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1. Sei (X,A, µ) ein Maßraum. Zeigen Sie:

(a) Lp
K

= Lp
K
(X,A, µ) ist ein K-Vektorraum für alle p ∈ [1,∞].

Beweis: Die Rechenregeln vererben sich vom Körper K, sodass lediglich die
Abgeschlossenheit zu zeigen ist. Seien dazu u, v ∈ Lp

K
Falls p endlich ist,

gilt Lp
K

= {f : X 7→ K messbar | |f |p ∈ L1}. Im Falle p = ∞ gilt Lp
K

ist die Menge aller messbaren wesentlich beschränkten Funktionen. Da gemäß
Lemma 3.7 alle messbaren Funktionen einen Vektorraum bilden, und offenbar
auch alle wesentlich beschränkten Funktionen einen Vektorraum bilden (offen-
bar abgeschlossen bzgl. Linearkombinationen), ist der letztere Fall erledigt.

Im ersten Fall wissen wir, dass u+ v messbar ist, damit auch |u+ v| und mithin
auch |u + v|p. Da |u + v|p ≤ (|u|+ |v|)p ≤ (2 max |u|, |v|)p ≤ 2p(|u|p + |v|p) ∈ L1

K

folgt mit Aufgabe 6.3 (iii ⇒ i) auch |u + v|p ∈ L1
K
.

Multiplikation mit λ ∈ K:

u ∈ Lp
K
⇒ |u|p ∈ L1

K
⇒ |λp||up| ∈ L1

K
⇒ |λu|p ∈ L1

K
⇒ λp ∈ Lp

K

(b) || · ||p definiert eine Halbnorm auf Lp.

Beweis:

• Nichtnegativität: || · ||p ist nichtnegativ gemäss Definition (im Falle p = ∞)
bzw. wegen |f |p ≥ 0 =⇒

∫

X

|f(x)|pdµ(x) ≥
∫

X

0dµ(x) = 0

• Homogenität: p = ∞: Es gilt µ({x ∈ X|f(x) > essup(f)}) = µ
⋃

k∈N+

{x ∈

X|f(x) > essup(f) + 1
k
} ≤

∑

N+

0 = 0. Damit ist essup(f) = min{M ≥

0| |f | ≤ M µ − f.ü.}
|λf(x)| = |λ||f(x)| ≤ λM ⇐⇒ |f(x)| ≤ M Also ||λf ||∞ = |λ| · ||f ||∞.
Sonst:

||λf ||p =





∫

X

|λf(x)|pdµ(x)





1

p

=





∫

X

|λ|p|f(x)|pdµ(x)





1

p

=



|λ|p
∫

X

|f(x)pdµ(x)





1

p

= |λ| · ||f ||p

• Dreiecksungleichung: Korollar 8.4 falls p < ∞.
Falls p = ∞ gilt |u(x)+v(x)| ≤ |u(x)|+ |v(x)| ≤ ||u||p + ||v||p für beliebiges
auf dem Komplement der Vereinigung zweier Nullmengen, also dem Kom-
plement einer Nullmenge. Mit der Definition von ||u + v||∞ ergibt sich die
Dreiecksungleichung.

2



(c) Für f ∈ Lp : ||f ||p = 0 ⇐⇒ f = 0 gilt µ − f.ü..

Beweis: Für p < ∞ gilt: ||f ||p = 0 ⇐⇒
∫

X

|f(x)|pdµ(x) = 0 ⇐⇒ |f(x)|p =

0 µ − f.ü. ⇐⇒ |f(x)| = 0 µ − f.ü. ⇐⇒ f(x) = 0 µ − f.ü. Für p = ∞ gilt
||f ||∞ = 0 ⇐⇒ |f | = 0 µ − f.ü. ⇐⇒ f = 0 µ − f.ü.

2. Sei (X,A, µ) ein σ-endlicher Maßraum und f ∈ M(X,A) wesentlich beschränkt.
Zeigen Sie:

(a) g ∈ Lp =⇒ f · g ∈ Lp,

Beweis: Wenn f und g messbar, so gibt es Folgen einfacher Funktionen φn und
γn, die jeweils punktweise gegen sie konvergieren (nach Folgerung 3.6). Dann
konvergiert die Folge einfacher Funktionen φn · γn punktweise gegen f · g womit
f · g messbar ist. Entsprechend ist auch |f · g|p messbar.

Fall p < ∞: Desweiteren gilt |f · g| ≤ ||f ||∞ · |g| bis auf eine Ausnahmemenge
vom Maß 0. Folglich ist |f · g|p ≤ ||f ||p

∞
· |g|p bis auf eine Ausnahmemenge vom

Maß 0. Aus Aufgabe 6.3) folgt mit ||f ||p
∞
· |g|p ∈ L1 und |f · g|p messbar nun

auch |f · g|p ∈ L1.

Fall p = ∞: in Teil b).

(b) ||f · g||p ≤ ||f ||∞ · ||g||p für g ∈ Lp,

Beweis (p < ∞): Wegen|f · g| ≤ ||f ||∞ · |g| bis auf eine Ausnahmemenge vom
Maß 0 folgt mit Linearität des Integrals:

∫

X

|f · g|dµ(x) ≤ ||f ||∞ ·
∫

X

|g|dµ(x) und

schließlich wegen Monotonie von (·)
1

p auch die Behauptung.

(p = ∞): Bis auf je eine Nullmenge sind ||f ||∞ und ||g||∞ obere Schranken von
|f | und |g|. Wegen Monotonie der Multiplikation bei positiven Zahlen ist daher
(bis auf die Vereinigung der beiden Nullmengen - was wieder eine Nullmenge
ist) ||f ||∞ · ||g||∞ obere Schranke von |f · g|. Mit der Definition von ||f · g||∞
folgt die Behauptung von a) und b).

(c) ||f ||∞ = sup
{

|
∫

fgdµ|
∣

∣ g ∈ L1, ||g||1 ≤ 1
}

Beweis:

Sei (A∗

n)n∈N eine aufsteigende ausschöpfende Folge messbarer Mengen. Für jedes
n ∈ N ist A′

n := {x ∈ X| ||f ||∞ − 1
n

< |f(x)| ≤ ||f ||∞} keine Nullmenge, da
ansonsten ||f ||∞ − ε < ||f ||∞ folgen würde. Folglich gibt es ein dazu passendes
m ∈ N derart, dass für An := A∗

m ∩ A′

n auch 0 < µ(An) gilt. Insbesondere
haben wir aber auch µ(An) < µ(A∗

m) < ∞. Sei gn =
χAn

µ(An)
gesetzt. Es folgt

gn ∈ L1, ||gn||1 = 1 sowie
∫

fgndµ ≥ ||f ||∞ − 1
n
. Die Behauptung folgt mit

n → ∞ und Teil b).

Wo wird die σ-Endlichkeit verwendet?

Sie wird benötigt, um gn definieren zu können. Ist beispielsweise µ(A) = ∞ wenn A

ein gewisses Element x enthält, und f = χx, so ist ||f ||1 = 1, jedoch ist jedes g ∈ L1

an der Stelle x gleich 0. Damit ist fg die Nullfunktion und die Aussage gilt nicht
mehr.

3



3. Zeigen Sie, dass die Oberfläche σn−1 und das Volumen ωn der n-dimensionalen Ein-
heitskugel durch σn−1 = nωn verknüpft sind. Hinweis: Integrieren Sie eine geeignete
radialsymmetrische Funktion auf R

n mit Hilfe sphärischer Koordinaten!

Beweis: Sei u : R
n 7→ R als charakteristische Funktion der n-dimensionalen Einheit-

skugel gewählt. Dann ist u(x) = χ[0,1](|x|). Mit Korrolar 9.7 folgt

ωn =

∫

Rn

u(x)dλn(x) = σn−1

∞
∫

0

rn−1χ[0,1](r)dλ(r)

= σn−1

1
∫

0

rn−1dλ(r) = σn−1

(

1n

n
−

0n

n

)

=
σn−1

n

und damit die Behauptung.
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