Satz von Vizing

Satz: $\chi'(G) \leq \Delta(G) + 1$ Beweis konstruktiv:

Wir beginnen mit einem komplett ungefärbten Graphen G und dehnen sukzessive eine Kantenfärbung mit $\Delta(G)+1$ Farben um eine weitere Kante aus. Dabei kann es vorkommen, dass schon gefärbte Kanten umgefärbt werden müssen.

Sei in einem Schritt nun unser Ziel, den Graphen H zu färben, wobei uns schon eine Färbung gegeben ist, die nur eine Kante - sagen wir $\{u, v_0\}$ auslässt.

Um u herum fehlt mindestens eine Farbe, sagen wir Farbe 0. Um v_0 herum fehlt auch eine Farbe. Ist dies die Farbe 0, so können wir die Färbung ausdehnen, indem wir $\{u, v_0\}$ mit Farbe 0 färben.

Anderenfalls konstruieren wir uns eine (endliche) Folge v_i von Nachbarn von u sukzessive nach folgendem Prinzip: Seien v_j für $j=0\ldots i$ schon konstruiert und die Farben der Kanten $\{u,v_j\}$ mit j benannt. v_i ist letztes Glied der Folge, sofern einer der beiden folgenden Situationen eintritt:

- a) Um v_i herum fehlt eine Farbe x, die auch um u fehlt.
- b) Um v_i herum fehlt eine der Farben $1, \ldots, i$.

Da um v_i herum höchstens $\Delta(G)$ Kanten liegen, fehlt anderenfalls um v_i herum auch mindestens eine Farbe, sagen wir i+1 und u inzidiert mit einer Kante dieser Farbe. Das andere Ende dieser Kante sei dann v_{i+1} .

Das letzte Folgeglied der so konstruierten Folge sei v_k . Es ergibt sich $k \leq \Delta(G)$.

Fall 1) Endet die Folge wegen Situation a), so erhalten wir eine zulässige Färbung von H, indem wir die Kanten $\{u, v_j\}$ für $j = 0 \dots k-1$ jeweils mit Farbe j+1 und für j=k mit Farbe x färben und bei den anderen Kanten die alte Färbung beibehalten, da um u herum nun nur die vorher fehlende Farbe x hinzukommt, um jedes v_j herum die jeweils neue Farbe j+1 aber vorher fehlte.

Fall 2) Die Folge endet also stattdessen wegen Situation b). Um v_k kommt daher Farbe 0 vor, aber eine Farbe ℓ für ein ℓ zwischen 0 und k fehlt.

Wir betrachten den Graphen H', der aus H durch Weglassen aller Kanten hervorgeht, die nicht die Farben 0 oder ℓ tragen. Dieser Graph hat Maximalvalenz zwei, seine Komponenten sind also entweder Wege oder Kreise. Wir betrachten die Komponente P, welche v_k enthält. Da um v_k die Farbe ℓ fehlt, hat v_k in P Valenz 1 und P ist ein Weg. Vertauschen der Farben ℓ und 0 auf P ändert offenbar nichts an der Zulässigkeit der Färbung. Die Mengen der um einen Knoten herum vorkommenden Farben bleiben dabei auch gleich, ausser der betrachtete Knoten ist v_k (hier fehlt nun die Farbe 0) oder der anderen Endknoten von P.

Sei f die Färbung der Kanten vor dem Umfärben von P und f' die Färbung danach. Beides sind zulässige Kantenfärbungen von $H - \{u, v\}$. Die Färbung f'' ergebe sich aus f' durch Um- bzw. Neufärben der Kanten $\{u, v_i\}$ für $i = 0 \dots k - 1$ mit Farbe i + 1 und für i = k mit Farbe 0.

Ist f'' zulässig, so sind wir fertig, H ist mit $\Delta(G)$ Farben gefärbt.

Die Kanten um u haben offenbar immer noch paarweise verschiedene Farben, ebenso jene um v_k . Die Kanten um ein $v_i i = 1 \dots k-1$ können nur dann nicht paarweise verschiedene Farben haben, wenn in f' die Farbe i+1 schon um v_i herum auftrat. Da dies aber in f nicht der Fall war, wurde diese Farbe geändert, also $i+1 \in \{0,\ell\}$ und schließlich $i+1=\ell$. Da ℓ aber nicht um $\ell-1$ herum als Farbe auftrat, endet P damit in $v_{\ell-1}$ und um diesen Knoten herum tritt nun 0 nicht mehr auf.

Die Färbung, die sich aus f' ergibt, indem man nur $\{u, v_i\}$ für $i = 0 \dots \ell - 1$ umfärbt, und zwar in Farbe i + 1 falls $i < \ell - 1$ und in Farbe 0 sonst, ist damit aber eine zulässige Färbung von H mit $\Delta(G)$ Farben.