
Übung 1

1. Geben Sie für die folgenden linearen Gleichungssysteme die jeweilige Lösungsmenge an.

(a)
2x +3y = 0
4x +5y = 10

(b)
x +3y = 5

−2x −5y = 10
(c)

x +3y = 5
−2x −5y = −10

(d) x −y = 5

2. (a)
6x −y −7z = 3
3x −6z = 7

2y −z = 2
(b)

2x +3y −4z = 9
−6x −9y +10z = 2
−8x −12y +14z = 11

(c)
2x +3y −4z = 9
−6x −9y +10z = 2
−8x −12y +14z = −7

3. Erinnern Sie sich zurück: Wie ist das Skalarprodukt ~a ?~b von zwei Vektoren ~a =

(
ax
ay

)
,~b =

(
bx
by

)
∈ R2 definiert,

wie für ~a =

 ax
ay
az

 ,~b =

 bx
by
bz

 ∈ R3? Wie kann man damit die Norm (Länge) ‖~a‖ ausrechnen und wie den Winkel

zwischen den Vektoren? Wann stehen zwei Vektoren senkrecht zueinander? Wie kann man aus dem Skalarprodukt
ablesen ob der Winkel spitz oder stumpf ist? Ferner ist für zwei Vektoren ~a,~b ∈ R3 das Kreuzprodukt ~c durch

~c = ~a×~b =

 aybz − azby
−(axbz − azbx)
axby − aybx

 definiert. Was ist dann ~c ? ~a, was ~c ?~b? Was ist ~b× ~a? Wann ist ~c der Nullvektor?

4. (a) Gegeben seien ein Vektor ~n =

(
nx
ny

)
6=
(

0
0

)
und eine Zahl d. Zeigen Sie, dass die Lösungsmenge der Gleichung

~n ?

(
x
y

)
= nxx+ nyy = d

die Gestalt {(
x
y

)
= ~a+ λ~b | λ ∈ R

}
hat, mit geeigneten Vektoren ~a,~b ∈ R2. Drücken Sie ~a,~b mittels nx, ny und d aus. Die Lösungsmenge ist also eine
Gerade und die angegebene Gestalt deren Parameterform mit Stützvektor (=Aufpunkt) ~a und Richtungsvektor

(=Spannvektor) ~a. Was ist ~n ? ~a und was ~n ?~b?

(b) Sei nun umgekehrt eine Gerade G in Parameterform gegeben mit Richtungsvektor ~b =

(
bx
by

)
und Stützvektor

~a =

(
ax
ay

)
∈ R2. Geben Sie eine lineare Gleichung wie oben an, deren Lösungsmenge gleich G ist. Welche

Wahlmöglichkeiten für ~n und d hat man?

5. Als freiwillige Zusatzaufgabe! Sei nun eine Gerade (bzw. Ebene) als Menge aller Punkte ~p ∈ R2 (bzw. R3)
gegeben, die eine Gleichung ~n ? ~p = d erfüllen, wobei ‖~n‖ = 1 and d ≥ 0 ist. Man spricht dann von der Hesse’schen
Normalenform der Geraden (Ebene). Begründen Sie, dass für einen beliebigen Punkt ~q ∈ R2 (bzw. R3) die Zahl
|~n ? ~q − d| den Abstand des Punktes ~q zur Geraden (Ebenen) darstellt. Hierbei bezeichnet |x| den Betrag der Zahl x,
z.B. | − 2| = 2, |1| = 1.

6. Zeigen Sie folgende Tautologien

(a) (A↔ B)↔ ((A→ B) ∧ (B → A)) (So beweist man üblicherweise Äquivalenzen)

(b) (A→ B)↔ (¬B → ¬A) (Umkehrschluss)

(c) (¬A→ F )↔ A (Indirekter Beweis, Widerspruchsbeweis)

(d) ((A→ B) ∧ (B → C) ∧ (C → A))↔ ((A↔ B) ∧ (B ↔ C) ∧ (A↔ C)) (Ringschluss) (HA)

(e) ((A→ B) ∧ (B → C))→ (A→ C)

(f) (A→ B)↔ (¬A ∨B)

(g) ¬(A→ B)↔ (A ∧ ¬B) (HA)

(h) ¬(A ∧B)↔ ((¬A) ∨ (¬B))

(i) ¬(A ∨B)↔ ((¬A) ∧ (¬B)) (HA)

(j) (A↔ B)↔ ((¬A)↔ (¬B))

(k) (A ∧B)↔ ¬((¬A) ∨ (¬B)) (HA)

(l) (A ∧ (A→ B))→ B (HA)

(m) ((A→ B) ∧ (¬B))→ (¬A)

7. Für zwei Aussagen A und B erklären wir die logische Verknüpfung A xor B durch die folgende Wahrheitstafel.



A B A xor B
W W F
W F W
F W W
F F F

Sie steht für die umgangssprachliche Formulierung “Entweder A oder B (aber nicht beide)”, also das ausschließende
Oder (eXklusives OdeR). Vergleichen Sie die xor-Tafel mit den in der Vorlesung angegebenen Wahrheitstafeln, ins-
besondere der von A ∨B. Welche andere Tafel sticht noch besonders ins Auge?

8. Verstehe einer die Frauen: Alice sagt: Beate lügt. Beate sagt: Claudia lügt. Claudia sagt: Beate und Alice lügen
beide. Wer lügt denn nun und wer sagt die Wahrheit?

9. Formulieren Sie die folgenden Aussagen mit Hilfe der Quantoren ∀ und ∃. Bilden Sie dann die Verneinung der jeweiligen
Aussage (natürlich auch mit Quantoren) und achten Sie dabei darauf, dass das “nicht” möglichst weit hinten auftritt.

(a) Jede Currywurst ist ungesund.

(b) Es gibt keine ungesunde Currywurst. (HA)

(c) Zu jeder Currywurst existiert eine Portion Pommes Frites, die mehr Fett enthält als die Currywurst.

(d) Es gibt ein Land, in dem jeder Einwohner Käsebrote lieber isst als Currywurst. (HA)

(e) Es gibt einen Schnellimbiss, in dem zu jeder Portion Pommes Frites entweder Salat oder Currywurst serviert wird.
(Beachte: ”entweder... oder” und nicht etwa nur “oder”)

(f) In jedem Schnellimbiss wird zu allen Gerichten eine Currywurst gereicht, wenn der Salat welk ist. (HA)



Hausaufgabe 1
Abgabe: Freitag, 24. Oktober 2014

1. Setzen Sie bitte nun ihre 3D-Brillen auf!

(a) Gegeben seien ein Vektor ~n =

 nx
ny
nz

 6=
 0

0
0

 und eine Zahl d. Zeigen Sie, dass die Lösungsmenge der

Gleichung

~n ?

 x
y
z

 = nxx+ nyy + nzz = d

die Gestalt 
 x

y
z

 = ~a+ λ~b+ µ~c | λ, µ ∈ R


hat, mit geeigneten Vektoren ~a,~b,~c ∈ R3. Drücken Sie ~a,~b,~c mittels nx, ny, nz und d aus. Die Lösungsmenge ist

also eine Ebene und die angegebene Gestalt deren Parameterform mit Stützvektor ~a und Richtungsvektoren ~b,~c.
Was ist ~n ? ~a, ~n ?~b und ~n ? ~c?

(b) Sei nun umgekehrt eine Ebene E in Parameterform gegeben mit Richtungsvektoren ~b =

 bx
by
bz

 ,~c =

 cx
cy
cz


und Stützvektor ~a =

 ax
ay
az

 ∈ R3. Geben Sie eine lineare Gleichung wie oben an, deren Lösungsmenge gleich E

ist. Welche Wahlmöglichkeiten für ~n und d hat man? (Hinweis: Kreuzprodukt ist hilfreich.)

2. (Optional) Lösen Sie Aufgabe 5, d.h. begründen Sie, dass man den Abstand eines Punktes zu einer Ebenen auf die
angegebene Weise mit Hilfe Ihrer Hesse’schen Normalenform ausrechnen kann.

3. Erledigen Sie die mit HA markierten Teile von Aufgabe 6.

4. Erledigen Sie die mit HA markierten Teile von Aufgabe 9.

5. Verstehe einer die Männer: Arthur sagt: Wenn Bernd lügt, dann sagt Christian die Wahrheit. Bernd sagt: Christian
lügt. Christian sagt: Arthur lügt. Wer lügt denn nun und wer sagt die Wahrheit?

6. Formulieren Sie eine zu A xor B äquivalente Verknüpfung, die

(a) nur ¬, ∧ und ∨
(b) nur ¬ und ∧

verwendet.



Übung 2

10. Was bedeuten die folgenden Ausdrücke? Was ist ihre Negation? Welche der Aussagen sind wahr und welche falsch
(ohne formalen Beweis aber mit solider Begründung)?

(a) ∀x ∈ N ∃y ∈ N : x < y

(b) ∀x ∈ N ∃y ∈ N : x ≥ y (HA)

(c) ∀x ∈ N ∃y ∈ N : x+ y = x

(d) ∀x ∈ N ∃y ∈ N∀z ∈ N : x+ y = z

(e) ∃x ∈ N ∀y ∈ N ∃z ∈ N : y = x+ z (HA)

(f) ∀A ⊆ N ∃B ⊆ N : A ∪B = N
(g) ∃y ∈ Z∀x ∈ N : x ≥ y
(h) Seien a ∈ R und (an)n∈N eine Folge reeller Zahlen. Bilden Sie nur die Negation folgender Aussage: ∀ε ∈]0,∞[∃M ∈

N ∀n ≥M : |an − a| < ε (HA)

11. Zeigen Sie folgende Rechengesetze für die Mengenoperationen:

(a) A ∩ (B ∩ C) = (A ∩B) ∩ C
(b) A ∪ (B ∪ C) = (A ∪B) ∪ C (HA)

(c) A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

(d) A\(B ∩ C) = (A\B) ∪ (A\C)

(e) A\(B ∪ C) = (A\B) ∩ (A\C) (HA)

(f) Für A ⊆ C und B ⊆ C : A\B = A ∩ (C\B)

12. Wiederholen Sie die Begriffe Abbildung, Bildmenge, Urbildmenge. Bestimmen Sie das Bild der Menge A und die
Urbildmenge der Menge B unter der Abbildung f : R→ R, wobei f, A und B jeweils gegeben sind durch

(a) f(x) = x2, A = {1, 3, 5}, B = {−1, 0, 1, 2}
(b) f(x) = x2, A = [−2,−1] ∪ [−1/2, 1], B = [1,∞[

(c) f(x) = 3x+ 1, A = [3, 4] ∪ [−1/3, 1], B = [−11, 22] (HA)

(d) Sei a ∈ R gegeben. f(x) = x2 + a, A = R, B = [0,∞[

(e) Sei a ∈ R gegeben. f(x) = a, A = [3, 4] ∪ [−1/3, 1], B = {a} (HA)

(f) f(x) = sin(x), A = [−π/2, π/2], B = {0, 1/
√

2, 1} (x im Bogenmaß)

13. Sei f : V → W eine Abbildung und Ai ⊆ V, i ∈ I eine Familie von Teilmengen von V und A,B ⊆ V. Welche der
Beziehungen ⊆,⊇,= bestehen zwischen

(a) f(A ∩B) und f(A) ∩ f(B)?

(b) f
(⋂

i∈I Ai
)

und
⋂
i∈I f(Ai)?

Beweisen Sie Ihre Behauptungen und geben Sie im Falle von * oder + ein Gegenbeispiel dafür an.

14. Sei f : V → W eine Abbildung und Ai ⊆ W, i ∈ I eine Familie von Teilmengen von W und A,B ⊆ W. Welche der
Beziehungen ⊆,⊇,= bestehen zwischen

(a) f−1(A ∩B) und f−1(A) ∩ f−1(B)?

(b) f−1
(⋂

i∈I Ai
)

und
⋂
i∈I f

−1(Ai)?

Beweisen Sie Ihre Behauptungen und geben Sie im Falle von * oder + ein Gegenbeispiel dafür an.

15. Welche der folgenden Abbildungen sind injektiv, surjektiv oder bijektiv?

(a) f : N→ N, x 7→ f(x) = x2

(b) f : R→ R, x 7→ f(x) = x2

(c) f : R→ [0,∞[, x 7→ f(x) = x2

(d) f : [0,∞[→ R, x 7→ f(x) = x2

(e) f : [0,∞[→ [0,∞[, x 7→ f(x) = x2

(f) f : N→ N, x 7→ f(x) = 1
2

(
x+ 1+(−1)x+1

2

)
(Ist f ”wohldefiniert”, d.h. ist f(x) immer eine natürliche Zahl?)

(g) f : {Menschen} → N, x 7→

{
1: x ist männlich

42: x ist weiblich



(h) f : 2{0,1,...,n} → {0, 1, . . . , n+ 1}, A 7→ |A|
(i) f : N× N→ Z, (m,n) 7→ n−m

16. Geben Sie Abbildungen f, g : N→ N an, so dass f injektiv aber nicht surjektiv und g surjektiv aber nicht injektiv ist.

17. Kann man Abbildungen f und g wie in Aufgabe 16 konstruieren, so dass

(a) f ◦ g bijektiv oder gar f ◦ g = idN,

(b) g ◦ f bijektiv oder gar g ◦ f = idN

ist? Falls ja, geben Sie ein entsprechendes Beispiel an. Falls das immer schiefgehen muss, begründen Sie, warum.



Hausaufgabe 2
Abgabe: Montag, 3. November

7. Bearbeiten Sie alle in Übung 2 mit (HA) markierten Aufgabenteile. Bei den unerledigten Aufgabenteilen von Aufgabe
11 dürfen Sie die in der Zusatzaufgabe 11 unten angegebenen Formeln (a) bis (e) verwenden.

8. Sei f : V −→ W eine Abbildung und Ai ⊆ V, i ∈ I eine Familie von Teilmengen von V und A,B ⊆ V. Welche der
Beziehungen ⊆,⊇,= besteht zwischen

(a) f(A ∪B) und f(A) ∪ f(B)?

(b) f
(⋃

i∈I Ai
)

und
⋃
i∈I f(Ai)?

Beweisen Sie Ihre Behauptungen und geben Sie im Falle von * oder + ein Gegenbeispiel dafür an.

9. Sei f : V −→ W eine Abbildung und Ai ⊆ W, i ∈ I eine Familie von Teilmengen von W und A,B ⊆ W. Welche der
Beziehungen ⊆,⊇,= bestehen zwischen

(a) f−1(A ∪B) und f−1(A) ∪ f−1(B)?

(b) f−1
(⋃

i∈I Ai
)

und
⋃
i∈I f

−1(Ai)?

Beweisen Sie Ihre Behauptungen und geben Sie im Falle von * oder + ein Gegenbeispiel dafür an.

10. Seien A,B endliche Mengen und f : A→ B eine Abbildung. Welche der Beziehungen ≥, >,=, <,≤ muss zwischen |A|
und |B| bestehen, wenn f

(a) injektiv,

(b) surjektiv,

(c) bijektiv,

(d) surjektiv, aber nicht injektiv,

(e) injektiv, aber nicht surjektiv ist?

Beweisen Sie Ihre Behauptungen.

11. Zusatzaufgabe (optional, die Formeln sollten Sie sich aber merken!) Zeigen Sie: Für Aussagen A,B,C gelten
folgende Tautologien

(a) (A ∧B) ∧ C ⇔ A ∧ (B ∧ C)

(b) (A ∨B) ∨ C ⇔ A ∨ (B ∨ C)

(c) A ∧ (B ∨ C))⇔ (A ∧B) ∨ (A ∧ C)

(d) A ∨ (B ∧ C)⇔ (A ∨B) ∧ (A ∨ C)

(e) A ∧ (B xor C)⇔ (A ∧B) xor (A ∧ C)

Ist auch A xor (B ∧ C)⇔ (A xor B) ∧ (A xor C) eine Tautologie (Begründen)? Lösen Sie damit erneut Aufgabe 11.



Übung 3

Eine wichtige Beweistechnik - vielleicht die wichtigste - in der Mathematik ist das

Prinzip der vollständigen Induktion. Für jedes n ∈ N sei eine Aussage A(n) gegeben und es gelten

(IA) A(1) ist wahr und

(IS) für alle n ∈ N ist die Implikation (A(1) ∧A(2) ∧ . . . ∧A(n))⇒ A(n+ 1) stets wahr.

Dann ist A(n) für alle n ∈ N wahr.

Man kann also versuchen, eine Behauptung der Form

∀n ∈ N : A(n)

zu beweisen, indem man erst A(1) zeigt (Induktionsanfang (IA)), und dann aus der Induktionsvoraussetzung (IV)
“A(1) ∧A2 ∧ . . . ∧A(n) ist wahr” schlussfolgert, dass auch A(n+ 1) wahr sein muss.

Als Beispiel definieren wir für n ∈ N die Aussage A(n) durch

A(n) :⇔ 1 + 2 + . . .+ n =
n(n+ 1)

2
.

Behauptung: ∀n ∈ N : A(n). Beweis: (IA) A(1)⇔ 1 = 1·(1+1)
2 ist wahr. (IV) A(1), . . . , A(n) sind wahr.

(IS) A(1) ∧A2 ∧ . . . ∧A(n)⇒ A(n+ 1) :

1 + 2 + . . .+ n︸ ︷︷ ︸
Hierauf ist A(n) anwendbar!

+(n+ 1) =
n(n+ 1)

2
+ (n+ 1) =

n(n+ 1) + 2 · (n+ 1)

2
=

(n+ 2)(n+ 1)

2

Aus der Richtigkeit von A(n) folgt also die Richtigkeit von A(n+ 1) und die Behauptung ist bewiesen!

Im Beispiel konnte man direkt “von n auf n + 1” schließen, man brauchte also nur A(n) im Induktionsschritt zu
benutzen. Aufgabe 18 ist ein Beispiel, wo man wirklich “von ≤ n auf n+ 1” schließen muss.

Eine Behauptung der Form ∀n ≥ k : A(n) kann man entsprechend versuchen zu beweisen, indem man zuerst A(k) zeigt
und dann für n ≥ k : (A(k)∧ . . .∧A(n))⇒ A(n+ 1). (Formal: Wende das Induktionsprinzip auf B(n) :⇔ A(n+ k− 1)
an.)

18. Eine Primzahl ist eine natürliche Zahl p ≥ 2, die nur durch 1 und sich selbst teilbar ist. Sei P ⊆ N die Menge aller
Primzahlen, in Zeichen

P = {p ∈ N \ {1} : ∀n ∈ N : n|p⇒ (n = 1 ∨ n = p)}

Zeigen sie mit vollständiger Induktion:

(a) Jedes n ∈ N \ {1} hat einen Primteiler.

(b) Jedes n ∈ N \ {1} kann als Produkt von Primzahlen dargestellt werden.

Zeigen Sie außerdem: P ist unendlich.

19. Zeigen Sie durch vollständige Induktion, dass für n ∈ N gilt:

(a)
∑n
k=0 q

k = 1−qn+1

1−q , dabei ist q ∈ R \ {1} (Geometrische Summenformel, vgl. Analysis)

(b)
∑n
k=1 k

3 = (
∑n
k=1 k)

2
= n2(n+1)2

4

(c)
∑n
k=1 k(k + 1)(k + 2) = n(n+1)(n+2)(n+3)

4

Zur obigen Notation: Für m, l ∈ N ∪ {0} ist
∑m
k=l a(k) = a(l) + a(l + 1) + . . . + a(m − 1) + a(m). Den Fall m < l

interpretiert man als leere Summe und setzt
∑m
k=l a(k) = 0.

20. Zeigen Sie: Für alle n ∈ N ist 11n+1 + 122n−1 durch 133 teilbar.

21. Für welche n ∈ N gilt 2n > n2?

22. Für n ≥ 3 betrachten wir konvexe n-Ecke (“nach außen gewölbte”), d.h. solche, bei denen mit je zwei beliebigen
Punkten immer auch die Verbindungsstrecke ganz im n-Eck liegt (bei der durchgestrichenen Figur unten ist das nicht
der Fall). Eine Triangulierung eines n-Ecks ist eine Zerlegung des n-Ecks in Dreiecke, so dass die Eckpunkte der
Dreiecke Ecken des n-Ecks sind und sich die Dreiecke nicht überlappen, vgl. die Abbildung unten. Als Diagonale eines
n-Ecks bezeichnen wir eine Strecke zwischen zwei nicht benachbarten Ecken. Eine Triangulierung des n-Ecks kann man
also erhalten, indem man sukzessive Diagonalen einfügt, ohne bereits bestehende Diagonalen zu kreuzen, bis das n-Eck
vollständig in Dreiecke zerlegt ist. Zeigen Sie mit vollständiger Induktion:



(a) Jedes konvexe n-Eck ist triangulierbar.

(b) Eine Triangulierung besteht immer aus genau n− 2 Dreiecken.

Was ist die Summe der Innenwinkel eines n-Ecks?

23. Für n, k ∈ N ∪ {0} ist der Binomialkoeffizient
(
n
k

)
(lies: “n über k”) definiert durch(

n

k

)
=

{
1, wenn k = 0
n(n−1)(n−2)···(n−k+1)

k(k−1)(k−2)···2·1 , wenn k ≥ 1

Zeigen Sie:

(a)
(
n
n

)
= 1,

(
n
k

)
= 0, falls k > n,

(b)
(
n+1
k+1

)
=
(
n
k

)
+
(
n
k+1

)
(Pascal’sches Dreieck), und damit

(c) den Binomischen Lehrsatz: Seien x, y ∈ R. Dann gilt

∀n ∈ N : (x+ y)n =

n∑
k=0

(
n

k

)
xn−kyk.

(d)
(
n
k

)
= n!

k!(n−k)! .

(e) Eine n-elementige Menge hat 2n Teilmengen.

Beachten Sie: Unsere Definition von
(
n
k

)
ist auch sinnvoll, wenn n keine natürliche Zahl ist, etwa n = 1/2, siehe später

Analysis. Die Formeln unter 23a und 23d sind dann hingegen nicht mehr sinnvoll.



Hausaufgabe 3
Abgabe: Freitag, 14. November

12. Was ist von folgendem Induktions-ähem-beweis zu halten? Behauptung: ∀n ∈ N : In jeder Menge von {P1, P2, . . . , Pn}
von n Personen haben alle dieselbe Frisur. Beweis durch vollständige Induktion: (IA) Für einelementige Mengen
{P1} stimmt das trivialerweise, denn jede Person hat die dieselbe Frisur wie sie selbst. (IV) In jeder beliebigen
Menge von k Personen {P1, P2, . . . , Pk}, k ≤ n haben alle dieselbe Frisur. (IS) Zu einer n + 1-elementigen Menge
Q = {P1, P2, . . . , Pn+1} betrachten wir die n-elementigen Teilmengen R = {P1, P2, . . . , Pn} und S = {P2, . . . , Pn+1}.
Wenden wir (IV) auf S an, so erhalten wir: P2, . . . , Pn+1 haben dieselbe Frisur. (IV) auf R angewandt liefert
insbesondere, dass P1 und P2 dieselbe Frisur haben und daher P1, P2, . . . , Pn+1 dieselbe Frisur haben.

Finger in die Wunde, wo genau ist der Fehler?

13. Berechnen Sie
∑n
k=1(2k − 1) für allgemeines n ∈ N. Beweisen Sie Ihre Formel mit vollständiger Induktion.

14. Zeigen Sie:
∑n
k=1 k

2 = n(n+1)(2n+1)
6 .

15. Berechnen Sie
∑n
k=1(2k − 1)2 für allgemeines n ∈ N. Beweisen Sie Ihre Formel mit vollständiger Induktion.

16. In einem konvexen n-Eck gibt es 1
2n(n− 3) Diagonalen (vgl. Aufgabe 22 aus den Übungen).



Übung 4

24. Es seien A = {α, β, γ, δ} und B = {1, 2, 3, 4} und R ⊆ A×B eine Relation gegeben durch

R = {(α, 1), (α, 2), (α, 3), (β, 2), (β, 3), (γ, 2), (γ, 3), (γ, 4), (δ, 4)}.

FürX1 = {γ}, X2 = {α, γ}, X3 = {α, δ} ⊆ A berechnen sie für i = 1, 2, 3. BR(Xi), AR(BR(Xi)) sowieBR(AR(BR(Xi))).
(Vgl. Definitionen in der nächsten Aufgabe)

25. Beweisen Sie das Dualitätslemma für Relationen (Lemma 1.6 der Vorlesung): Seien A und B Mengen und R ⊆ A×B
eine Relation. Wir schreiben aRb an Stelle von (a, b) ∈ R. Für X ⊆ A und Y ⊆ B definieren wir BR(X) ⊆ B und
AR(Y ) ⊆ A durch

BR(X) = {b ∈ B : ∀x ∈ X xRb} AR(Y ) = {a ∈ A : ∀y ∈ Y aRy}.

Seien X,X ′ ⊆ A und Y, Y ′ ⊆ B Teilmengen von A bzw. B. Zeigen Sie:

(a) X ⊆ X ′ ⇒ BR(X) ⊇ BR(X ′) und (HA) Y ⊆ Y ′ ⇒ AR(Y ) ⊇ AR(Y ′).

(b) X ⊆ AR(BR(X)) und (HA) Y ⊆ BR(AR(Y )).

(c) BR(X) = BR(AR(BR(X))) und (HA) AR(Y ) = AR(BR(AR(Y ))).

26. Kongruenz modulo m: Es sei m ∈ N. Auf der Menge Z der ganzen Zahlen ist eine durch

a ≡ b mod m :⇔ m | a− b

eine Äquivalenzrelation definiert, die Kongruenz modulo m. Die Äquivalenzklassen heißen Restklassen oder Kongruen-
zklassen, werden für a ∈ Z mit [a] bezeichnet und sind von folgender Gestalt:

[a] = {x ∈ Z : x = k ·m+ a, k ∈ Z}.

(a) In der Vorlesung wurde behauptet, dass es genau m Restklassen gibt, nämlich [0], [1], . . . , [m − 1]. Zeigen Sie
dies, indem Sie folgendes beweisen: Zu jeder ganzen Zahl n ∈ Z gibt es ein eindeutig bestimmtes Paar (k, r) ∈
Z× {0, 1, . . . ,m− 1} mit der Eigenschaft n = m · k + r.

(b) Seien a = 65444447899335, b = 789568556777866673, c = 5655689097862437. Was sind die Restklassen modulo
10 von a, b, c, a+ b, a+ c, a · b? (Natürlich ooooohne Taschenrechner!)

(c) Wie lassen sich die Addition und Multiplikation von Z sinnvoll auf die Menge der Restklassen Z/≡ mod m übertragen?

27. Summen- und Produktnotation Machen Sie sich klar, dass die folgenden Ausdrücke alle dasselbe bedeuten (In-
dexverschiebung)

(a)
∑7
i=3 a(i),

∑6
i=2 a(i+ 1),

∑7+k
i=3+k a(i− k), k ∈ Z, und

∑
i∈{3,4,5,6,7}

a(i)

(b)
∑n
i=m a(i),

∑n+k
i=m+k a(i− k).

(c)
∏7
i=3 a(i),

∏6
i=2 a(i+ 1),

∏7+k
i=3+k a(i− k), k ∈ Z,

(d)
∏n
i=m a(i),

∏n+k
i=m+k a(i− k), k ∈ Z

Schreiben Sie folgende Summe aus (also ohne Summenzeichen): 1
4

∑
i∈{♣,♠,♦,♥}

g(i).



Hausaufgabe 4
Abgabe: Freitag, 21.11.2014

17. Zu der Relation aus Aufgabe 24 aus den Übungen seien zusätzlich Y1 = {2}, Y2 = {2, 3} ⊆ B gegeben. Berechnen Sie
für i = 1, 2 die Mengen AR(Yi), BR(AR(Yi)) und AR(BR(AR(Yi))).

18. Beweisen Sie die mit (HA) markierten Teile der Aufgabe 25 zum Dualitätslemma.

19. (Prinzip vom doppelten Abzählen) Es seien A,B endliche Mengen und R ⊆ A×B eine Relation. Zeigen Sie:∑
a∈A
|BR({a})| =

∑
b∈B

|AR({b})|

Was zählen diese beiden Summen ab?

20. Es sei A die Menge aller Geraden in R3, die den Nullpunkt enthalten und B die Menge aller Ebenen in R3, die den
Nullpunkt enthalten. Wir definieren eine Relation in A × B durch gRe :⇔ g ⊆ e. Zu Teilmengen X ⊆ A und Y ⊆ B
beschreiben Sie BR(X) und AR(Y ) (Es müssen ein paar wenige Fallunterscheidungen gemacht werden).

21. Schreiben die den Induktionsbeweis für den binomischen Lehrsatz aus der Übung mit Hilfe der Indexverschiebung (vgl.
Aufgabe 27) auf, d.h. ohne die Summen ganz auszuschreiben.

22. Es sei b ∈ N und b ≥ 2. Zeigen Sie durch vollständige Induktion: Jede Zahl n ∈ N0 lässt sich schreiben als

n = slb
l + sl−1b

l−1 + . . .+ s1b
1 + s0b

0,

wobei l ∈ N0 und si ∈ {0, 1 . . . , b − 1} für i = 0, . . . , l. Z.B. für b = 10 hat man 342 = 3 · 102 + 4 · 101 + 2 · 100,
die si sind die Ziffern der Dezimaldarstellung. Oder für b = 2 hat man z.B. 12 = 1 · 23 + 1 · 22 + 0 · 21 + 0 · 20 und
(s3, s2, s1, s0) = (1, 1, 0, 0) ist die Binärdarstellung von 12. Tipp: Sie dürfen die Ergebnisse aus Aufgabe 26 verwenden!
Zusatz (optional): Beweisen Sie die Quersummenregel: Eine Zahl ist genau dann durch drei teilbar, wenn die Summe
ihrer (Dezimal-)Ziffern durch drei teilbar ist. Welche Regeln gelten für 9 und 11?
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28. Es sei B eine Menge und S(B) := {f : B → B : f bijektiv} die Menge der bijektiven Abbildungen von B nach B (im
Fall B = {1, . . . , n} schreiben wir S(B) =: Sn). Zeigen Sie, dass (S(B), ◦) eine Gruppe ist, wobei ◦ die Komposition
von Abbildungen bezeichnet.

29. Sei n ∈ N und Pn := {{i, j} : 1 ≤ i < j ≤ n} die Menge aller zweielementigen Teilmengen von {1, . . . , n}. Beweisen Sie:

(a) σ ∈ Sn ⇒ sgn(σ) =
∏

{i,j}∈Pn

σ(i)−σ(j)
i−j

(b) τ ∈ Sn ⇒ {i, j} 7→ {τ(i), τ(j)} ist Bijektion Pn → Pn

(c) sgn(σ ◦ τ) = sgn(σ) · sgn(τ)

(d) Die Permutationen σ ∈ Sn mit sgn(σ) = 1 bilden eine Untergruppe. (Diese wird als alternierende Gruppe An
bezeichnet.)

30. Wir numerieren die Ecken eines Quadrats Q gegen den Uhrzeigersinn mit 1,2,3,4 und bezeichnen mit D4 die Menge
aller Drehungen und Spiegelungen, die Q mit sich selbst zur Deckung bringen. Wir bezeichnen mit r1 die Drehung
um den Mittelpunkt um 90◦ mit r2 die um 180◦ und mit r3 die Drehung um 270◦, jeweils gegen den Uhrzeigersinn.
Mit e bezeichen wir die Identität (Drehung um 0◦). Mit s1 bezeichnen wir die Spiegelung an der Diagonalen durch 1
und 3, mit s3 diejenige an der Diagonalen durch 2, 4. Mit s2 bezeichnen wir die Spiegelung an der Geraden durch die
Mittelpunkte der Seiten 12 und 34 und mit s4 die Spiegelung an der Geraden durch die Mittelpunkte der Seiten 23
und 14.

(a) Stellen Sie eine Verknüpfungstafel auf. Dabei wollen wir z.B. r1 ◦ s1 als Komposition von Abbildungen inter-
pretieren, d.h. erst s1 und dann r1 anwenden. Ist D4 kommutativ?

(b) Sei U = 〈r1〉 die von r1 erzeugte zyklische Untergruppe. Schreiben Sie alle Links- und Rechtsnebenklassen auf.
Ist U ein Normalteiler?

(c) Lösen Sie Aufgabe 30b mit U = 〈s1〉.
(d) Lösen die folgende Gleichungen nach x auf: r1xs1 = s3, s1r1xr2s3 = s4s3s4.

(e) Stellen Sie D4 als Untergruppe von S4 dar.

31. Zeigen Sie, dass eine Untergruppe vom Index 2 immer normal ist.

32. Sei (G, ∗) eine Gruppe und U ⊆ G nicht leer. Zeigen Sie: U ist genau dann eine Untergruppe, wenn gilt: ∀x, y ∈
U : x ∗ y−1 ∈ U.
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Abgabe: 5.12.2014

23. Sei A eine Menge mit |A| = n. Zeigen Sie, dass S(A) isomorph zu Sn ist. Hinweis: Ein Isomorphismus ist schon in der
Vorlesung vorgeschlagen worden, Sie müssen nur noch den Nachweis führen.

24. Die Restklasse einer Zahl a ∈ {1, . . . ,m− 1} modulo m heißt prime Restklasse, wenn ggT(a,m) = 1 ist. Berechnen Sie
alle primen Restklassen für m = 2, 3, 4, 5, 8. Zeigen Sie außerdem für diese Werte von m, dass die primen Restklassen
zusammen mit der Multiplikation von Restklassen (vgl. Aufgabe 26) eine Gruppe bilden.

25. Erstellen Sie Verknüpfungstafeln der Addition und Multiplikation der Restklassen modulo 2 und stellen Sie einen
Zusammenhang zur Aussagenlogik her.

26. Wiederholen Sie Satz 2.6 aus der Vorlesung und den zugehörigen Beweis und formulieren und beweisen Sie analoge
Aussagen über Rechtsnebenklassen.

27. Zeigen Sie, dass die in Aufgabe 30e gefundene Zuordnungsvorschrift ein injektiver Homomorphismus von D4 nach S4

ist.

28. Wir haben gesehen, dass die Restklassen modulo m mit der Addition von Restklassen (vgl. Aufgabe 26) eine zyklische
Gruppe der Ordnung m bilden, nämlich genau die Faktorgruppe Z/mZ. Sei (A, ∗) eine weitere zyklische Gruppe der
Ordnung m. Geben Sie einen Isomorphismus ϕ : Z/mZ → A an. Achten Sie dabei auf die Wohldefiniertheit von ϕ, d.h.
die Unabhängigkeit Ihrer Definition von ϕ([a]) vom Vertreter a der Restklasse.

29. Als Ordnung eines Elementes x einer Gruppe G bezeichnen wir die Mächtigkeit der von x erzeugten zyklischen Unter-
gruppe 〈x〉. Sei nun (G, ∗) eine Gruppe der Ordnung 4.

(a) Welche Ordnung können die Elemente von G haben?

(b) Klassifizieren Sie die Gruppen der Ordnung 4, indem sie die zwei Fälle unterscheiden

i. G hat ein Element der Ordnung 4.

ii. Die Ordnung jedes Elementes von G ist kleiner als 4.

Erstellen Sie Verknüpfungstafeln!
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33. Sei τ ∈ Sn eine Transposition. Zeigen Sie: sgn(τ) = −1.

34. Berechnen Sie die folgenden Produkte von Permutationen und geben Sie die inversen Permutationen der Ergebnisse
an! (Beachten Sie dabei, daß wir Permutationen wie alle Abbildungen von rechts nach links ausführen.)

(a)

(
1 2 3
1 3 2

)(
1 2 3
3 2 1

)
(b)

(
1 2 3
3 2 1

)(
1 2 3
1 3 2

) (c)

(
1 2 3 4
1 4 2 3

)(
1 2 3 4
2 4 1 3

)
(d)

(
1 2 3 4
1 4 2 3

)(
1 2 3 4
1 2 3 4

)
Schreiben Sie die Ergebnisse aus c) und d) als Produkte von Transpositionen!

35. Numerieren Sie die Ecken eines Tetraeders mit den Zahlen {1, 2, 3, 4}. Wir betrachten die Drehgruppe, d.h. alle
Drehungen, die das Tetraeder in sich überführen.

(a) Welche und wieviele sind das?

(b) Stellen Sie die möglichen Drehungen als Permutationen der Eckenmenge dar, d.h. durch Elemente von S4.

(c) Zerlegen Sie jede dieser Permutationen in disjunkte Zyklen.

(d) Schreiben Sie jede dieser Zykelzerlegungen als Produkt von Transpositionen.

(e) Zeigen, dass diese Menge von Permutationen gleich A4 ist.

36. Zeigen Sie, dass die Abbildung γ aus dem Schiebespiel ein Homomorphismus ist. Zeigen Sie weiter, dass

Im γ =

{(
1 2 3

1 2 3

)
,

(
1 2 3

2 3 1

)
,

(
1 2 3

3 1 2

)}
, Ker γ =

{
	3n : n ∈ Z

}
37. Sei A = RR die Menge aller Abbildungen von R in sich. Zeigen Sie, dass die Menge A mit der punktweisen Addition

und Multiplikation einen Ring bildet. Besitzt dieser Ring Nullteiler?



Hausaufgabe 6
Abgabe: 19.12.2014

30. Zeigen Sie: Ein Unterring ist ein Ring.

31. Schreiben Sie die folgenden Permutationen als Produkte von elementfremden Zyklen und geben Sie jeweils das Signum
an. Wie immer lesen wir Abbildungen von rechts nach links und Zyklen der Länge 1 werden nicht notiert.

(a)
(
1 2 3 4 5
2 3 5 4 1

)
(b)

(
1 2 3 4 5
2 4 3 5 1

) (c) (1 2)(2 3)(4 6 5)

(d) (1 6 8 3)(2 3 7)

(e) (2 3 7)(1 6 8 3)

(f) (2 3 7)(2 4)(1 6 8 3)

32. Sei (A, ∗) eine Gruppe und a ∈ A. Wir definieren die Abbildung ϕa durch

ϕa : A→ A, x 7→ ϕa(x) := a ∗ x ∗ a−1.

(a) Zeigen Sie, dass ϕa ein Automorphismus von A ist.

(b) Zeigen Sie, dass die Menge I(A) = {ϕa : a ∈ A} eine Untergruppe von (Aut(A), ◦) ist (◦ bezeichnet wie üblich die
Komposition von Abbildungen).

(c) Zeigen Sie, dass die Abbildung Φ: A→ Aut(A), a 7→ Φ(a) := ϕa ein Homomorphismus ist.

(d) Welche Eigenschaft kennzeichnet die Elemente von Ker Φ?

33. Man berechne Real- und Imaginärteil folgender komplexer Zahlen:

(a)
1

1 + i
√

3
, (b)

(1− i)5 − 1

(1 + i)5 + 1
.

34. Stellen Sie folgende komplexe Zahlen in trigonometrischer Form dar:

(a) −1, (b) 2− 2i, (c) (1 + i)3, (d)
1− i

1 + i
, (e)

2i

1 + i
, (f)

(1 + i
√

3)5

(1− i
√

3)3
,

(g)
cosϕ+ i sinϕ

cosϕ− i sinϕ
(ϕ ∈ R).

Berechnen Sie die vierten Potenzen dieser Zahlen sowohl unter Verwendung der binomischen Formel und als auch unter
Verwendung der Formel von Moivre.

35. Zusatzaufgabe: Zeigen Sie: Die Restklasse [a] ∈ Z/mZ ist ein zyklischer Erzeuger genau dann, wenn ggT(a,m) = 1
ist. Welche Elemente erzeugen demnach eine allgemeine zyklische Gruppe der Ordnung m?
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38. Zeigen Sie für z = a + bi, w = c + di : z · w = z · w und 1
z = a√

a2+b2
+ −b√

a2+b2
i. Drücken Sie 1

z mit Hilfe z und z aus.

Berechnen Sie z − z und z + z.

39. Man berechne Real- und Imaginärteil folgender komplexer Zahlen:

(a) (2 + 3i)(3− 2i), (b) (1 + i)3, (c) (1 + 2i)6, (d)
1 + i

1− i
, (e) ik(k ∈ Z),

(f)
a+ bi

a− bi
(a, b ∈ R, (a, b) 6= (0, 0)), (g)

(1 + i)10

(1− i)8
, (h) (a+ bi)n (a, b ∈ R, n ∈ N).

40. Stellen Sie folgende komplexe Zahlen in trigonometrischer Form dar:

(a)
1

2
+

i
√

3

2
, (b)

1

2
+

1

2
i, (c) sinα+ i(1− cosα) (α ∈ [−π, π)),

(d) 1 + cos
π

4
+ i sin

π

4
.

41. Es sei z = x + iy = r(cosϕ + i sinϕ) mit x, y ∈ R, ϕ ∈ [−π, π), r > 0 eine beliebige komplexe Zahl. Bestimmen Sie
Real- und Imaginärteil sowie Betrag und den Hauptwert des Arguments folgender komplexer Zahlen:

(a) z, (b)
1

z
, (c) z2, (d) iz, (e) zz, (f)

∣∣∣z
z

∣∣∣,
(Z)

1

1− z
für z 6= 1.

42. Berechnen Sie mit Hilfe der Formel von Moivre

(a) (1 + i)10, (b) (1− i
√

3)6, (c) (−1 + i)5, (d) (
√

3 + i)3, (e) (
√

3 + i)9.



Hausaufgabe 7
Abgabe: 9.1.2014

36. Berechnen Sie folgende Matrizenprodukte:

(a)

(
0 1 0 0

)
0
1
4
5


(b)

(
2 1 1 1

)
0
1
4
5


(c)  1 2 3 1

0 1 0 0
2 1 1 1




0
1
4
5


(d)  1 2 3 1

0 1 0 0
2 1 1 1




7
1
1
6


(e)  1 2 3 1

0 1 0 0
2 1 1 1




0 7
1 1
4 1
5 6


(f)  1 2 3 1

0 1 3 0
1 1 1 1




2 0 7
4 1 1
1 4 1
6 5 6


(g)  1 + i 2 + 3i 1

3i 1− i 3
1 1 1

 2 + 2i 0 7
4i 1 1
1 5 + 4i 3 + 2i


(h)

(
x10 + 12x5 + 3x3 + 1 x3 + 6x2 + 2 3x+ 2 x12 + 112

)
0

10x+ 2
4x3 + 2x2

5x2 + 10x+ 5


37. Sei R ein beliebiger Ring (z.B. R,C,Z). Wir betrachten Matrizen mit Einträgen aus R. Zeigen Sie:

(a) Für A,B ∈ Rk×m, C ∈ Rm×n gilt: (A+B) · C = A · C +B · C.
(b) Für A ∈ Rk×m, B, C ∈ Rm×n gilt: A · (B + C) = A ·B +A · C.
(c) Für A ∈ Rk×m, B ∈ Rm×n, C ∈ Rn×p gilt: A · (B · C) = (A ·B) · C.

Anmerkung: Damit ist insbesondere der Beweis erbracht, dass (Rn×n,+, ·) einen Ring bildet.

38. Bringen Sie das Gleichungssystem Ax = bi, i = 1, 2,mittels Algorithmus 2.24 aus der Vorlesung auf Zeilenstufenform
und geben Sie dann eine Lösung mit Hilfe von Algorithmus 2.23 an. Hierbei ist

A =


0 0 2 2 6
3 3 6 6 9
1 1 1 2 3
2 2 6 8 18

 , b1 =


2
1
0
0

 b2 =


7
1
1
6


Anmerkung: Klar, Sie haben schon in der Schule gelernt, wie man irgendwie hier eine Lösung ausrechnet. Hier geht es
darum, die beiden o.g. Algorithmen nachzuvollziehen, der Weg ist also das Ziel!



39. Lösen Sie über dem Körper F2 mit zwei Elementen das Gleichungssystem Ax = b mit

A =


1 0 1
1 1 1
0 1 0
0 0 1

 , b =


0
0
0
1


40. Es seien 4 Lampen L1, L2, L3, L4 mit 3 Schaltern S1, S2, S3 schaltbar. Die Betätigung von S1 ändert simultan den

Zustand von L1 und L2, S2 den von L2 und L3 und S3 den von L1 und L4. Kann man die Schalter so betätigen, dass

(a) genau L1 und L3 sich ändern,

(b) nur L4 sich ändert,

(c) genau L1, L2 und L3 sich ändern?

Formulieren Sie die Fragestellung als lineares Gleichungssystem über einem geeigneten Körper!
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43. Erklären Sie die Begriffe Vektorraum und Untervektorraum!

44. Seien a, b, c, d beliebig gegebene reelle Zahlen. Zeigen Sie, dass die Menge aller Lösungen (x, y) des Gleichungssystems

ax+ by = 0

cx+ dy = 0

einen Untervektorraum des R2 bildet.

45. Sei Vo die Menge aller Ortsvektoren
−−→
OP in der Ebene. Welche der folgenden Teilmengen von Vo bilden Vektorräume

über R?

(a) {
−−→
OP ∈ Vo : P liegt auf einer gegebenen Geraden},

(b) {
−−→
OP ∈ Vo : P liegt im ersten Quadranten},

(c) {
−−→
OP ∈ Vo : P liegt im ersten oder dritten Quadranten}.

46. In der Menge V = R+ der positiven reellen Zahlen wird eine Verknüpfung ⊕ definiert durch x ⊕ y := x · y. Ferner
definieren wir eine äußere Verknüpfung � : R×V → V durch (λ, x) 7→ xλ. Zeigen Sie dass V mit diesen Verknüpfungen
einen R-Vektorraum bildet.

47. Im Vektorraum C[x] der Polynome mit komplexen Koeffizienten betrachten wir Teilmengen U. Welche davon bilden
Untervektorräume?

(a) U = {p(x) ∈ C[x] : p(0) = 0}
(b) U = {p(x) ∈ C[x] : p(0) = 1}
(c) U = {p(x) ∈ C[x] : p(0) = 0 ∧ p(1) = 0}

(d) U = {p(x) ∈ C[x] : 2p(2) + p(3) = 0}
(e) U = {p(x) ∈ C[x] : degp(x) = 2}
(f) Für g(x) ∈ C[x] : U = {p(x) ∈ C[x] : g(x)|p(x)}
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48. Erklären Sie folgende Begriffe:

(a) Erzeugendensystem

(b) Basis

(c) lineare Hülle

(d) span

(e) lineare Unabhängigkeit

49. Es seien a = (1, 2, 0)T und b = (2, 1, 0)T ∈ R3.

(a) Zeigen Sie, dass a, b linear unabhängig sind.

(b) Ergänzen Sie a, b zu einer Basis.

(c) Beschreiben Sie die Menge aller Vektoren c, so dass a, b, c eine Basis von R3 bilden.

50. Für folgenden Teilmengen S ⊆ R3 gebe man die lineare Hülle von S sowie deren Dimension an:

(a) S =


 1

1
1

,

(b) S =


 1

2
0

 ,

 2
1
0

,

(c) S =


 1

0
1

 ,

 0
1
0

 ,

 1
1
1

,

(d) S =


 x

y
0

 : x, y ∈ R, x+ y = 1

,

(e) S =


 1

1
0

 ,

 −1
1
0

 ,

 1
1
1

.

51. Lösen Sie die Gleichungssysteme Ax = b mit dem Gauß’schen Algorithmus wobei

A =


4 4 0 6 8
−2 −2 2 −2 −4
−6 −6 6 −5 3

2 2 2 4 4

 , b ∈



0
0
0
1

 ,


2
0
1
2




52. Sei K ein Körper und A ∈ Km×n eine Matrix A = [a1, . . . , an] mit Spaltenvektoren aj . Ferner seien 1 ≤ j1 < j2 < . . . <

jk ≤ n die Stufenindizes einer Zeilenstufenform Ã = [ã1, . . . , ãn] von A, die man aus dem Gauß’schen Algorithmus
erhalten hat. Zeigen Sie:

(a) Die Menge der Spaltenektoren M = {aj1 , aj2 . . . , ajk} ist linear unabhängig.

(b) M ist inklusionsmaximal mit dieser Eigenschaft, d.h., falls aj /∈M eine weitere Spalte von A ist, so ist M ∪ {aj}
linear abhängig.
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53. Folgern Sie aus dem der Ergebnis aus Aufgabe 52, dass für jede Matrix A ∈M(n×m,K) gilt

Spaltenrang von A = Zeilenrang von A,

wobei der Spaltenrang die maximale Anzahl linear unabhängiger Spaltenvektoren von A ist und analog der Zeilenrang
von A die maximale Anzahl linear unabhängiger Zeilenvektoren.

54. S ⊆ V linear unabhängig ⇔ ∀ v ∈ S : v /∈ spanK(S \ {v}).

55. Zeigen Sie Beobachtung 3.24:

(a) W1 + . . .+Wk = span(W1 ∪ . . . ∪Wk),

(b) W1 + . . .+Wk ist ein Untervektorraum,

(c) dim(W1 + . . .+Wk) ≤ dim(W1) + . . .+ dim(Wk).

56. Ergänzend zum Beweis von Beobachtung 3.32: Seien v ∈ V und (Ni)i∈J eine Familie von Untervektorräumen. Dann
ist

v +
⋂
i∈J

Ni =
⋂
i∈J

(v +Ni).

57. Wir betrachten den Vektorraum K[x] der Polynome. Finden Sie zwei Unterräume U, V mit dimU =∞ = dimV und
dim(U ∩ V ) = 3.

58. Zeigen Sie: Eine Familie (vi)i∈J ist genau dann affin unabhängig, wenn für jeden Vektor va, a ∈ J ) gilt: (vi−va)i∈J\{a}
linear unabhängig.

59. Seien U, V ⊆ R4 gegeben durch

U = span

u1 =


2
0
1
2

 , u2 =


4
−2
−6

2


 , V = span

v1 =


6
0
1
6

 , v2 =


6
−2
−5

4


 .

Sei ferner W = U ∩ V.

(a) Bestimmen Sie eine Basis von W.

(b) Ergänzen Sie diese jeweils zu einer Basis von U und V.

(c) Bestimmen Sie einen Untervektorraum Z mit R4 = W ⊕ Z.
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60. (a) Geben Sie in Aufgabe 59 eine Basis von R4
/U∩V an.

(b) Sei V = W ⊕ Z und seien (w1, . . . , wr) und (z1, . . . , zs) Basen von W bzw. Z. Geben Sie eine Basis von V/W an.

61. Untersuchen Sie, ob folgende Operatoren linear sind.

(a) A : R3 → R; (x, y, z) 7→ x+ 2y + 3z,

(b) B : R2 → R2; (x, y) 7→ (x+ y, x− y),

(c) C : Rn → Rn; (xi)
n
i=1 7→ (|xi|)i=1n),

(d) D : K[x]→ K[x]; f 7→ xf ,

(e) E : R[x]→ R[x]; f 7→ f ◦ 2x+ 4,

(f) F : Rn[x]→ R2n[x]; f 7→ f ◦ x2,

(g) G : Rn[x]→ Rn[x]; f 7→ f ′,

(h) H : 2{1,2,3} → 2{2};M 7→M ∩ {2} über F2.

Welche der Operatoren sind ein Vektorraum-Isomorphismus? Hinweis: Für n ∈ N sei Kn[x] die Menge aller Polynome
vom Grade ≤ n über dem Körper K.

62. Für A = [a1, . . . , an] ∈ Km×n ist die Abbildung Kn → Km, x 7→ Ax bekanntlich eine lineare Abbildung. Sei nun
umgekehrt F : Kn → Km eine beliebige lineare Abbildung. Zeigen Sie: es gibt eine eindeutig bestimmte Matrix A mit
der Eigenschaft: ∀x ∈ Kn : F (x) = Ax.

63. Sind folgende Abbildungen F linear auf Rn?

(a) F (x) =

(
n∑
i=1

αixi, 0, 0, . . . , 0

)
, αi ∈ R,

(b) F (x) = (|x1|, |x2|, . . . , |xn|),
(c) F (x) = (x21, x

2
2, . . . , x

2
n),

(d) F (x) =
(

(x1 + 1)2 − (x1 − 1)2, 0, 0, . . . , 0
)

,

(e) F (x) = (α, 0, 0, . . . , 0), α ∈ R,

wobei x = (x1, x2, . . . , xn) ∈ Rn ist. Geben Sie die zugehörige Matrixdarstellungen [A] der linearen Abbildungen F
gemäß Aufgabe 62 an!

64. Sei

A :=

 1 2 3 4
5 6 7 8
9 10 11 12


und F : R4 → R3, x 7→ Ax.

(a) Bestimmen Sie KerF und ImF !

(b) Überprüfen Sie die Dimensionsformel an diesem Beispiel.

(c) Bestimmen Sie eine Basis des R4, die eine Basis von KerF enthält.



Hausaufgabe 8
Abgabe: 30. Januar 2015

41. Seien a, b, c, d beliebig gegebene reelle Zahlen. Zeigen Sie, dass die Menge aller Zahlenpaare (u, v), für die das Gle-
ichungssystem

ax+ by = u

cx+ dy = v

eine Lösung (x, y) ∈ R2 hat, einen linearen Unterraum des R2 bildet.

42. Sei A = [a1, . . . , an] ∈ Km×n, b ∈ Km und es sei x̂ ∈ Lös(A, b). Zeigen Sie: Lös(A, b) = x̂+ Lös(A, 0).

43. Berechnen Sie U ∩ V für die beiden affinen Unterräume

U =


0
0
1
0

+ span




1
0
1
2

 ,


1
3
1
0


 , V =


0
1
0
0

+ span




0
1
2
1

 ,


3
1
0
1


 .

Geben Sie ein möglichst einfaches Beispiel für zwei Ebenen U = u + span(u1, u2) V = v + span(v1, v2) im R5 an mit
U ∩ V = ∅ und (u1.u2, v1, v2) linear unabhängig. Gibt es so ein Beispiel auch in R4? (Bitte alles mit Begründung.)

44. Untersuchen Sie, ob die Abbildung

f : C2[t]→ C3, at2 + bt+ c 7→ (a− c, b− c, a+ c)

ein Vektorraum-Isomorphismus ist!

45. Geben Sie zwei verschiedene Basen in R4 an, die gleichzeitig


1
1
0
0

 und


0
0
1
1

 enthalten!

46. Untersuchen Sie, ob folgende Operatoren linear sind:

(a) A : R3 → R3; (x, y, z) 7→ a (a ∈ R3 konst.),

(b) B : R3 → R3; (x, y, z 7→ (x, y, z) + a (a ∈ R3 konst.),

(c) C : R3 → R; (x, y, z) 7→ x2 + 2y,

(d) D : Rn → Rn; (xi)
n
i=1 7→

(
n∑
i=1

aixi, 0, . . . , 0

)
, (ai)

n
i=1 ∈ Rn.

Finden Sie, diese Aufgaben sind das Letzte? Stimmt! Endlich mal was richtig! Dies ist die letzte Hausaufgabe für dieses Semester.
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65. In dieser Aufgabe sollen einige Sachverhalte über den Quotientenraum, den Fakorisierungssatz und den Homomor-

phiesatz illustriert werden (Sätze 4.13-4.15, Aufgabe 60b). Sei dazu N = span

 0
0
1

 ⊆ R3

(a) Geben Sie einen Unterraum U ⊆ R3 mit R3 = U ⊕N an.

(b) Welche der Nebenklassen v1+N, v2+N, v3+N ∈ R3
/N sind gleich, wobei v1 =

 1
2
3

 , v2 =

 1
2
0

 , v3 =

 2
1
0

?

Wie kann man allgemein die Gleichheit zweier Nebenklassen charakterisieren?

(c) Wohldefiniertheit der Addition und skalaren Multiplikation von Nebenklassen: Zeigen Sie, dass die Additionen
(v2 + N)+̂(v3 + N) = (v2 + v3) + N und (v′2 + N)+̂(v′3 + N) = (v′2 + v′3) + N tatsächlich dieselbe Nebenklasse

liefern wobei v′2 =

 1
2
4

 , v′3 =

 2
1
1

 . Ebenso für 3 ·̂ (v2 + N) = (3 · v2) + N und 3 ·̂ (v′2 + N) = (3 · v′2) + N.

Zeigen Sie den allgemeinen Fall.

(d) Geben Sie eine Basis von R3
/N an.

(e) Wir betrachten die Abbildung R3 → R2, v 7→ Av mit

A :=

[
1 0 0
0 0 0

]
Bestimmen Sie eine Basis von Ker A und eine von Im A. Berechnen Sie Av3, Av

′
3 und die Bildmengen von v3 +N,

v′3 +N, v3 + Ker A, v′3 + Ker A unter A.

(f) Zeigen Sie: Die Abbildung A : R3
/N → R2, v +N 7→ Av ist wohldefiniert und linear. Was ist Ker A?

(g) Wie kann man die Gleichheit von Nebenklassen aus R3
/Ker A charakterisieren?

(h) Die Abbildung A : R3
/Ker A → R2, v + Ker A 7→ Av ist wohldefiniert, linear und injektiv.

66. Sei V ein endlichdimensionaler K-Vektorraum, (EndK(V ),+, ◦) sein Endomorphismenring und O ∈ EndK(V ) die
Nullabbildung, also ∀v ∈ V : O(v) = 0V . Zeigen Sie die Äquivalenz folgender Aussagen über ein f ∈ EndK(V ):

(a) f 6= O und f ist nicht bijektiv.

(b) f ist Linksnullteiler, d.h. f 6= O und ∃ g ∈ EndK(V ) \ {O} : f ◦ g = O.
(c) f ist Rechtsnullteiler, d.h. f 6= O und ∃ g ∈ EndK(V ) \ {O} : g ◦ f = O.

Im endlichdimensionalen Fall ist also f entweder invertierbar oder Nullteiler. Kann man die Voraussetzung “endlichdi-
mensional” fallen lassen?

Lösung: Vorbemerkung: Weil V endlichdimensional ist gilt wegen Korollar 4.12: (a) ⇔ (a1) f 6= O und f ist nicht
injektiv ⇔ (a2) f 6= O und f ist nicht surjektiv. Wir zeigen (a1) ⇔ (b) und (a2) ⇔ (c).

(a1) ⇒ (b): f nicht injektiv
4.7(b)⇒ ∃w ∈ V, w 6= 0 und f(w) = 0. Konstruiere g so: Sei (bi)i∈J eine Basis von V. Nach

Satz 4.8 gibt es genau eine lineare Abbildung g mit der Eigenschaft g(bi) = w, i ∈ J . Damit ist Im g = span(w) ⊆ Ker f
und insbesondere g 6= O und ∀v ∈ V : f ◦ g(v) = 0 also f ◦ g = O.
(b) ⇒ (a1): ∃ g 6= O : f ◦ g = O ⇒ ∀v ∈ V : f ◦ g(v) = 0 ⇒ ∀v ∈ V : g(v) ∈ Ker f. Da g 6= O, existiert v ∈ V mit
g(v) = w 6= 0. Da ja auch w ∈ Ker f, ist f nicht injektiv wegen 4.7 (b).

(a2) ⇒ (c): f nicht surjjektiv
4.7(a)⇒ ∃w ∈ V : w /∈ Im f. Sei (bi)i∈J eine Basis von Im f. Da w /∈ Im f = span ((bi)i∈J )

ist auch die um w erweiterte Famile (w, bi)i∈J linear unabhängig (vgl. Beobachtung 3.10 (b)). Wähle z ∈ V \ {0}
(etwa z = w). Nach Satz 4.8 (2) gibt es mindestens eine lineare Abbildung g mit g(w) = z und g(bi) = 0∀i ∈ J . Für
g gilt damit: g 6= O und Im f ⊆ Ker g und damit ∀v ∈ V : g ◦ f(v) = 0.

(c) ⇒ (a2): Da g 6= O ist Ker g ( V. Da g ◦ f = O, ist ∀v ∈ V : f(v) ∈ Ker g, also Im f ⊆ Ker g ( V und damit f
nicht surjektiv.

Beachte: V endlichdimensional brauchte man nur für die Äquivalenzen (a) ⇔ (a1) ⇔ (a2), die ja im unendlichdi-
mensionalen nicht gelten! Die anderen Schlüsse (a1) ⇔ (b) und (a2) ⇔ (c) benutzen nicht die Endlichkeit der Basen.
Als Beispiele im unendlichdimensionalen betrachten wir den Folgenraum KN und f1 : KN → KN, f1((x1, x2, x3, . . .)) =
(x2, x3, . . .). f1 ist surjektiv, aber nicht injektiv, denn (1, 0, 0, . . .) ∈ Ker f1. Als g1 nimm g1((x1, x2, . . .)) = (x1, 0, 0, . . .),
dann ist f1 ◦ g1 = O. Andererseits ist f2 : KN → KN, f2((x1, x2, . . .)) = (0, x1, x2, . . .) injektiv, aber nicht surjektiv.
Mit g2 = g1 gilt g2 ◦ f2 = O.

67. Wie testet man eine Matrix A ∈ Kn×n auf Invertierbarkeit und wie rechnet man die Inverse aus?



68. Entscheiden Sie ob folgende Familien Basen von (R3)∗ bzw. R3 sind und bestimmen Sie ggf. die duale Basis.

A∗ = ([1, 2, 1], [2, 1, 2], [0, 3, 1]), B =

 1
2
1

 ,

 2
1
2

 ,

 0
3
1


69. Wir betrachten im Vektorraum V = R1[x] der Polynome vom Grade ≤ 1 die Elemente p1(x) = 1+x und p2(x) = 2+x.

Zeigen, Sie dass B = (p1, p2) eine Basis von V bilden. Seien B∗ = (p∗1, p
∗
2) die duale Basis und f1(x) = 4 + x, f2(x) =

3 + 5x. Berechnen Sie p∗i (fj), 1 ≤ i, j ≤ 2.

70. Sei V ein K-Vektorraum, dimV = n und V ∗ der Dualraum. Zeigen Sie die Äquivalenz der folgenden Aussagen:

(a) Die Elemente v∗1 , . . . , v
∗
n sind l.a. in V ∗.

(b) Es gibt v ∈ V, v 6= 0V mit v∗1(v) = . . . = v∗n(v) = 0K .

Lösung: Es bezeichne Γ = span(v∗1 , . . . , v
∗
n) ⊆ V ∗ und Γ◦ = {v ∈ V : ϕ(v) = 0∀ϕ ∈ Γ}. Nach Satz 4.19 gilt die

Dimensionsformel dim Γ + dim Γ◦ = dimV ∗ = dimV. Die Lösung der Aufgabe passt nun in eine Zeile:

v∗1 , . . . , v
∗
n l.a.⇔ dim Γ ≤ n− 1 = dimV − 1⇔ dim Γ◦ = n− dim Γ ≥ 1⇔ ∃v ∈ Γ◦, v 6= 0.



Hausaufgabe 9
Abgabe: Brauchen Sie nicht abzugeben. Dürfen Sie aber.

47. Sei V ein dreidimensionaler R-Vektorraum, (b1, b2, b3) eine Basis von V und N = span(b3).

(a) Geben Sie einen Unterraum U ⊆ V mit V = U ⊕N an.

(b) Welche der Nebenklassen v1 + N, v2 + N, v3 + N ∈ V/N sind gleich, wobei v1 = b1 + 2b2 + 3b3, v2 = b1 + 2b2,
v3 = 2b1 + b2? Wie kann man allgemein die Gleichheit zweier Nebenklassen charakterisieren?

(c) Wohldefiniertheit der Addition und skalaren Multiplikation von Nebenklassen: Zeigen Sie, dass die Additionen
(v2 +N)+̂(v3 +N) = (v2 +v3)+N und (v′2 +N)+̂(v′3 +N) = (v′2 +v′3)+N tatsächlich dieselbe Nebenklasse liefern
wobei v′2 = b1 + 2b2 + 4b3, v

′
3 = 2b1 + b2 + b3. Ebenso für 3 ·̂ (v2 +N) = (3 · v2) +N und 3 ·̂ (v′2 +N) = (3 · v′2) +N.

Zeigen Sie den allgemeinen Fall.

(d) Geben Sie eine Basis von V/N an.

(e) Sei W ein zweidimensionaler R-Vektorraum und mit Basis (c1, c2) Wir betrachten die Abbildung A : V →W, die
eindeutig bestimmt ist durch Ab1 = c1, Ab2 = Ab3 = 0W Bestimmen Sie eine Basis von Ker A und eine von Im A.
Berechnen Sie Av3, Av

′
3 und die Bildmengen von v3 +N, v′3 +N, v3 + Ker A, v′3 + Ker A unter A.

(f) Zeigen Sie: Die Abbildung A : V/N →W, v +N 7→ Av ist wohldefiniert und linear. Was ist Ker A?

(g) Wie kann man die Gleichheit von Nebenklassen aus V/Ker A charakterisieren?

(h) Die Abbildung A : V/Ker A → R2, v + Ker A 7→ Av ist wohldefiniert, linear und injektiv.

48. Sei (R,+, ·) ein nicht notwendig kommutativer Ring mit Einselement 1. Ein Element v ∈ R heißt Linksinverses zu
einem Element u ∈ R, wenn v · u = 1. Entsprechend heißt ein Element v ∈ R Rechtsinverses zu u ∈ R, wenn u · v = 1.
Zeigen Sie:

(a) Ist x ∈ R ein Linksnullteiler (vgl. Aufgabe 66), dann hat x kein Linksinverses. Analog haben Rechtsnullteiler kein
Rechtsinverses.

(b) Für den Endomorphismenring EndK(V ) eines endlichdimensionalen K-Vektorraumes gelten nach Aufgabe 66 auch
die Umkehrungen. Stimmt das auch für allgemeine Ringe? Beweis oder Gegenbeispiel!

49. Sei B :=
(
b1 = x2 + 1, b2 = x2 + x, b3 = x2 + 2x+ 1

)
gegeben.

(a) Zeigen Sie, dass B eine Basis des R-Vektorraumes V aller reellen Polynome vom Grade ≤ 2 ist.

Welche der Basisvektoren kann man gegen

(b) x2, (c) 3x2 + 2x, (d) 2x2 + 2x, bzw. (e) x+ 1

austauschen? Sei ferner B∗ = (b∗1, b
∗
2, b
∗
3) die zu B duale Basis von V ∗.

(f) Berechnen Sie b∗i (x
j−1) für 1 ≤ i, j ≤ 3.


