(1-\alpha) x_{2}\right)<$ $\max \left\{f\left(x_{1}\right), f\left(x_{2}\right)\right\}$ for all $\alpha \in(0,1)$. Prove: If f is strictly quasiconvex, any local minimum is also a global minimum and the set of minima $\operatorname{Argmin}(f)$ is convex. What is lost, if in the definition of strict quasiconvexity the requirement is dropped that f is quasiconvex?
3. (3) Given a strictly quasiconvex $f:[a, b] \rightarrow \mathbb{R}$ and $a \leq \lambda<\mu \leq b$, prove: If $f(\lambda)<f(\mu)$, then $f(\alpha) \geq f(\mu)$ for $\alpha \in[\mu, b]$, otherwise $f(\alpha) \geq f(\lambda)$ for $\alpha \in[a, \lambda]$.
4. (4) Derivative free line-search: Let a strictly quasiconvex $f:[a, b] \rightarrow \mathbb{R}$ be given by a $0^{\text {th }}$ order oracle.
(a) Describe an algorithm with the following property: In iteration $0 \leq k \leq n-1$ the search interval $\left[a_{k}, b_{k}\right]$ for the minimum is reduced by exploiting 3 after evaluating the function in

$$
\lambda_{k}=a_{k}+\frac{F_{n-k-1}}{F_{n-k+1}}\left(b_{k}-a_{k}\right) \text { and } \mu_{k}=a_{k}+\frac{F_{n-k}}{F_{n-k+1}}\left(b_{k}-a_{k}\right)
$$

where $F_{0}=F_{1}=1$ and $F_{n+2}=F_{n+1}+F_{n}, n \in \mathbb{N}_{0}$, is the Fibonacci sequence. Waht is the total number of evaluations needed?
(b) The Golden Section Method: Now use $\theta=\frac{\sqrt{5}-1}{2}$ and

$$
\lambda_{k}=a_{k}+(1-\theta)\left(b_{k}-a_{k}\right), \quad \mu_{k}=a_{k}+\theta\left(b_{k}-a_{k}\right)
$$

By how much is the search interval reduced per iteration?
5. (8) Develop and implement in matlab a line search function of the form

```
[npoint,nval, ngrad]=linesearch(@fun, cpoint, dir,maxa, cval, cgrad, c1, c2);
```

For a continuously differentiable function f it should perform an interpolation search on $f\left(x_{c}+\alpha p\right)$ for $\alpha \in[0, \bar{\alpha}]$ so that the Wolfe conditions are satisfied for parameters c_{1} and c_{2}. The parameters of the routine are fun for f, cpoint for x_{c}, dir for the descent direction p, maxa for $\bar{\alpha}$, cval for $f\left(x_{c}\right)$ and cgrad for $\nabla f\left(x_{c}\right)$. Return values are the new point, the new fucntion value and the new gradient. All vectors/points are column vectors. For fun it must be possible to plug in an arbitrary function of the form
[val,grad]=function_name(point)
(type "help feval" in matlab)
Send *.m files to katharina.flemming@s2005.tu-chemnitz.de
with CC to helmberg@mathematik.tu-chemnitz.de

