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Ungleichungen

1. Für welche x ∈ R gelten folgende Ungleichungen?

a) −3x + 2 < 4x− 12, b) −4 (3− x) ≥ 6x, c) 3x− 1
2x + 2 > 1, d) x− 1

x + 2 ≤ 4.

2. Für welche x ∈ R gilt (x− a) (x− b)
x− c

> 0, wobei a, b, c ∈ R mit a > b > c sind?

3. Lösen Sie für x ∈ R die Ungleichungen x2 < m und x2 > m, wobei m ∈ R beliebig ist.

4. Bestimmen Sie unter Verwendung von Aufgabe 3 die Lösungsmenge der Ungleichungen
x2 + p x + q > 0 und x2 + p x + q < 0 für beliebige p, q ∈ R.

Beträge

5. Bestimmen Sie die Lösungsmenge L ⊂ R folgender Gleichungen:
a) |x− 2| = 10, b) |2x + 1| = |x + 1|+ 2, c) |x− 1| |x− 2| = 2.

6. Bestimmen Sie die Lösungsmenge L ⊂ R folgender Ungleichungen:
a) |x + 2|+ |x− 2| ≤ 12, b)

∣∣|x− 1|+ x
∣∣+ |x| ≤ 3, c) 3 < |x + 2| ≤ 5.

7. Stellen Sie die Lösungsmenge L ⊂ R2 folgender Ungleichungen graphisch dar:
a) |x|+ |y| ≤ 1, b) |x + y| ≤ 1, c) 1 ≤ |x− y| ≤ 2, d) |x− y|2 + |x + y|2 ≤ 1.

Potenzen, Wurzeln, Logarithmen

8. Vereinfachen Sie folgende Ausdrücke:
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9. Vereinfachen Sie folgende Logarithmenausdrücke bzw. bestimmen Sie x ∈ R:
a) logk

k
√

m, b) logy y−n, c) ln e−3, d) logx
1
u = −1, e) log4 x = 1

2 .

10. Fassen Sie zusammen:
a) loga u− loga v + loga w, b) x ln u + y ln v, c) 1

3 logk a− 1
5 logk b + 2

3 logk c.

Wurzel-, Exponential-, Logarithmengleichungen

11. Lösen Sie folgende biquadratische Gleichungen in R:
a) x4 − 5x2 + 4 = 0, b) 10x4 − x2 = 21.

12. Für welche x ∈ R gelten folgende Gleichungen bzw. Ungleichungen?
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, h) 102x − 101 · 10x + 100 = 0,

i) 34x2−7x−14 ≤ 9x2−3x−4, j) ln(35− x3)
ln(5− x) = 3,
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13. Lösen Sie folgende Formel nach n auf:

K qn − qn − 1
q − 1 = 0.

Partialbruchzerlegung

14. Führen Sie die Partialbruchzerlegung aus:

a) 2x + 1
(x + 2) (x− 5) , b) x

(x + 1) (x + 2) (x + 3), c) x10

x2 + x− 2, d) 1
x4 − 1.


