Exercises for the course in Convex Analysis Problem sheet 2

Aufgabe 1:

Prove: For $A: X \to Y$ affine and $D \subseteq Y$ convex with $A^{-1}(\operatorname{ri} D) \neq \operatorname{it}$ holds

 $\operatorname{ri} A^{-1}(D) = A^{-1}(\operatorname{ri} D).$

Aufgabe 2:

Prove that $\operatorname{ri} C_1 \cap \operatorname{ri} C_2 \neq \emptyset \Leftrightarrow 0 \in \operatorname{ri} (C_1 - C_2).$

Aufgabe 3:

Show that for $x \in X$, $C \subseteq X$ with C closed and convex the following infimum is actually attained at some $y \in C$:

$$\inf\left\{\frac{1}{2}\|x-y\|^2\colon y\in C\right\}.$$

Aufgabe 4:

Let $C \subseteq X$ be convex and $x \in \operatorname{rbd} C$ (so $C \neq \operatorname{aff} C$). Prove that there exists a hyperplane which supports C at x non-trivially.

Aufgabe 5:

A function $f: I \to \mathbb{R}$ on an Intervall I is called convex, if

$$\forall a, b \in I, \alpha \in [0, 1]: f(\alpha a + (1 - \alpha)b) \le \alpha f(a) + (1 - \alpha)f(b)$$

Show that $f: I \to \mathbb{R}$ is convex if and only if for every $x_0 \in I$ the slope function

$$x \mapsto s_{x_0}(x) := \frac{f(x) - f(x_0)}{x - x_0}$$

is monotonically increasing on $I \setminus \{x_0\}$.

You can hand in your solutions by 29 Oct. 2018 during the lecture