Exercises for the course in

Convex Analysis

Problem sheet 2

Aufgabe 1:

Prove: For $A: X \rightarrow Y$ affine and $D \subseteq Y$ convex with $A^{-1}($ ri $D) \neq$ it holds

$$
\text { ri } A^{-1}(D)=A^{-1}(\operatorname{ri} D)
$$

Aufgabe 2:

Prove that ri $C_{1} \cap \operatorname{ri} C_{2} \neq \emptyset \Leftrightarrow 0 \in \operatorname{ri}\left(C_{1}-C_{2}\right)$.

Aufgabe 3:

Show that for $x \in X, C \subseteq X$ with C closed and convex the following infimum is actually attained at some $y \in C$:

$$
\inf \left\{\frac{1}{2}\|x-y\|^{2}: y \in C\right\} .
$$

Aufgabe 4:

Let $C \subseteq X$ be convex and $x \in \operatorname{rbd} C$ (so $C \neq \operatorname{aff} C$). Prove that there exists a hyperplane which supports C at x non-trivially.

Aufgabe 5:

A function $f: I \rightarrow \mathbb{R}$ on an Intervall I is called convex, if

$$
\forall a, b \in I, \alpha \in[0,1]: f(\alpha a+(1-\alpha) b) \leq \alpha f(a)+(1-\alpha) f(b)
$$

Show that $f: I \rightarrow \mathbb{R}$ is convex if and only if for every $x_{0} \in I$ the slope function

$$
x \mapsto s_{x_{0}}(x):=\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

is monotonically increasing on $I \backslash\left\{x_{0}\right\}$.

