Ubung 1

1. Geben Sie fiir die folgenden linearen Gleichungssysteme die jeweilige Losungsmenge an.

2 +3y =0 z +3y =5 r +3y =5 (d = -y =5
(a) 4z 45y =10 (b) -2z -5y =10 (c) -2z -5y =-10
6r —y -7z =3 2v +3y —4z =9 2¢ 3y —4z =9
2. (a) 3z —6z = (b) —6zx —9y +10z =2 (¢) —6x —9y +10z =2
2y —z =2 -8z —12y +14z =11 —8r —12y 414z =-7
3. Erinnern Sie sich zuriick: Wie ist das Skalarprodukt a % b von zwei Vektoren @ = < Z"E ) ,Z; = ( Z‘T ) € R? definiert,
y y
Qg . by
wie fira= | a, |,b=| b, | € R*? Wie kann man damit die Norm (Lénge) ||@|| ausrechnen und wie den Winkel
a, b,

zwischen den Vektoren? Wann stehen zwei Vektoren senkrecht zueinander? Wie kann man aus dem Skalarprodukt

ablesen ob der Winkel spitz oder stumpf ist? Ferner ist flir zwei Vektoren Zi,l; € R3 das Kreuzprodukt ¢ durch
ayb, —a.b,

=axb= —(azb, — azby) definiert. Was ist dann ¢ d, was ¢x b? Was ist b x @2 Wann ist ¢ der Nullvektor?
azby — ayby

Ny

4. (a) Gegeben seien ein Vektor 7i = ( ) # ( 8 ) und eine Zahl d. Zeigen Sie, dass die Losungsmenge der Gleichung

Ny

R x
n*( y)nmz+nyyd

(ORE

hat, mit geeigneten Vektoren a, b € R2. Driicken Sie a, b mittels Ng, Ny und d aus. Die Losungsmenge ist also eine
Gerade und die angegebene Gestalt deren Parameterform mit Stiitzvektor (=Aufpunkt) @ und Richtungsvektor
(=Spannvektor) a. Was ist 7 x @ und was 7 x b?

die Gestalt

(b) Sei nun umgekehrt eine Gerade G in Parameterform gegeben mit Richtungsvektor b= ( 2”” > und Stiitzvektor
Y

d@=( “ ) e R2 Geben Sie cine lineare Gleichung wie oben an, deren Losungsmenge gleich G ist. Welche

Gy
Wahlmoglichkeiten fiir 77 und d hat man?

5. Als freiwillige Zusatzaufgabe! Sei nun eine Gerade (bzw. Ebene) als Menge aller Punkte § € R? (bzw. R3)
gegeben, die eine Gleichung 7 x p' = d erfiillen, wobei ||7i]] = 1 and d > 0 ist. Man spricht dann von der Hesse’schen
Normalenform der Geraden (Ebene). Begriinden Sie, dass fiir einen beliebigen Punkt ¢ € R? (bzw. R3) die Zahl
|7t % § — d| den Abstand des Punktes ¢ zur Geraden (Ebenen) darstellt. Hierbei bezeichnet |z| den Betrag der Zahl =,
2B. | -2/ =2 |1 =1

6. Zeigen Sie folgende Tautologien

(a) (A B) < ((A— B)A (B — A)) (So beweist man iiblicherweise Aquivalenzen)
(b) (A — B) + (=B — —A) (Umkehrschluss)
-A — F) + A (Indirekter Beweis, Widerspruchsbeweis)

(
c) (
(A= B)A(B = C)A(C— A)) ¢ (A< B)A (B 4 C) A (A« O)) (Ringschluss) (HA)
(
(

)

(c)

(d)

(&) (A=B)A(B—=0))— (A= (C)

(f) (A= B)+ (mAV B)

(¢) -(A— B)+ (AA-B) (HA)

(h) ~(AAB) < ((-A) v (=B))

(i) =(AV B) < ((mA) A (=B)) (HA)

()

(k)
)
)

(1

(A< B) < ((mA) < (—B))

(AN B) < ~((=A4) v (=B)) (HA)
(AA(A— B)) — B (HA)
(

(m) (A= B)A(=B)) = (-4)

7. Fiir zwei Aussagen A und B erkléren wir die logische Verkniipfung A xor B durch die folgende Wahrheitstafel.



A xor B

SRR~ N
==l
SIb=1b=l>

Sie steht fiir die umgangssprachliche Formulierung “Entweder A oder B (aber nicht beide)”, also das ausschlieBende
Oder (eXklusives OdeR). Vergleichen Sie die xor-Tafel mit den in der Vorlesung angegebenen Wahrheitstafeln, ins-
besondere der von A V B. Welche andere Tafel sticht noch besonders ins Auge?

8. Verstehe einer die Frauen: Alice sagt: Beate liigt. Beate sagt: Claudia liigt. Claudia sagt: Beate und Alice liigen
beide. Wer liigt denn nun und wer sagt die Wahrheit?

9. Formulieren Sie die folgenden Aussagen mit Hilfe der Quantoren V und 3. Bilden Sie dann die Verneinung der jeweiligen
Aussage (natiirlich auch mit Quantoren) und achten Sie dabei darauf, dass das “nicht” méglichst weit hinten auftritt.

a) Jede Currywurst ist ungesund.

(
(b) Es gibt keine ungesunde Currywurst. (HA)

)
)
(¢) Zu jeder Currywurst existiert eine Portion Pommes Frites, die mehr Fett enthélt als die Currywurst.
(d) Es gibt ein Land, in dem jeder Einwohner Késebrote lieber isst als Currywurst. (HA)

)

(e) Es gibt einen Schnellimbiss, in dem zu jeder Portion Pommes Frites entweder Salat oder Currywurst serviert wird.
(Beachte: ”entweder... oder” und nicht etwa nur “oder”)

(f) In jedem Schnellimbiss wird zu allen Gerichten eine Currywurst gereicht, wenn der Salat welk ist. (HA)



Hausaufgabe 1

Abgabe: Freitag, 24. Oktober 2014

1. Setzen Sie bitte nun ihre 3D-Brillen auf!

(a)

Ny 0
Gegeben seien ein Vektor n = Ny #* 0 und eine Zahl d. Zeigen Sie, dass die Losungsmenge der
N, 0
Gleichung
x
x| vy =nyT+nyy+n.z=d
z
die Gestalt
x —
y | =d+X+uc|ApeR
z

hat, mit geeigneten Vektoren @, 5, ¢ € R3. Driicken Sie @, l_;, C mittels ng,ny,n, und d aus. Die Losungsmenge ist
also eine Ebene und die angegebene Gestalt deren Parameterform mit Stiitzvektor @ und Richtungsvektoren b, c.
Was ist 1 x a, mx b und 77 x ¢?

by Ca
Sei nun umgekehrt eine Ebene F in Parameterform gegeben mit Richtungsvektoren b= by |.c=| ¢
bz Cz
Qg
und Stiitzvektor @= [ a, | € R3. Geben Sie eine lineare Gleichung wie oben an, deren Lésungsmenge gleich F
Az

ist. Welche Wahlmoglichkeiten fiir 77 und d hat man? (Hinweis: Kreuzprodukt ist hilfreich.)

2. (Optional) Losen Sie Aufgabe 5, d.h. begriinden Sie, dass man den Abstand eines Punktes zu einer Ebenen auf die
angegebene Weise mit Hilfe Threr Hesse’schen Normalenform ausrechnen kann.

3. Erledigen Sie die mit HA markierten Teile von Aufgabe 6.

4. FErledigen Sie die mit HA markierten Teile von Aufgabe 9.

5. Verstehe einer die Manner: Arthur sagt: Wenn Bernd liigt, dann sagt Christian die Wahrheit. Bernd sagt: Christian
liigt. Christian sagt: Arthur ligt. Wer liigt denn nun und wer sagt die Wahrheit?

6. Formulieren Sie eine zu A xor B dquivalente Verkniipfung, die

(a)
(b)

nur -, A und V

nur - und A

verwendet.



Ubung 2

10. Was bedeuten die folgenden Ausdriicke? Was ist ihre Negation? Welche der Aussagen sind wahr und welche falsch
(ohne formalen Beweis aber mit solider Begriindung)?
(a) VeeNFyeN:z <y
(b) Ve eNIyeN:z >y (HA)

VeeNJyeN:z+y==2x

VeeNIJyeNVzeN:z4+y==2

() 3x e NVy e NIz e Ny =2+ 2z (HA)

(f) VACNIBCN: AUB=N

(¢) yeZVzeN:z >y

(

h) Seien a € R und (a,,),en eine Folge reeller Zahlen. Bilden Sie nur die Negation folgender Aussage: Ve €]0,00[3IM €
NVn > M: |a, — a| <e (HA)

(c
(d

e

)
)
)
)
)
)
)
)

11. Zeigen Sie folgende Rechengesetze fiir die Mengenoperationen:
(a) AN(BNC)=(AnB)NnC
(b) AU(BUC)=(AUB)UC (HA)
(¢c) AUBNC)=(AUuB)N(AUCQC)
(d) A\(BNC) = (A\B) U (A\C)
(e) A\(BUC) = (4\B) N (A\C) (HA)
(f) Fir ACCund BCC: A\B=AN(C\B)

12. Wiederholen Sie die Begriffe Abbildung, Bildmenge, Urbildmenge. Bestimmen Sie das Bild der Menge A und die
Urbildmenge der Menge B unter der Abbildung f : R — R, wobei f, A und B jeweils gegeben sind durch

(a) f(z) =22 A={1,3,5},B={-1,0,1,2}

(b) f(z)=2% A=[-2,-1]U[-1/2,1],B = [1, 00|

(¢) f(z)=3x+1, A=1[3,4U[-1/3,1], B =[-11,22] (HA)

(d) Sei a € R gegeben. f(z) =2?+a, A=R,B =0,00]

(e) Seia € R gegeben. f(x)=a, A=[3,4U[-1/3,1],B = {a} (HA)
(f) f(z) =sin(z), A = [-7/2,7/2], B={0,1/v/2,1} (x im Bogenmaf)

13. Sei f: V. — W eine Abbildung und A; C V,i € 7 eine Familie von Teilmengen von V und A, B C V. Welche der
Beziehungen C, D, = bestehen zwischen

(a) F(ANB) und f(4) N f(B)?
(b) f (ﬂiez Ai) und niGI f(A)?
Beweisen Sie Ihre Behauptungen und geben Sie im Falle von ¢ oder 2 ein Gegenbeispiel dafiir an.

14. Sei f: V — W eine Abbildung und A; C W,i € Z eine Familie von Teilmengen von W und A, B C W. Welche der
Beziehungen C, O, = bestehen zwischen

(a) f7HANB) und f~1(A) N f1(B)?
(b) 7t (ﬂiez Ai) und ﬂieI fﬁl(Ai)?

Beweisen Sie Ihre Behauptungen und geben Sie im Falle von ¢ oder 2 ein Gegenbeispiel dafiir an.

15. Welche der folgenden Abbildungen sind injektiv, surjektiv oder bijektiv?

(a) f:N= N,z f(r) =22

(b) f:R—=R, x+— f(r)=2a?

(c) f: R —[0,00[, z+ f(x) = 22

(d) f:10,00[— R, 2+ f(z) = 22

(e) f:1]0,00[— [0,00], z > f(x) = 2?

() {1 N=>N oz flz)=14 (x + %) (Ist f ”?wohldefiniert”, d.h. ist f(x) immer eine natiirliche Zahl?)

(g) f:{Menschen} — N,z >

1: x ist mannlich
42:  x ist weiblich



(h) f:2{00mb 500 1, .. n+ 1}, A |A]
(i) f[: NxN—=>Z (m,n)—n—m

16. Geben Sie Abbildungen f,g: N — N an, so dass f injektiv aber nicht surjektiv und ¢ surjektiv aber nicht injektiv ist.
17. Kann man Abbildungen f und g wie in Aufgabe 16 konstruieren, so dass

(a) fog bijektiv oder gar fo g = idy,
(b) go f bijektiv oder gar g o f = idy

ist? Falls ja, geben Sie ein entsprechendes Beispiel an. Falls das immer schiefgehen muss, begriinden Sie, warum.



10.

11.

Hausaufgabe 2

Abgabe: Montag, 3. November

Bearbeiten Sie alle in Ubung 2 mit (HA) markierten Aufgabenteile. Bei den unerledigten Aufgabenteilen von Aufgabe
11 diirfen Sie die in der Zusatzaufgabe 11 unten angegebenen Formeln (a) bis (e) verwenden.

. Sei f: V — W eine Abbildung und A; C V,i € Z eine Familie von Teilmengen von V und A, B C V. Welche der

Beziehungen C, O, = besteht zwischen
(a) f(LAUB) und f(A)U f(B)?
() f (Uier Ai) und U,z £(A)?

Beweisen Sie Thre Behauptungen und geben Sie im Falle von ¢ oder 2 ein Gegenbeispiel dafiir an.

. Sei f: V — W eine Abbildung und A; C W,i € Z eine Familie von Teilmengen von W und A, B C W. Welche der

Beziehungen C, D, = bestehen zwischen
(a) FH(AUB) und f~1(A)U f~1(B)?
(b) f71 (Usez Ai) und Ujez f1(Ai)?
Beweisen Sie Thre Behauptungen und geben Sie im Falle von ¢ oder 2 ein Gegenbeispiel dafiir an.

Seien A, B endliche Mengen und f: A — B eine Abbildung. Welche der Beziehungen >, >, =, <, < muss zwischen |A|
und |B| bestehen, wenn f

Beweisen Sie Thre Behauptungen.

Zusatzaufgabe (optional, die Formeln sollten Sie sich aber merken!) Zeigen Sie: Fiir Aussagen A, B, C gelten
folgende Tautologien

(a) (ANB)ANC <= AN(BAC)

(b) (AvB)vVC < AV (BVC(C)

(¢c) AN(BVC))< (AANB)V(AANCQ)

(d) AV(BAC)& (AVB)AN(AVO)
() AN(Bxor C)< (AANB) xor (ANC)

Ist auch A xor (B AC) < (A xor B) A (A xor C) eine Tautologie (Begriinden)? Losen Sie damit erneut Aufgabe 11.



18.

19.

20.
21.
22.

Ubung 3
Eine wichtige Beweistechnik - vielleicht die wichtigste - in der Mathematik ist das

Prinzip der vollstindigen Induktion. Fir jedes n € N sei eine Aussage A(n) gegeben und es gelten

(TA) A(1) ist wahr und
(IS) fiir alle n € N ist die Implikation (A(1) A A(2) A... AN A(n)) = A(n+ 1) stets wahr.

Dann ist A(n) fir alle n € N wahr.

Man kann also versuchen, eine Behauptung der Form
Vn € N: A(n)

zu beweisen, indem man erst A(1) zeigt (Induktionsanfang (IA)), und dann aus der Induktionsvoraussetzung (IV)
“A(1) A Az A ... A A(n) ist wahr” schlussfolgert, dass auch A(n + 1) wahr sein muss.

Als Beispiel definieren wir fir n € N die Aussage A(n) durch

n(n—i—l).

An):14+24+...4+n= 5

Behauptung: Vn € N: A(n). Beweis: (IA) A(1) & 1= w ist wahr. (IV) A(1),...,A(n) sind wahr.
(IS) A(I)ANAsA...ANA(n) = A(n+1):

nin+1)
2

+(n+1):”(“+1)+22-(n+1) _ (n+2)2(n+1)

1424...4n  +(n+1)=
—_——
Hierauf ist A(n) anwendbar!
Aus der Richtigkeit von A(n) folgt also die Richtigkeit von A(n 4 1) und die Behauptung ist bewiesen!

Im Beispiel konnte man direkt “von n auf n + 1”7 schlieBen, man brauchte also nur A(n) im Induktionsschritt zu
benutzen. Aufgabe 18 ist ein Beispiel, wo man wirklich “von < n auf n + 1”7 schlieflen muss.

Eine Behauptung der Form Vn > k: A(n) kann man entsprechend versuchen zu beweisen, indem man zuerst A(k) zeigt
und dann fiir n > k: (A(k)A...ANA(n)) = A(n+1). (Formal: Wende das Induktionsprinzip auf B(n) :< A(n+k—1)
an.)

Eine Primzahl ist eine natiirliche Zahl p > 2, die nur durch 1 und sich selbst teilbar ist. Sei P C N die Menge aller
Primzahlen, in Zeichen
P={peN\{l}:VneN:njp=(n=1vn=p)}

Zeigen sie mit vollstandiger Induktion:
(a) Jedes n € N\ {1} hat einen Primteiler.
(b) Jedes n € N\ {1} kann als Produkt von Primzahlen dargestellt werden.

Zeigen Sie auflerdem: P ist unendlich.

Zeigen Sie durch vollsténdige Induktion, dass fiir n € N gilt:
(a) Dop_d® = %, dabei ist ¢ € R\ {1} (Geometrische Summenformel, vgl. Analysis)

n n 2 n2(n 2
(b) Yh_ kP = (Ch k) = et
() o0 k(k + 1) (k + 2) = 2ot Lnd2)(n43)

Zur obigen Notation: Fiir m,l € NU{0} ist >.;",a(k) = a(l) + a(l + 1) + ... + a(m — 1) + a(m). Den Fall m < I
interpretiert man als leere Summe und setzt >, a(k) = 0.

Zeigen Sie: Fiir alle n € N ist 117+! + 1227—1 durch 133 teilbar.
Fiir welche n € N gilt 2" > n??

Fiir n > 3 betrachten wir konveze n-Ecke (“nach auflen gewdlbte”), d.h. solche, bei denen mit je zwei beliebigen
Punkten immer auch die Verbindungsstrecke ganz im n-Eck liegt (bei der durchgestrichenen Figur unten ist das nicht
der Fall). Eine Triangulierung eines n-Ecks ist eine Zerlegung des n-Ecks in Dreiecke, so dass die Eckpunkte der
Dreiecke Ecken des n-Ecks sind und sich die Dreiecke nicht iiberlappen, vgl. die Abbildung unten. Als Diagonale eines
n-Ecks bezeichnen wir eine Strecke zwischen zwei nicht benachbarten Ecken. Eine Triangulierung des n-Ecks kann man
also erhalten, indem man sukzessive Diagonalen einfiigt, ohne bereits bestehende Diagonalen zu kreuzen, bis das n-Eck
vollsténdig in Dreiecke zerlegt ist. Zeigen Sie mit vollstdndiger Induktion:



OD¥

(a) Jedes konvexe n-Eck ist triangulierbar.

(b) Eine Triangulierung besteht immer aus genau n — 2 Dreiecken.
Was ist die Summe der Innenwinkel eines n-Ecks?
23. Fiir n,k € NU {0} ist der Binomialkoeffizient (}) (lies: “n iiber k”) definiert durch

<n) {1’ wenn k =0
- (n=1)(n—2)---(n—k+1
k - nk(kf"ll)(}gfz)(?.g.l ), wenn k > 1

Zeigen Sie:

(a) (1) =1, (}) =0, falls k > n,

(b) (Zﬁ) = (Z) + (kil) (Pascal’sches Dreieck), und damit
(c) den Binomischen Lehrsatz: Seien z,y € R. Dann gilt

YneN: (x+y)"

" /n
Z (k) xn—kyk.
k=0
@ (}) = momr-
(e) Eine n-elementige Menge hat 2™ Teilmengen.
Beachten Sie: Unsere Definition von (Z) ist auch sinnvoll, wenn n keine natiirliche Zahl ist, etwa n = 1/2, siehe spéter
Analysis. Die Formeln unter 23a und 23d sind dann hingegen nicht mehr sinnvoll.



12.

13.

14.

15.

16.

Hausaufgabe 3

Abgabe: Freitag, 14. November

Was ist von folgendem Induktions-dhem-beweis zu halten? Behauptung: Vn € N : In jeder Menge von { Py, Py, ..., P,}
von n Personen haben alle dieselbe Frisur. Beweis durch vollstindige Induktion: (IA) Fir einelementige Mengen
{P1} stimmt das trivialerweise, denn jede Person hat die dieselbe Frisur wie sie selbst. (IV) In jeder beliebigen
Menge von k Personen {Pj, P,,..., Py}, k < n haben alle dieselbe Frisur. (IS) Zu einer n + 1-elementigen Menge
Q = {P1,Ps,...,Pyi1} betrachten wir die n-elementigen Teilmengen R = {Py, Ps,...,P,} und S = {Ps,..., Poy1}.
Wenden wir (IV) auf S an, so erhalten wir: P,..., P,41 haben dieselbe Frisur. (IV) auf R angewandt liefert
insbesondere, dass P, und P» dieselbe Frisur haben und daher Py, P, ..., P41 dieselbe Frisur haben. O

Finger in die Wunde, wo genau ist der Fehler?

Berechnen Sie Y ;_,(2k — 1) fiir allgemeines n € N. Beweisen Sie Ihre Formel mit vollstdndiger Induktion.

Zeigen Sie: Y ) k* = w.

Berechnen Sie Y_;_, (2k — 1)? fiir allgemeines n € N. Beweisen Sie Ihre Formel mit vollstindiger Induktion.

In einem konvexen n-Eck gibt es 3n(n — 3) Diagonalen (vgl. Aufgabe 22 aus den Ubungen).



24.

25.

26.

27.

Ubung 4

Es seien A = {«, 8,7,0} und B = {1,2,3,4} und R C A x B eine Relation gegeben durch

R = {(0" 1)7 (a’ 2)’ (O‘73)a (ﬂa 2)7 (57 3)7 (77 2)’ (7a 3)7 (’774)5 (67 4)}

Fir X7 = {7}, X2 = {a,7}, X5 = {«, 6} C A berechnensie firi = 1,2,3. Br(X;), Ar(Br(X;)) sowie Br(Ar(Br(X3))).
(Vgl. Definitionen in der néchsten Aufgabe)

Beweisen Sie das Dualitétslemma fiir Relationen (Lemma 1.6 der Vorlesung): Seien A und B Mengen und R C A x B
eine Relation. Wir schreiben aRb an Stelle von (a,b) € R. Fiir X C A und Y C B definieren wir Br(X) C B und
Ar(Y) C A durch

Br(X)={be B:Vx e X xRb} Agr(Y)={a€ A:Vy €Y aRy}.

Seien X, X' C A und Y, Y’ C B Teilmengen von A bzw. B. Zeigen Sie:

(a) X C X' = Br(X)2Bgr(X)und (HA) Y CY' = Ar(Y) D Ar(Y").

(b) X € Ag(Bgr(X)) und (HA) Y C Br(Ag(Y)).

(¢) Br(X) = Br(Ar(Br(X))) und (HA) Ar(Y) = Ar(Br(Ar(Y))).
Kongruenz modulo m: Es sei m € N. Auf der Menge Z der ganzen Zahlen ist eine durch

a=bmodm:=m|a—b

eine Aquivalenzrelation definiert, die Kongruenz modulo m. Die Aquivalenzklassen heifien Restklassen oder Kongruen-
zklassen, werden fiir a € Z mit [a] bezeichnet und sind von folgender Gestalt:

[a)| ={x€Z:x=k-m+a, ke€Z}.

(a) In der Vorlesung wurde behauptet, dass es genau m Restklassen gibt, ndmlich [0],[1],..., [m — 1]. Zeigen Sie
dies, indem Sie folgendes beweisen: Zu jeder ganzen Zahl n € Z gibt es ein eindeutig bestimmtes Paar (k,r) €
Z x {0,1,...,m — 1} mit der Eigenschaft n =m -k 4+ r.

(b) Seien a = 65444447899335, b = 789568556777866673, ¢ = 5655689097862437. Was sind die Restklassen modulo
10 von a,b,c,a + b,a + ¢,a - b? (Natiirlich ooooohne Taschenrechner!)

(c) Wie lassen sich die Addition und Multiplikation von Z sinnvoll auf die Menge der Restklassen Z /= mod , iibertragen?

Summen- und Produktnotation Machen Sie sich klar, dass die folgenden Ausdriicke alle dasselbe bedeuten (In-
dexverschiebung)

(@) Si_ga(i), Y ya(i+1), XI55, a(i—k),k€Z,und Y a(i)

€{3,4,5,6,7}
(b) iy ald), ik ali = k).
(©) Tlig a(i), [T ali +1), IT 5, ali = k), k€ 2,
(@) ITiz a), Iy ali = k). k€7
Schreiben Sie folgende Summe aus (also ohne Summenzeichen): 1 > g(7).

ic{%.0,$,0}



17.

18.
19.

20.

21.

22.

Hausaufgabe 4

Abgabe: Freitag, 21.11.2014

Zu der Relation aus Aufgabe 24 aus den Ubungen seien zusitzlich Y; = {2}, Y, = {2,3} C B gegeben. Berechnen Sie
fir i = 1,2 die Mengen AR(Y7), BR(AR(K)) und AR(BR(AR(YZ)))

Beweisen Sie die mit (HA) markierten Teile der Aufgabe 25 zum Dualitétslemma.

(Prinzip vom doppelten Abzéhlen) Es seien A, B endliche Mengen und R C A x B eine Relation. Zeigen Sie:
> IBr({a})| = > |Ar({b})]
acA beB

Was zahlen diese beiden Summen ab?

Es sei A die Menge aller Geraden in R?, die den Nullpunkt enthalten und B die Menge aller Ebenen in R2, die den
Nullpunkt enthalten. Wir definieren eine Relation in A x B durch gRe < g C e. Zu Teilmengen X C Aund Y C B
beschreiben Sie Br(X) und Ag(Y) (Es miissen ein paar wenige Fallunterscheidungen gemacht werden).

Schreiben die den Induktionsbeweis fiir den binomischen Lehrsatz aus der Ubung mit Hilfe der Indexverschiebung (vgl.
Aufgabe 27) auf, d.h. ohne die Summen ganz auszuschreiben.

Es sei b € N und b > 2. Zeigen Sie durch vollstandige Induktion: Jede Zahl n € Ny lasst sich schreiben als
n=sb 4+ s_1b"7 4+ ..+ 510t + sob°,

wobei | € Ng und s; € {0,1...,b— 1} fiir i = 0,...,1. Z.B. fiir b = 10 hat man 342 = 3-10% + 4 - 10 + 2 - 10°,
die s; sind die Ziffern der Dezimaldarstellung. Oder fiir b = 2 hat man z.B. 12 =1-234+1-224+0-2! +0-2° und
(s3,82,81,80) = (1,1,0,0) ist die Bindrdarstellung von 12. Tipp: Sie diirfen die Ergebnisse aus Aufgabe 26 verwenden!
Zusatz (optional): Beweisen Sie die Quersummenregel: Eine Zahl ist genau dann durch drei teilbar, wenn die Summe
ihrer (Dezimal-)Ziffern durch drei teilbar ist. Welche Regeln gelten fiir 9 und 117



Ubung 5

28. Es sei B eine Menge und S(B) := {f: B — B: f bijektiv} die Menge der bijektiven Abbildungen von B nach B (im
Fall B = {1,...,n} schreiben wir S(B) =: S,,). Zeigen Sie, dass (S(B), o) eine Gruppe ist, wobei o die Komposition
von Abbildungen bezeichnet.

29. Sein € Nund P, := {{i,75}: 1 <i < j < n} die Menge aller zweielementigen Teilmengen von {1,...,n}. Beweisen Sie:
(a) o €85, =sgn(o)=]] %‘;(])
{i.j}ePn,
(b) 7€ S, ={i,j} — {7(9),7(4)} ist Bijektion P,, — P,
(c) sgn(o o) = sgn(o) - sgn(r)
(d) Die Permutationen o € S,, mit sgn(oc) = 1 bilden eine Untergruppe. (Diese wird als alternierende Gruppe A,
bezeichnet.)

30. Wir numerieren die Ecken eines Quadrats ) gegen den Uhrzeigersinn mit 1,2,3,4 und bezeichnen mit D4 die Menge
aller Drehungen und Spiegelungen, die @) mit sich selbst zur Deckung bringen. Wir bezeichnen mit r; die Drehung
um den Mittelpunkt um 90° mit 7o die um 180° und mit r3 die Drehung um 270°, jeweils gegen den Uhrzeigersinn.
Mit e bezeichen wir die Identitdt (Drehung um 0°). Mit s; bezeichnen wir die Spiegelung an der Diagonalen durch 1
und 3, mit s3 diejenige an der Diagonalen durch 2,4. Mit s; bezeichnen wir die Spiegelung an der Geraden durch die
Mittelpunkte der Seiten 12 und 34 und mit s, die Spiegelung an der Geraden durch die Mittelpunkte der Seiten 23
und 14.

(a) Stellen Sie eine Verkniipfungstafel auf. Dabei wollen wir z.B. r, o s als Komposition von Abbildungen inter-
pretieren, d.h. erst s; und dann r; anwenden. Ist D4 kommutativ?

(b) Sei U = (ry) die von r1 erzeugte zyklische Untergruppe. Schreiben Sie alle Links- und Rechtsnebenklassen auf.
Ist U ein Normalteiler?

(¢) Losen Sie Aufgabe 30b mit U = (s1).
(d) Losen die folgende Gleichungen nach x auf: rixzsy = s3, 817127283 = S48354.
(e) Stellen Sie D4 als Untergruppe von Sy dar.

31. Zeigen Sie, dass eine Untergruppe vom Index 2 immer normal ist.

32. Sei (G, *) eine Gruppe und U C G nicht leer. Zeigen Sie: U ist genau dann eine Untergruppe, wenn gilt: Vz,y €
U:xxy lel.



23.

24.

25.

26.

27.

28.

29.

Hausaufgabe 5

Abgabe: 5.12.2014

Sei A eine Menge mit |A| = n. Zeigen Sie, dass S(A) isomorph zu S, ist. Hinweis: Ein Isomorphismus ist schon in der
Vorlesung vorgeschlagen worden, Sie miissen nur noch den Nachweis fithren.

Die Restklasse einer Zahl a € {1,...,m — 1} modulo m heifit prime Restklasse, wenn ggT(a, m) = 1 ist. Berechnen Sie
alle primen Restklassen fiir m = 2,3,4,5,8. Zeigen Sie auflerdem fiir diese Werte von m, dass die primen Restklassen
zusammen mit der Multiplikation von Restklassen (vgl. Aufgabe 26) eine Gruppe bilden.

Erstellen Sie Verkniipfungstafeln der Addition und Multiplikation der Restklassen modulo 2 und stellen Sie einen
Zusammenhang zur Aussagenlogik her.

Wiederholen Sie Satz 2.6 aus der Vorlesung und den zugehorigen Beweis und formulieren und beweisen Sie analoge
Aussagen iiber Rechtsnebenklassen.

Zeigen Sie, dass die in Aufgabe 30e gefundene Zuordnungsvorschrift ein injektiver Homomorphismus von D4 nach Sy
ist.

Wir haben gesehen, dass die Restklassen modulo m mit der Addition von Restklassen (vgl. Aufgabe 26) eine zyklische
Gruppe der Ordnung m bilden, nédmlich genau die Faktorgruppe Z,,,z. Sei (4, *) eine weitere zyklische Gruppe der
Ordnung m. Geben Sie einen Isomorphismus ¢: Z /7 — A an. Achten Sie dabei auf die Wohldefiniertheit von ¢, d.h.
die Unabhéngigkeit Ihrer Definition von ¢([a]) vom Vertreter a der Restklasse.

Als Ordnung eines Elementes x einer Gruppe G bezeichnen wir die Machtigkeit der von z erzeugten zyklischen Unter-
gruppe (z). Sei nun (G, x) eine Gruppe der Ordnung 4.

(a) Welche Ordnung konnen die Elemente von G haben?

(b) Klassifizieren Sie die Gruppen der Ordnung 4, indem sie die zwei Félle unterscheiden

i. G hat ein Element der Ordnung 4.
ii. Die Ordnung jedes Elementes von G ist kleiner als 4.

Erstellen Sie Verkniipfungstafeln!



33.
34.

35.

36.

37.

Ubung 6

Sei 7 € S,, eine Transposition. Zeigen Sie: sgn(7) = —1.

Berechnen Sie die folgenden Produkte von Permutationen und geben Sie die inversen Permutationen der Ergebnisse

an! (Beachten Sie dabei, da8 wir Permutationen wie alle Abbildungen von rechts nach links ausfiihren.)

@ (3
2
2

3
2

3
1

)
)

1
3

1
1

2
2
2
3

)
)

o (5

@ (]

) (2
3 ) (1

=N RN
N W N W
NN N

Schreiben Sie die Ergebnisse aus ¢) und d) als Produkte von Transpositionen!

Numerieren Sie die Ecken eines Tetraeders mit den Zahlen {1,2,3,4}. Wir betrachten die Drehgruppe, d.h.

Drehungen, die das Tetraeder in sich tiberfiihren.

(a
(b

(
(d

Welche und wieviele sind das?

)
)
¢) Zerlegen Sie jede dieser Permutationen in disjunkte Zyklen.
) Schreiben Sie jede dieser Zykelzerlegungen als Produkt von Transpositionen.
)

(e) Zeigen, dass diese Menge von Permutationen gleich Ay ist.

Zeigen Sie, dass die Abbildung v aus dem Schiebespiel ein Homomorphismus ist. Zeigen Sie weiter, dass

s

123
123

)

123
231

;i

123
312

)} Ker v = {0*":neZ}

W w =W

s W

)
)

Stellen Sie die moglichen Drehungen als Permutationen der Eckenmenge dar, d.h. durch Elemente von Sj.

alle

Sei A = RR die Menge aller Abbildungen von R in sich. Zeigen Sie, dass die Menge A mit der punktweisen Addition
und Multiplikation einen Ring bildet. Besitzt dieser Ring Nullteiler?



30.
31.

32.

33.

34.

35.

Hausaufgabe 6

Abgabe: 19.12.2014

Zeigen Sie: Ein Unterring ist ein Ring.

Schreiben Sie die folgenden Permutationen als Produkte von elementfremden Zyklen und geben Sie jeweils das Signum
an. Wie immer lesen wir Abbildungen von rechts nach links und Zyklen der Lénge 1 werden nicht notiert.

(a) (33241) (c) (12)(23)(465) (e) (237)(1683)
(b) (33357 (d) (1683)(237) (f) (237)(24)(1683)

Sei (A, *) eine Gruppe und a € A. Wir definieren die Abbildung ¢, durch

Va: A= Az pu(z) i=axxz*xa

(a) Zeigen Sie, dass @, ein Automorphismus von A ist.

(b) Zeigen Sie, dass die Menge I(A) = {¢,: a € A} eine Untergruppe von (Aut(A),o) ist (o bezeichnet wie iiblich die
Komposition von Abbildungen).

(c) Zeigen Sie, dass die Abbildung ®: A — Aut(A), a — ®(a) := ¢, ein Homomorphismus ist.
(d) Welche Eigenschaft kennzeichnet die Elemente von Ker &?

Man berechne Real- und Imaginéarteil folgender komplexer Zahlen:
1 (1-1i)5 -1
(a) . 5 (b) TTToE 1
1+iv3 (14+1i)5+1
Stellen Sie folgende komplexe Zahlen in trigonometrischer Form dar:
1—i 2 (14iv3)°

— L) e

@) -1, () 2-2i, (c) (1+0)° (d) (1-iv3)3’

cos +isinp
®) s _isno
cosp —isinp

Berechnen Sie die vierten Potenzen dieser Zahlen sowohl unter Verwendung der binomischen Formel und als auch unter
Verwendung der Formel von Moivre.

(p €R).

Zusatzaufgabe: Zeigen Sie: Die Restklasse [a] € Z,,7 ist ein zyklischer Erzeuger genau dann, wenn ggT(a,m) = 1
ist. Welche Elemente erzeugen demnach eine allgemeine zyklische Gruppe der Ordnung m?



38.

39.

40.

41.

42.

Ubung 7

a

ZeigenSiefﬁrz:aeri,w:chdi:z-w:2~ﬁund%: N

Berechnen Sie 2z — Z und z + Z.

Man berechne Real- und Imaginérteil folgender komplexer Zahlen:

(a) (24 3i)(3 —2i),

a+ bi
a—bi

(f)

Stellen Sie folgende komplexe Zahlen in trigonometrischer Form dar:

1 iV3
(a) 5 + Ta
(d) 1

1,

N

) 5+

+cos =+ isin =
COS — 1s1m —.
4 4

(b) (L+1)%,  (c) (1+20)°,

(1+i)0

(a7 be R7 (a> b) 7é (0’ 0))7 (g) W

1+i
1—1i

(d)

b . . .1 . . —
+ NrEEeR Driicken Sie 5 it Hilfe z und z aus.

(e) i*(k € 2),

, (h) (a+b)" (a,b e R, neN).

(¢c) sina+i(1 —cosa) (a € [-m, 7)),

Es sei z = z + iy = r(cosp + isinp) mit z,y € R, ¢ € [—m,7),r > 0 eine beliebige komplexe Zahl. Bestimmen Sie
Real- und Imaginérteil sowie Betrag und den Hauptwert des Arguments folgender komplexer Zahlen:

1 2
%a (C) )

1 ..

@iz (o) 2z () ]i

Berechnen Sie mit Hilfe der Formel von Moivre

(a) (1+1)'7,

(b) (1-iv3)S,

(c) (—1+1)°,

z

(d) (V3+1)3,

(e) (V3+1)°.



36.

37.

38.

Hausaufgabe 7

Abgabe: 9.1.2014

Berechnen Sie folgende Matrizenprodukte:

(a)

0
1
(010 0) A
5
(b)
0
1
(2 11 1) A
5
(c)
1 2 3 1 (1)
10 A
21 1 1 .
(d)
1 2 3 1 I
1 00 .
21 1 1 6
(e)
1 2 3 1 ?I
01 00 L1
2 1 1 1 6
(f)
12 3 1 207
41 1
0130
11 1 1 14
6 5 6
(8)
1+i 2+3i 1 2 +2i 0 7
3i 1—-i 3 4 1 1
1 11 1 5+44i 342
(h)
0
- 10x + 2
10 5 3 3 2 12
(20412054323 +1 23 +622+2 3z +2 2'24+112) Az® + 922
502 +10x + 5

Sei R ein beliebiger Ring (z.B. R, C,Z). Wir betrachten Matrizen mit Eintragen aus R. Zeigen Sie:
(a) Fiir A,B € R*>™m C e R™*" gilt: (A+B)-C=A-C+B-C.

(b) Fiir A€ RF*™ B .C e R™*"gilt: A-(B+C)=A-B+A-C.
(c) Fiir A€ RF*™ B e R C € R™Pgilt: A-(B-C)=(A-B)-C.

Anmerkung: Damit ist insbesondere der Beweis erbracht, dass (R"*™, 4+, -) einen Ring bildet.

Bringen Sie das Gleichungssystem Az = b;, 7 = 1,2, mittels Algorithmus 2.24 aus der Vorlesung auf Zeilenstufenform
und geben Sie dann eine Losung mit Hilfe von Algorithmus 2.23 an. Hierbei ist

00 2 2 6 2 7
336 6 9 1 1
A*11123’b1*0b2*1
2 2 6 8 18 0 6

Anmerkung: Klar, Sie haben schon in der Schule gelernt, wie man irgendwie hier eine Losung ausrechnet. Hier geht es
darum, die beiden o.g. Algorithmen nachzuvollziehen, der Weg ist also das Ziel!



39. Losen Sie iiber dem Koérper Fo mit zwei Elementen das Gleichungssystem Az = b mit

OO ==
O = = O
= o O O

40. Es seien 4 Lampen Ly, Lo, L3, L4 mit 3 Schaltern Sy, .52, S3 schaltbar. Die Betatigung von S; dndert simultan den
Zustand von Lj und Lo, Ss den von Ly und L3 und S35 den von L; und L4. Kann man die Schalter so betétigen, dass

(a) genau L; und Lj sich &ndern,
(b) nur Ly sich &ndert,

(c) genau Ly, Ly und L3 sich d&ndern?

Formulieren Sie die Fragestellung als lineares Gleichungssystem iiber einem geeigneten Korper!



43.
44.

45.

46.

47.

Ubung 8

Erklaren Sie die Begriffe Vektorraum und Untervektorraum!

Seien a, b, ¢, d beliebig gegebene reelle Zahlen. Zeigen Sie, dass die Menge aller Losungen (x,y) des Gleichungssystems
ax+by=0
cx+dy=20

einen Untervektorraum des R? bildet.

Sei V,, die Menge aller Ortsvektoren O? in der Ebene. Welche der folgenden Teilmengen von V, bilden Vektorrdume
iiber R?

(a) {O? €V, : P liegt auf einer gegebenen Geraden},
(b) {07 €V, : P liegt im ersten Quadranten},
(c) {ﬁ €V, : P liegt im ersten oder dritten Quadranten}.

In der Menge V' = R, der positiven reellen Zahlen wird eine Verkniipfung & definiert durch x ® y := z - y. Ferner
definieren wir eine dufere Verkniipfung ®: R x V' — V durch (A, z) + z*. Zeigen Sie dass V mit diesen Verkniipfungen
einen R-Vektorraum bildet.

Im Vektorraum C[z] der Polynome mit komplexen Koeffizienten betrachten wir Teilmengen U. Welche davon bilden
Untervektorraume?

(a) U= {p(z) € Clz]: p(0) = 0} (d) U= {p(z) € Clz]: 2p(2) + p(3) = 0}
(b) U = {p(x) € C[z]: p(0) = 1} (e) U = {p(x) € Clz]: degp(z) = 2}
(c) U= {p(x) € Clz]: p(0) =0 Ap(1) =0} (f) Fiir g(z) € Clz] : U = {p(x) € C[x]: g(z)|p(x)}



Ubung 9

48. Erklaren Sie folgende Begriffe:

a) Erzeugendensystem

(a)
(b) Basis
(c) lineare Hiille
(d) span
)

(e) lineare Unabhéngigkeit
49. Es seien a = (1,2,0)7 und b = (2,1,0)” € R3.

(a) Zeigen Sie, dass a,b linear unabhéngig sind.
(b) Ergénzen Sie a,b zu einer Basis.

(c) Beschreiben Sie die Menge aller Vektoren ¢, so dass a, b, ¢ eine Basis von R? bilden.

50. Fiir folgenden Teilmengen S C R3 gebe man die lineare Hiille von S sowie deren Dimension an:

1 T
(a) §= 1 : (d) §= y |rr,yeRax+y=15,
1 0
1 2 1 -1 1
(b) S= 2 .11 ; (e) S = 1], 1], 1
0 0 0 0 1
1 0 1
(c) S= o .1 |, (1]},
1 0 1
51. Losen Sie die Gleichungssysteme Ax = b mit dem Gauf’schen Algorithmus wobei
4 4 0 6 8 0 2
-2 -2 2 -2 -4 0 0
A=1 %6 66 5 3"Y| 0|1
2 2 2 4 4 1 2
52. Sei K ein Korper und A € K™*™ eine Matrix A = [a4, ..., a,] mit Spaltenvektoren a;. Ferner seien 1 < j; < jo < ... <
Jr < n die Stufenindizes einer Zeilenstufenform A = [ay,...,a,] von A, die man aus dem Gauf’schen Algorithmus

erhalten hat. Zeigen Sie:

(a) Die Menge der Spaltenektoren M = {a;,,aj, ..., a;,} ist linear unabhéngig.

(b) M ist inklusionsmaximal mit dieser Eigenschaft, d.h., falls a; ¢ M eine weitere Spalte von A ist, so ist M U {a;}
linear abhangig.



53.

54.
95.

56.

o7.

58.

59.

Ubung 10

Folgern Sie aus dem der Ergebnis aus Aufgabe 52, dass fiir jede Matrix A € M(n x m, K) gilt
Spaltenrang von A = Zeilenrang von A,

wobei der Spaltenrang die maximale Anzahl linear unabhéngiger Spaltenvektoren von A ist und analog der Zeilenrang
von A die maximale Anzahl linear unabhéngiger Zeilenvektoren.

S CV linear unabhéngig < Vv € S: v ¢ spang (S \ {v}).
Zeigen Sie Beobachtung 3.24:

(a) Wi+...+ W, =span(W U...UWy),
(b) Wi+ ...+ Wy ist ein Untervektorraum,
(¢) dim(W7 + ...+ W) < dim(W7) + ... + dim(Wy).

Ergénzend zum Beweis von Beobachtung 3.32: Seien v € V und (N;);c 7 eine Familie von Untervektorrdumen. Dann
ist
v+ (Y Ni= [+ N).
i€J ieJ

Wir betrachten den Vektorraum K|[z] der Polynome. Finden Sie zwei Unterrdume U,V mit dimU = oo = dim V und
dim(UNV) =3.

Zeigen Sie: Eine Familie (v;);c 7 ist genau dann affin unabhéngig, wenn fiir jeden Vektor vq, a € J) gilt: (vi —va)ie s\ {a}
linear unabhéngig.

Seien U,V C R* gegeben durch

2 4 6 6
U =span | u; = (1) y Ug = :2 , V =span|v; = (1) Vg = :;
2 2 6 4

Sei ferner W =UNV.

(a) Bestimmen Sie eine Basis von W.
(b) Ergénzen Sie diese jeweils zu einer Basis von U und V.

(c) Bestimmen Sie einen Untervektorraum Z mit R* = W @ Z.



Ubung 11

60. (a) Geben Sie in Aufgabe 59 eine Basis von RL/lUﬂV an.

(b) Sei V=W @ Z und seien (w1, ..., w,) und (21,...,2s) Basen von W bzw. Z. Geben Sie eine Basis von V,y an.

61. Untersuchen Sie, ob folgende Operatoren linear sind.

(a) A:R3 = R;(2,y,2) — o+ 2y + 3z, (e) E:Rlz] = Rlz]; f — fo2x+4,

(b) B:R* = R%*(z,y) = (z+y,z—y), (f) F:Ry[z] = Roula]; f = foa?,

(c) C:R™ = R™ (xi)iey = (Jmi])i=1n), (8) G:Ryfz] = Ryfz]; f = f,

(d) D:Kz] = Klz]; f — xf, (h) H : 20238 5 202k Ar s M N {2} diber Fy.

Welche der Operatoren sind ein Vektorraum-Isomorphismus? Hinweis: Fiir n € N sei K,,[z] die Menge aller Polynome
vom Grade < n iiber dem Koérper K.

62. Fir A = [a1,...,a,] € K™*" ist die Abbildung K™ — K™, xz — Ax bekanntlich eine lineare Abbildung. Sei nun
umgekehrt F': K™ — K" eine beliebige lineare Abbildung. Zeigen Sie: es gibt eine eindeutig bestimmte Matrix A mit
der Eigenschaft: Vo € K": F(z) = Ax.

63. Sind folgende Abbildungen F' linear auf R™?

(a) F(Z’):<Zn:a7;$i,0707...70), aiER, (d) F(x):((x1+1)2_(x1_1)250707'“70)7
(b) F(@) = (ol 2], [2a)), (¢) Fz)=(2,0,0,...,0), a€ekR,

(c) F(x) = (a%,23,...,27),

wobei & = (z1,Z2,...,2,) € R™ ist. Geben Sie die zugehorige Matrixdarstellungen [A] der linearen Abbildungen F'
gemafl Aufgabe 62 an!
64. Sei
1 2 3 4
A= 5 6 8
9 10 11 12

und F: R* - R3 2 — Azx.

(a) Bestimmen Sie KerF und ImF!
(b) Uberpriifen Sie die Dimensionsformel an diesem Beispiel.

(c) Bestimmen Sie eine Basis des R, die eine Basis von KerF' enthiilt.



41.

42.
43.

44.

45.

46.

Hausaufgabe 8

Abgabe: 30. Januar 2015

Seien a, b, ¢, d beliebig gegebene reelle Zahlen. Zeigen Sie, dass die Menge aller Zahlenpaare (u,v), fiir die das Gle-
ichungssystem

ar+by=u
cx+dy=wv

eine Losung (z,y) € R? hat, einen linearen Unterraum des R? bildet.
Sei A =a1,...,a,] € K™*™ be K™ und es sei T € Los(A,b). Zeigen Sie: Los(A,b) = T 4 Los(A4,0).

Berechnen Sie U NV fiir die beiden affinen Unterrdume

-+ span -+ span

O R OO
N = O =
O = W

<

Il
oo RO
=N = O
= O = W

Geben Sie ein moglichst einfaches Beispiel fiir zwei Ebenen U = u + span(uy,uz) V = v + span(vy,v2) im RS an mit
UNV =0 und (u;.uz,v1,vs) linear unabhingig. Gibt es so ein Beispiel auch in R*? (Bitte alles mit Begriindung.)

Untersuchen Sie, ob die Abbildung
f:Cyft] = C3 at®* + bt +c— (a—c,b—c,a+c)
ein Vektorraum-Isomorphismus ist!
enthalten!

Geben Sie zwei verschiedene Basen in R* an, die gleichzeitig und

OO = =
-0 O

Untersuchen Sie, ob folgende Operatoren linear sind:

(a) A:R3 = R3;(z,y,2) — a (a € R? konst.),
(b) B:R3 = R3;(z,y,2 — (z,y,2) + a (a € R? konst.),
(c) C:R® = R;(x,y,2) — x>+ 2y,

(d) D :R" — Rn, (Z'i)?zl —> (Z aixi,(), . ,0) ,(ai)?zl c R™.
i=1

Finden Sie, diese Aufgaben sind das Letzte? Stimmt! Endlich mal was richtig! Dies ist die letzte Hausaufgabe fiir dieses Semester.
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65. In dieser Aufgabe sollen einige Sachverhalte iiber den Quotientenraum, den Fakorisierungssatz und den Homomor-

0
phiesatz illustriert werden (Sétze 4.13-4.15, Aufgabe 60b). Sei dazu N = span 0 CR3
1
(a) Geben Sie einen Unterraum U C R? mit R® = U & N an.
1 1 2
(b) Welche der Nebenklassen v1 4N, va+N,vs+N € R?N sind gleich, wobeivy; = | 2 |,uo=1| 2 |,v3=1| 1 |?
3 0 0

Wie kann man allgemein die Gleichheit zweier Nebenklassen charakterisieren?

(c) Wohldefiniertheit der Addition und skalaren Multiplikation von Nebenklassen: Zeigen Sie, dass die Additionen
(va + N)+(vs + N) = (va +v3) + N und (vh + N)+(vs + N) = (vh + v}) + N tatsiichlich dieselbe Nebenklasse

1 2
liefern wobei v = | 2 |,v5=| 1 |.Ebenso fir 3°(va + N) = (3-v2) + N und 3 (v5+ N) = (3-v4) + N.
4 1

Zeigen Sie den allgemeinen Fall.

(d) Geben Sie eine Basis von R*r/‘ N A

(e) Wir betrachten die Abbildung R?® — R?, v+ Av mit
1 0 0
A= [ 00 0 ]

Bestimmen Sie eine Basis von Ker A und eine von Im A. Berechnen Sie Avs, Avj und die Bildmengen von vz + N,
vs + N, vs + Ker A, v; + Ker A unter A.

(f) Zeigen Sie: Die Abbildung A: R? ~ — R% v+ N — Av ist wohldefiniert und linear. Was ist Ker A?
(g) Wie kann man die Gleichheit von Nebenklassen aus R?Ker 4 Charakterisieren?

(h) Die Abbildung A: R?Ker 4 — R?% v+ Ker A — Av ist wohldefiniert, linear und injektiv.

66. Sei V ein endlichdimensionaler K-Vektorraum, (Endg(V'),+,0) sein Endomorphismenring und O € Endg (V) die

Nullabbildung, also Vv € V': O(v) = 0y. Zeigen Sie die Aquivalenz folgender Aussagen iiber ein f € Endg (V):

(a) f# O und f ist nicht bijektiv.
(b) f ist Linksnullteiler, d.h. f # O und 3g € Endg (V) \ {O}: fog=0.
(c) f ist Rechtsnullteiler, d.h. f # O und g € Endg (V) \ {O}: go f = O.

Im endlichdimensionalen Fall ist also f entweder invertierbar oder Nullteiler. Kann man die Voraussetzung “endlichdi-
mensional” fallen lassen?

Losung: Vorbemerkung: Weil V' endlichdimensional ist gilt wegen Korollar 4.12: (a) < (al) f # O und f ist nicht
injektiv < (a2) f # O und f ist nicht surjektiv. Wir zeigen (al) < (b) und (a2) < (c).

(al) = (b): f nicht injektiv O 3y € V, w # 0 und f(w) = 0. Konstruiere g so: Sei (b;);c s eine Basis von V. Nach
Satz 4.8 gibt es genau eine lineare Abbildung g mit der Eigenschaft g(b;) = w, i € J. Damit ist Im g = span(w) C Ker f
und insbesondere g # O und Yv € V': fog(v) =0 also fog=0Q.

(b)y = (al): 3g#0: fog=0=>Vw eV: fogv) =0= Vv € V:g) € Ker f. Da g # O, existiert v € V mit
g(v) =w # 0. Da ja auch w € Ker f, ist f nicht injektiv wegen 4.7 (b).

(a2) = (c): f nicht surjjektiv Y3 eV w ¢ Im f. Sei (b;);c 7 eine Basis von Im f. Da w ¢ Im f = span ((b;)ic7)
ist auch die um w erweiterte Famile (w,b;);c7 linear unabhéngig (vgl. Beobachtung 3.10 (b)). Wahle z € V' \ {0}
(etwa z = w). Nach Satz 4.8 (2) gibt es mindestens eine lineare Abbildung ¢g mit g(w) = z und ¢(b;) = 0Vi € J. Fir
g gilt damit: g # O und Im f C Ker g und damit Yo € V: go f(v) = 0.

(¢c) = (a2): Dag#Qist Ker g C V.Dago f=0,ist Vo € V: f(v) € Ker g, also Im f C Ker ¢ C V und damit f
nicht surjektiv. O
Beachte: V endlichdimensional brauchte man nur fiir die Aquivalenzen (a) < (al) < (a2), die ja im unendlichdi-
mensionalen nicht gelten! Die anderen Schliisse (al) < (b) und (a2) < (c) benutzen nicht die Endlichkeit der Basen.
Als Beispiele im unendlichdimensionalen betrachten wir den Folgenraum K™ und f1: KN — KN, fi((21, 72, 23,...)) =
(z2,x3,...). f1ist surjektiv, aber nicht injektiv, denn (1,0,0,...) € Ker f1. Als g1 nimm ¢, ((z1, z2,...)) = (21,0,0,...),
dann ist f; o g1 = O. Andererseits ist fo: KN — KN fo((21,22,...)) = (0,71, 22,...) injektiv, aber nicht surjektiv.
Mit g2 = g1 gilt g2 0 fo = 0.

67. Wie testet man eine Matrix A € K™*" auf Invertierbarkeit und wie rechnet man die Inverse aus?



68. Entscheiden Sie ob folgende Familien Basen von (R3)* bzw. R? sind und bestimmen Sie ggf. die duale Basis.

1 2 0
A* = ([1,2,1],[2,1,2],]0,3,1]), B= 21,11 ), 3
1 2 1

69. Wir betrachten im Vektorraum V = R;[z] der Polynome vom Grade < 1 die Elemente p;(z) = 142 und pa(z) = 2+ .
Zeigen, Sie dass B = (p1,p2) eine Basis von V bilden. Seien B* = (p}, p3) die duale Basis und fi(z) =4 + z, fa(x) =
3 + 5z. Berechnen Sie p}(f;), 1 <1i,j <2.

70. Sei V ein K-Vektorraum, dimV = n und V* der Dualraum. Zeigen Sie die Aquivalenz der folgenden Aussagen:

(a) Die Elemente vj,..., v} sind La. in V*.
(b) Es gibt v € V, v # Oy mit v} (v) =... =v}(v) = 0k.

Losung: Es bezeichne I' = span(vf,...,v}) C V¥ und I'* = {v € V: p(v) = 0V¢ € I'}. Nach Satz 4.19 gilt die
Dimensionsformel dimI" + dim I'* = dim V* = dim V. Die Losung der Aufgabe passt nun in eine Zeile:

v],..,ur la.ediml <n—-1=dmV -1<dimI°=n—-dimI’ > 1< Jv T’ v #£0.



Hausaufgabe 9

Abgabe: Brauchen Sie nicht abzugeben. Diirfen Sie aber.

47. Sei V ein dreidimensionaler R-Vektorraum, (b1, be, b3) eine Basis von V und N = span(bs).

(h)

Geben Sie einen Unterraum U C V mit V =U & N an.

Welche der Nebenklassen v + N,va + N,v3 + N € V) sind gleich, wobei v1 = by + 2by + 3b3, v2 = b1 + 2ba,
vg = 2b1 4+ b7 Wie kann man allgemein die Gleichheit zweier Nebenklassen charakterisieren?

Wohldefiniertheit der Addition und skalaren Multiplikation von Nebenklassen: Zeigen Sie, dass die Additionen
(va+ N)+(v3+N) = (v2+v3)+ N und (vh+N)+(vs+ N) = (vh+v}) + N tatsichlich dieselbe Nebenklasse liefern
wobei v = by + 2by + 4b3, v = 2by + bs + b3. Ebenso fiir 3° (v2+ N) = (3-v2) + N und 3° (v5+ N) = (3-v}) + N.
Zeigen Sie den allgemeinen Fall.

Geben Sie eine Basis von V) an.

Sei W ein zweidimensionaler R-Vektorraum und mit Basis (¢1, co) Wir betrachten die Abbildung A: V' — W, die
eindeutig bestimmt ist durch Ab; = ¢1, Abs = Abz = Oy Bestimmen Sie eine Basis von Ker A und eine von Im A.
Berechnen Sie Avs, Avs und die Bildmengen von vs + N, v + N, vs + Ker A, v§ + Ker A unter A.

Zeigen Sie: Die Abbildung A: V)n = W, v+ N+ Av ist wohldefiniert und linear. Was ist Ker A?

Wie kann man die Gleichheit von Nebenklassen aus V/ker 4 charakterisieren?

Die Abbildung A: V/Ker 4 = R2, v + Ker A — Av ist wohldefiniert, linear und injektiv.

48. Sei (R, +,-) ein nicht notwendig kommutativer Ring mit Einselement 1. Ein Element v € R heifit Linksinverses zu

49.

(a)
(b)

(a)

einem Element v € R, wenn v - u = 1. Entsprechend heifit ein Element v € R Rechtsinverses zu u € R, wenn v - v = 1.
Zeigen Sie:

Ist © € R ein Linksnullteiler (vgl. Aufgabe 66), dann hat = kein Linksinverses. Analog haben Rechtsnullteiler kein
Rechtsinverses.

Fiir den Endomorphismenring Endk (V') eines endlichdimensionalen K-Vektorraumes gelten nach Aufgabe 66 auch
die Umkehrungen. Stimmt das auch fiir allgemeine Ringe? Beweis oder Gegenbeispiel!

Sei B := (b1 =22+ 1,by=a?42,by=2>+2z+ 1) gegeben.

Zeigen Sie, dass B eine Basis des R-Vektorraumes V' aller reellen Polynome vom Grade < 2 ist.

Welche der Basisvektoren kann man gegen
(b) 22, (c) 32 + 2, (d) 222 + 2x, bzw. (e) z+1

austauschen? Sei ferner B* = (b7, b5, b%) die zu B duale Basis von V*.

(f) Berechnen Sie b} (z771) fiir 1 <4,5 < 3.



