## Exercises for the course in

## Convex Analysis

## Problem sheet 1

## Aufgabe 1:

Show Proposition 2: If $V$ is a linear subspace (affine subspace, convex set, respectively) and $U \subseteq V$ then $\operatorname{lin}(U)(\operatorname{aff}(U), \operatorname{co}(U)$, respectively) is a subset of $V$.
Furthermore show that $\operatorname{lin}(U)(\operatorname{aff}(U), \operatorname{co}(U)$, respectively) is the intersection of all linear subspaces (affine subspaces, convex sets, respectively) $V$ with $U \subseteq V$.
(And consequently lin (aff, co) is a linear subspace (affine subspace, convex set))

## Aufgabe 2:

Show that if $V$ is an affine subspace and $v_{0} \in V$ then, $V_{0}:=V-v_{0}=V+\left\{-v_{0}\right\}$ is a (linear) subspace. Show further that $V_{0}$ is independent of the choice of $v_{0} \in V$.

## Aufgabe 3:

Show Observation 5: Images and preimages of affine subspaces (convex sets, respectively) under an affine map are affine subspaces (convex sets, respectively).

## Aufgabe 4:

Show Observation 6: 1) If $C \subseteq X_{1} \times \ldots \times X_{k}$ is convex then so is its projection onto $X_{i}$ for every $i=1, \ldots, k$.
2) $C_{1} \times \ldots \times C_{k} \subseteq X_{1} \times \ldots \times X_{k}$ is convex if and only if $C_{i} \subseteq X_{i}$ is convex for every $i=1, \ldots, k$.

## Aufgabe 5:

Show Observation 7: 1) $C_{1}, C_{2} \subseteq X$ convex and $\alpha_{1}, \alpha_{2} \in \mathbb{R}$ then $\alpha_{1} C_{1}+\alpha_{2} C_{2}$ is convex.
2) If $C_{1}, \ldots, C_{k} \subseteq X$ are convex then

$$
\operatorname{co}\left(C_{1} \cup \ldots \cup C_{k}\right)=\left\{\sum_{i=1}^{k} \lambda_{i} x_{i}: \lambda_{i} \geq 0, x_{i} \in C_{i} \forall i=1, \ldots, k, \sum_{i=1}^{k} \lambda_{i}=1\right\}
$$

