EDM, Algorithmen und Graphenspeicherung

1 Graphenspeicherung

Gespeichert werden soll ein Graph G=(V,E) bzw. Digraph D=(V,A). Man beachte: $E\in\binom{V}{2}$ bzw. $E\subseteq V^2$

1.1 Adjazenzmatrix

• Graph
$$G: A = (a_{vw})_{v,w \in V}$$
 mit $a_{vw} = \begin{cases} 1 & \{v,w\} \in E \\ 0 & \text{sonst.} \end{cases}$

• Digraph
$$D$$
: $A = (a_{vw})_{v,w \in V}$ mit $a_{vw} = \begin{cases} 1 & (v,w) \in A \\ -1 & (w,v) \in E \\ 0 & \text{sonst.} \end{cases}$

1.2 Inzidenzmatrix:

• Graph
$$G: B = (b_{ve})_{v \in V, e \in E}$$
 mit $b_{ve} = \begin{cases} 1 & v \in e \\ 0 & \text{sonst.} \end{cases}$

• Digraph
$$D$$
: $B = (b_{va})_{v \in V, a \in A}$ mit $b_{va} = \begin{cases} 1 & a_1 = v \\ -1 & a_2 = v \\ 0 & \text{sonst.} \end{cases}$

1.3 Adjazenzliste:

• Graph
$$G: L = (L_v)_{v \in V}$$
 mit $L_v = N_G(v) = \{w \in V | \{v, w\} \in E\}$

• Digraph D:

- Vorgängerliste:
$$L = (L_v)_{v \in V}$$
 mit $L_v = N_G^+(v) = \{w \in V | (w, v) \in E\}$

– Nachfolgerliste:
$$L = (L_v)_{v \in V}$$
 mit $L_v = N_G^-(v) = \{w \in V | (v, w) \in E\}$

1

2 Baumsuche

- Eingabe: Zusammenhängender Graph G = (V, E).
- Ausgabe: Maximaler kreisfreier Untergraph durch gerichtete Adjazenzliste L.
- Hilfsdaten:
 - -U: Menge unbearbeiteter Knoten
 - I: Menge der Knoten in Bearbeitung
 - − v: Aktueller Knoten
 - w: unbearbeiteter Nachbar
- Ablauf:
 - 1. Initialisierung:
 - Setze $L_v := \emptyset$ für alle $v \in V$,
 - wähle $I \in \binom{V}{1}$ und
 - setze $U := V \setminus I$.
 - 2. Solange noch Knoten in I existieren,
 - (a) wähle $v \in I$
 - (b) Falls $N_G(v) \cap U$ eine Knoten enthält, wähle $w \in N_G(v) \cap U$ und setze

$$U := U \setminus \{w\},$$
$$I := I \cup \{w\} \text{ und }$$

 $L_v := L_v \cup \{w\}$ Nachfolgerliste oder $L_w := \{v\}$ Vorgängerliste

Ansonsten setze $I := I \setminus \{v\}$.

3. Ausgabe.

2.1 Spezialfälle und Bemerkungen

- BFS (Breitensuchbaum): I als Warteschlange (first in first out) realisiert.
- DFS (Tiefensuchbaum): I als Stapel (last in first out) realisiert.
- Auch auf gerichteten Graphen, findet alle vom ersten Knoten aus erreichbaren.
- Laufzeit: O(|E|).

Ist U am Ende nicht leer, so enthält L den Suchbaum einer Komponente. Man kann den Algorithmus in eine Schleife packen (Initialisierung von L bleibt draußen) und am Schleifenende V=U setzen, solange $U\neq\emptyset$ gilt - ansonsten wird die Schleife beendet. Dann erhält man einen Algorithmus, der zu jedem Graphen einen maximalen kreisfreien Untergraphen (Gerüst) sucht.