U. Schwerdtfeger 15. Januar 2019

Übungen zur Konvexen Analysis Blatt 7

Aufgabe 1:

Sei $C\subseteq X$ ein konvexer Kegel. Zeigen Sie, dass der duale Kegel C^* abgeschlossen ist und dass $C^{**}=\operatorname{cl} C$ ist.

Aufgabe 2:

Sei $C\subset X$ ein konvexer Kegel mit $0\in C$. Bestimmen Sie das Fenchel-Duale, Lagrange-Duale und das Fenchel-Lagrange-Duale von

$$\inf\{f(x) \mid x \ge_C 0\}$$

Geben Sie eine hinreichende Bedingung für starke Dualität an.

Aufgabe 3:

Sei $C \subset X$ ein konvexer Kegel mit $0 \in C$ und $A: X \to Y$ linear, $c^* \in X$ und $b \in Y$. Zeigen Sie

$$\inf\{\langle c^*, x \rangle \mid x \in X, x \geq_C 0, Ax = b\} \geq \sup\{\langle y^*, b \rangle \mid y^* \in Y, A^*y^* \leq_{C^*} c^*\}$$

Geben Sie eine hinreichende Bedingung für Gleichheit an.

Aufgabe 4:

Es sei S^n die Menge der symmetrischen $n \times n$ Matrizen und S^n_+ der Kegel der positiv semidefiniten Matrizen. Sei nun $A \in S^n$. Formulieren Sie die Bestimmung des größten Eigenwertes von A als konvexes Programm mit semidefiniter Kegelnebenbedingung. Formulieren Sie das (Lagrange-)Duale und begründen Sie die starke Dualität. Interpretieren Sie die Optimalitätsbedingungen!

Ein paar hilfreiche bekannte (?) Fakten: Als Skalarprodukt auf S^n nehmen wir $\langle A, B \rangle = \operatorname{tr} A^{\top} B = \sum_{i,j=1}^n A_{ij} B_{ij}$. Damit ist dann $(S_+^n)^* = S_+^n$ und für $A, B \in S_+^n$ gilt $\langle A, B \rangle = 0 \Leftrightarrow AB = 0$. Es ist int $S_+^n = S_{++}^n$ die Menge der positiv definiten Matrizen.

Abgabe am 21. Januar 2019 in der Vorlesung.