
René Schneider

With a new refinement paradigm

towards anisotropic adaptive FEM

on triangular meshes

CSC/13-02

Chemnitz Scientific Computing

Preprints

Impressum:

Chemnitz Scientific Computing Preprints — ISSN 1864-0087

(1995–2005: Preprintreihe des Chemnitzer SFB393)

Herausgeber:
Professuren für
Numerische und Angewandte Mathematik
an der Fakultät für Mathematik
der Technischen Universität Chemnitz

Postanschrift:
TU Chemnitz, Fakultät für Mathematik
09107 Chemnitz
Sitz:
Reichenhainer Str. 41, 09126 Chemnitz

http://www.tu-chemnitz.de/mathematik/csc/

Chemnitz Scientific Computing

Preprints

René Schneider

With a new refinement paradigm

towards anisotropic adaptive FEM

on triangular meshes

CSC/13-02

CSC/13-02 ISSN 1864-0087 September 2013

Abstract
Adaptive anisotropic refinement of finite element meshes allows to reduce the com-

putational effort required to achieve a specified accuracy of the solution of a PDE prob-
lem. We present a new approach to adaptive refinement and demonstrate that this al-
lows to construct algorithms which generate very flexible and efficient anisotropically
refined meshes, even improving the convergence order compared to adaptive isotropic
refinement if the problem permits.

Contents

1 Introduction 1

2 Extension of FEM ansatz spaces 2

3 Optimality of the extension 4

4 Application 1: graded refinement 6

5 Application 2: anisotropic refinement in 2D 8
5.1 Edge error indicator . 9
5.2 Edge oriented anisotropic refinement 12

5.2.1 Red-green-blue-refinement 15
5.2.2 Mesh reconnection by edge swapping 17
5.2.3 Mesh coarsening by edge collapsing 18
5.2.4 Anisotropic adaptive algorithm 20

6 Numerical experiments 21
6.1 Poisson equation on the unit-square 21
6.2 Poisson equation on an L-shape domain 32
6.3 Reaction-Diffusion . 34

7 Conclusions and outlook 35

1 Introduction

Adaptive finite element meshes are well established as a tool to efficiently com-
pute solutions to many PDE problems, e.g. [2, 7]. For many application problems
the solution features that are to be approximated by adaptive refinement are of
anisotropic character, i.e. these solutions change rapidly in one spatial direction,
but slowly in another. In these cases the most efficient approximations can be
achieved on anisotropically refined meshes, where the mesh length scales in dif-
ferent directions match the solution behaviour, e.g. [4]. Even though this is well
known, the majority of adaptive finite element codes exclude anisotropic meshes.

Most of the recent research into automatic adaptive anisotropic refinement has
separated the error estimation, computation of desired mesh length scales and the
actual refinement, e.g. [11, 16, 21, 28]. This has been enabled by the description
of desired mesh anisotropy via an anisotropic mesh metric and mesh generation
software that is able to construct meshes conforming with a given metric field [9,
20]. In each step of such an adaptive procedure the whole mesh is replaced by a
new mesh, thus no hierarchy information is retained that could be used in multigrid
or multilevel solution techniques for the linear systems.

For quadrangles there are several anisotropic refinement approaches based on
splitting an initial quadrangle into two, thereby doubling or halving the aspect ratio
[5, 29, 31]. In such a refinement strategy one can keep track of the mesh hierarchy
and utilise it in the linear solvers. However, anisotropy can only be generated with
stretching directions predefined by the initial mesh, realignment with (arbitrary)
directions of solution features is not possible.

For this reason several authors attempt to generalise this procedure to triangular
meshes (e.g. [1, 18, 33]), which offer greater geometric flexibility. By bisecting
a triangle at one of its edges, one can at least choose the direction in which the
aspect ratio is increased among three edges of the triangle. But this is not quite as
simple as it might look at first sight. While this kind of refinement does increase
anisotropy, it can not achieve the asymptotic behaviour of unidirectional refinement
[32, Section 4.3], which is ignored by most of the authors.

In the literature dealing with anisotropic triangular meshing based on mesh
metrics, this limitation is overcome by combining element bisection with other
local mesh modification operations. In this work we will propose a similar strategy,
but without consideration of a mesh metric.

Mesh metrics (as generalised mesh diameters) are a paradigm in the under-
standing of the finite element method. However, in our view the mesh metric is
only a useful tool in characterising (anisotropic) meshes for a priori analysis of
methods. It is not a natural requirement of the finite element method itself. This
method can be formulated and applied purely based on a mesh of the domain. El-
ement diameters h and mesh metrics are only one tool to analyse the behaviour of
the method. This analysis tells us that the approximation error is reduced if the el-
ement diameter (in certain directions) is reduced enough, because an upper bound
is reduced.

1

We hope that a more direct approach to modify the mesh in a way that is guar-
anteed to reduce the error will overcome artificial limitations which may be implied
by the mesh metric view of the finite element method. This may enable a differ-
ent and hopefully better perspective, especially in the context of anisotropic finite
elements.

Thus, in this work we propose as the new paradigm for adaptive mesh refine-
ment to consider the effects of individual mesh modifications in terms of their effect
on the solution itself, without intermediate steps such as a mesh metric, or at least
not restricting to this one tool but considering alternatives.

From this new paradigm we derive new anisotropic adaptive refinement al-
gorithms, which are demonstrated to achieve improved convergence order if the
solution has lower dimensional features. They are also demonstrated to perform
very well for a class of examples of singularly perturbed reaction diffusion equa-
tions. Unfortunately the proposed criterion that is very successful in guiding this
anisotropic refinement turns out not to be reliable enough as the sole guide for
judging the quality of a given finite element solution, which will provide us with
opportunities for future research.

The main part of this paper is organised as follows. We propose a new way of
looking at the mesh refinements as extensions to the finite element ansatz space in
Section 2. Resulting from this we get a way to chose “best extensions” from the
available extensions. In Section 3 we analyse in what way these are “best exten-
sions”. In Sections 4 and 5 we consider two possibilities how this can be exploited
to effect automatic adaptive anisotropic mesh refinement, where the methods form
Section 5 appears to offer better perspectives for practical application. The mer-
its of the resulting proposed refinement algorithms are then studied in Section 6
on a suitable set of example problems. Conclusions and an outlook are given in
Section 7.

2 Extension of FEM ansatz spaces

Let us consider the genaral, abstract weak formulation of a PDE problem

a(u, v) = b(v) ∀v ∈ V (1)

and the corresponding Galerkin discretisation

a(uh, vh) = b(vh) ∀vh ∈ Vh, (2)

where V denotes the function space associated with the PDE problem, and Vh ⊂ V
the finite dimensional ansatz space of the discretisation, e.g. the finite element
function space, a(., .) is a bilinear form on V and b(.) a linear functional on V.

The aim of adaptive mesh refinement can be interpreted as seeking a ansatz
space Vh, such that for the solution of the discrete problem (2) the error in some

2

appropriate norm is below a certain tollerance tol > 0,

|||u− uh||| ≤ tol, (3)

keeping the dimension of Vh as low as possible.
As discussed in Section 1, first we will restrict ourselves to construct Vh only

by successive refinement of an initial space V(0)
h , other modifications of Vh will be

discussed later. A refinement is the addition of a set of linearly independent basis
functions {vn+1, . . . , vn+`}, to a given basis of an ansatz space V(k)

h in order to
define the refined ansatz space V(k+1)

h , thus increasing the dimension of Vh by `.
These new basis functions should obviously satisfy

vi ∈ V and vi 6∈ V(k)
h ∀i = n+ 1, . . . , n+ `.

Which basis functions can be added is usually restricted by the construction
method of the ansatz spaces and dependent on the current space V(k)

h , thus we
define the set of possible basis functions for the refinement as S(k)+h ⊂ V, which
is usually a finite set of linearly independent functions, and replace the first of the
above requirements by vi ∈ S(k)+h .

Now, in order to keep the dimension of Vh during the refinement process as
low as possible, one may consider adding only one new basis function in each
refinement step (` = 1). While this makes little sense for most applications, be-
cause one is usually also interested in keeping the number of refinement steps low
due to the associated cost of each step, we shall explore this scenario of adding
only one function per step in order to guide the selection of good functions for the
refinement.

In order that one of the possible new ansatz functions ṽ ∈ S(k)+h makes any
difference to the solution of the discrete problem (2), it has to satisfy

a(uh, ṽ) 6= b(ṽ),

i.e. as a test-function it has to emphasise the error in the equation (2) in comparison
to (1).

In this context it makes sense to choose ṽ ∈ S(k)+h such that it maximises the
residual,

|a(uh, ṽ)− b(ṽ)|
|||ṽ|||

→ max
ṽ∈S(k)+h

. (4)

We propose to use (4) as the guiding principle for the adaptive refinement of
the ansatz spaces. It’s main advantage is that it can be applied to a very large
class of problems, as it only requires the weak form (1) of the PDE, the Galerkin
discretisation (2) and an appropriate norm |||.|||.

The aim of this paper is an initial evaluation of the possibilities and properties
of this approach. To simplify this, for the rest of this paper we restrict ourselves to
the case where the following assumptions are met.

3

Assumption 1. The bilinear form a(., .) be symmetric, continuous and coercive,
with |||.||| denoting the associated energy norm |||v||| :=

√
a(v, v).

In principle (4) should also be applicable in a more general setting. However,
this shall be left to follow up studies.

In the following sections we shall first further justify this choice and explore its
merits on an abstract level, before we discuss possible mesh refinement strategies
arising from this idea.

3 Optimality of the extension

In [2, equation (6.4)] we find the following characterisation of the error in the
energy norm

|||u− uh||| = sup
06=ṽ∈V

|a(uh, ṽ)− b(ṽ)|
|||ṽ|||

, (5)

which can be shown to hold under Assumption 1. In fact, under these conditions
the sup in (5) is achieved for all ṽ = λ(u − uh), λ ∈ R. Thus if we were able to
add eh := u−uh to the ansatz space, the refinement would reduce the error to zero
in one step. Of course, solving this maximisation problem is equivalent to solving
the PDE (1) itself, so this is not a practical option.

In a realistic setting, the following lemma justifies (4) as criterion.

Lemma 1. Let Assumption 1 hold and let a set S∗ ⊂ V of possible refinement
functions be given. For arbitrary ṽ ∈ S∗ let Ṽh := Vh∪ span(ṽ) denote the ansatz
space extended by the span of the function ṽ, and let ũh ∈ Ṽh be the corresponding
solution of the Galerkin discretisation (2) on Ṽh. Then it holds for the errors

|||u− ũh|||2 ≤ |||u− uh|||2 −
[
|a(uh, ṽ)− b(ṽ)|

|||ṽ|||

]2
.

Proof. Consider ṽ ∈ S∗ fixed, c ∈ R variable, defining ũ∗h := uh − c ṽ. Due to the
best-approximation property of the FEM (see e.g. [15, Theorem 1.3]) we have

|||u− ũh|||2 ≤ |||u− ũ∗h|||2

= a(u− uh + c ṽ, u− uh + c ṽ)

= |||u− uh|||2 + 2c a(u− uh, ṽ) + c2a(ṽ, ṽ).

Now choose c such that the righthand side on the last line is minimized with respect
to c. The necessary and sufficient condition for this is 2 a(u−uh, ṽ)+2ca(ṽ, ṽ) =
0, thus

c = −a(u− uh, ṽ)

a(ṽ, ṽ)
.

4

This specific choice gives

|||u− ũh|||2 ≤ |||u− ũ∗h|||2

= a(u− uh + c ṽ, u− uh + c ṽ)

= |||u− uh|||2 − 2
[a(u− uh, ṽ)]2

a(ṽ, ṽ)
+

[a(u− uh, ṽ)]2

a(ṽ, ṽ)

= |||u− uh|||2 −
[
a(u− uh, ṽ)

|||ṽ|||

]2
= |||u− uh|||2 −

[
b(ṽ)− a(uh, ṽ)

|||ṽ|||

]2
.

Note that the error is reduced by at least the quantity which is maximised in
(4). Thus, the selection principle (4) minimises this upper bound on the error in
each step.

If in addition we require a(., .) orthogonality of S∗ to Vh, we get the following
optimality result.

Lemma 2 (Optimal error reduction). Let Assumption 1 hold and S∗ ⊂ V be either
a finite set of linear independent functions, or a compact set. Let this S∗ be a(., .)-
orthogonal to Vh, i.e. a(S∗,Vh) = 0, and let ṽ be a global maximiser

ṽ = arg max
v∈S∗

|a(uh, v)− b(v)|
|||v|||

.

Then the extended ansatz space Ṽh := Vh ∪ span(ṽ) with the resulting Galerkin
solution ũh ∈ Ṽh fulfills the best approximation property

|||ẽ||| := |||u− ũh||| = min
v∗∈S∗

(
min

v∈Vh∪span(v∗)
|||u− v|||

)
. (6)

Proof. For any v∗ ∈ S∗ consider an arbitrary u∗ ∈ Vh ∪ span(v∗). This can be
represented as

u∗ = vh + c v∗,

with a vh ∈ Vh and c ∈ R. Since a(S∗,Vh) = 0 we get

|||u− u∗|||2 = a(u− vh + c v∗, u− vh + c v∗)

= |||u− vh|||2 + 2 c a(u− vh, v∗) + c2 |||v∗|||2

= |||u− vh|||2 + 2 c a(u, v∗)− 2 c a(vh, v∗)︸ ︷︷ ︸
=0

+c2 |||v∗|||2

= |||u− vh|||2 + 2 c a(u, v∗) + c2 |||v∗|||2.

5

x i x i+1x γ

Figure 1: Graded refinement of an edge, with xγ = (1−γ)xi+γ xi+1, γ ∈ (0, 1).

In order to find the min in the parentheses in (6), for any given v∗ ∈ S∗, we can let

|||u− vh|||2 → min
vh∈Vh

and 2 c a(u, v∗) + c2 |||v∗|||2 → min
c∈R

independently. These minima are attained for

vh = uh and c = −a(u, v∗)

|||v∗|||2
,

giving

min
v∈Vh∪span(v∗)

|||u− v||| = |||u− uh|||2 − 2
(a(u, v∗))2

|||v∗|||2
+

(a(u, v∗))2

|||v∗|||2

= |||u− uh|||2 −
(a(u, v∗))2

|||v∗|||2
.

The term |||u− uh|||2 is independent of v∗, thus the overall minimum on the right
hand side of (6) is taken for v∗ = ṽ.

Finally, since ũh is the unique minimiser of min
v∈Vh∪span(v∗)

|||u − v|||, equation

(6) follows.

Next we will discuss possible applications of the proposed refinement selec-
tion.

4 Application 1: graded refinement

We consider the P1 FE discretisation of a 1D Dirichlet problem of the Poisson
equation:

Example 1.

−u′′(x) = f(x) on Ω := (0, 1),

u(0) = u(1) = 0.

One element shall be refined, but we allow the refinement into two non-equal
sized children, where a parameter γ ∈ (0, 1) defines the proportions, see Fig-
ure 1. Depending on the right-hand-side function f , different values of γ are
optimal, as illustrated in Figure 2 for the splitting of the interval (0, 1) itself.

6

a) b)
f(x) ≡ 1 f(x) = x

c)
f(x) = x3

Figure 2: Optimal splitting of an edge, depending on the RHS function f .

7

x(,)γ δ

Figure 3: Graded refinement of a triangle, with parametric position of the new node
x(γ, δ).

In each of the sub figures, the RHS function f is plotted in blue, and the term
|a(uh, vγ)− b(vγ)|/|||vγ ||| from (4) in red, the dotted line marks the optimal value
of the parameter γ. Extension of this idea to two or three dimensions could allow
automatic generation of graded meshes, as they are for example advantageous at
edge or corner singularities (e.g. [6]).

However, as for the linear elements the gradient on the current grid is con-
stant on each element, we see already in the above example, that the new function
is a(., .) orthogonal to the old FE space, independent of the parameter γ. As a
consequence, the optimal position of the new node, i.e. the optimal parameter γ
depends only on the right-hand-side function f and not on the current solution or
on boundary data.

The edge and corner singularities in 2D and 3D, however, are typically not
due to singularities of f , but due to the domain geometry, while other singularities
arise from boundary conditions. So at least for linear elements an extension of this
approach to 2D as in Figure 3 does not appear to generate the desired improvement.

As the second approach to utilise the refinement criterion (4) which we present
in the following section shows far greater potential, we will not follow this grading
idea further in this paper.

5 Application 2: anisotropic refinement in 2D

Let us consider a triangular element which is to be refined. There are actually
several possibilities how such an triangle can be split, see Figure 4 for a selection.
Most commonly the so called red refinement is used, which splits the triangle into
four triangles of similar shape. This achieves improved spatial resolution in all
directions, thus isotropic refinement.

Bisection of the element, also known as green refinement, splits only one of
the edges and the element accordingly. Thus spatial resolution is improved in the
direction of the edge which is split.

This can be repeated such that two edges are split in one refinement step, or
even three. However, splitting all three edges by successive bisection produces
the same number of degrees of freedom as the red refinement, so no significant
advantage can be seen in this.

8

Figure 4: A selection of possible refinements for a triangular element

Figure 5: Linear edge-bubble

By selecting which edges to refine, we get the possibility to achieve directional
refinement, i.e. anisotropic refinement.

As one expects, this is not quite as simple as it might appear on first sight.
To separate different issues, we first discuss the marking of edges according to
the principle (4) in the following subsection, before we discuss the possibilities of
refinement in more detail.

5.1 Edge error indicator

Let us restrict our considerations to piecewise linear triangular Lagrange elements
in 2D. Bisection of an edge and all elements that correspond to it is equivalent to
adding a corresponding piecewise linear edge-bubble function to the ansatz space,
see Figure 5.

Such an edge-bubble can be assigned to every edge in the mesh, and we denote
the set of all edge-bubble functions for the current mesh by S(k)+h . Thus the guiding
principle (4) implies that the edge E whose bubble function ṽ produces the largest

9

−1

0

1

−1

0

1
0

0.5

1

x

solution u

y −1

0

1

−1

0

1
0

0.005

0.01

0.015

edge error indicators

xy

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

y

mesh

Figure 6: Soltion, edge bubble residuals and mesh for Example 2

value of

ηE :=
|a(uh, ṽ)− b(ṽ)|

|||ṽ|||
(7)

should be refined.
Evaluation of the expression (7) is easily achieved creating a list of the (at most

two) elements that belong to each edge, and then temporarily creating the four
triangles on which the linear edge bubble is linear. For boundary edges only two
such temporary elements are required. A modified assembly routine then evaluates
all parts of (7).

To illustrate that this very simple procedure indeed picks up the right direc-
tional information, let us consider a very simple model problem.

Example 2. Consider the Poisson problem

−∆u = 1 on Ω := (−1, 1)2,

u = 0 on ΓD := {−1, 1} × [−1, 1],

∂u

∂n
= 0 on ΓN := (−1, 1)× {−1, 1}.

u(x, y) = −1
2(x− 1)(x+ 1) is the unique solution to this problem.

Discretisation of this problem on a uniform axis aligned triangular mesh leads
to a solution as depicted in Figure 6. As the exact solution u is constant in y direc-
tion, essentially only the length of the elements in x direction has influence on the
discretisation error. Thus we expect that only those edges which stretch into x di-
rection produce large values for the expression (7). In the upper right part of Figure

10

6 all edges of the mesh are plotted with height assigned by edge bubble residual
(7), with edges belonging to the Dirichlet boundary ΓD treated specially. One can
clearly observe that all edges parallel to the y axis have significantly smaller val-
ues of this residual, approximately 0.0041. However, the edges parallel to the x
axis and the diagonal edges produce values fairly close to each other≈ 0.0085 and
≈ 0.01 respectively. This makes sense, as both of them have the same length when
projected to the x axis.

Note that while the values given above are specific to the refinement level, the
ratio between them is characteristic to the problem.

Remark 1 (Relation to edge residuals in Residual-type estimators). The edge bub-
ble residuals defined by (7) should not be confused with the edge residuals r∂T
which are commonly used in residual type error estimators, e.g. [2, Section 2.2].
The latter would for the problem of Example 2 be the jump of the normal derivative
of the discrete solution integrated over the edge. Because the gradient is also con-
stant in y direction, these edge residuals would be non-zero only for those edges
which are parallel to the y axis, because the gradient changes only orthogonal
to these edges. Thus the edge residual r∂T is not suitable for the decision on
refinement of individual edges. The edge residual r∂T is however the dominant
component of residual error estimators [24] and in this role well suited to decide
the isotropic refinement of elements.

Remark 2 (Relation to hierarchical error estimators). The edge error indicator
(7) is related to a particular variant of the hierarchical error estimator of Bank
and Smith [3], even though their discussion focused on p-enrichment (of the whole
mesh). At the end of their Section 5.1 they briefly discuss a simplified estimator
where the solution of the error approximation problem on the enrichment space is
approximated by solving only with the diagonal of the stiffness matrix. Thus the
resulting problem decouples, and the solution coefficients are given by

vE :=
|a(uh, ṽ)− b(ṽ)|

|||ṽ|||2
,

where ṽ is the quadratic edge-bubble function for edge E . In this sense η̃E =
vE |||ṽ||| can be seen as the contribution of edge E to the global error. Canceling
|||ṽ||| we see that η̃E = ηE from (7). We may consider the piecewise linear edge-
bubble functions as approximations to the quadratic edge-bubble functions, thus
revealing a relation.

However, [3] mention that the constants of the equivalence of the hierarchical
estimator and its simplified version depend on the shape regularity of the triangles.

In light of the relation to the hierarchical error estimator we define the global
error indicator

η :=

(∑
E∈∂T

η2E

)1/2

(8)

11

by a sum of all edge indicators (7).

Remark 3 (Previous appearances of (7)). After we arrived at the edge error in-
dicators (7) we found several instances of similar expressions in error estimation
(besides the less obvious relation to [3] given in Remark 2).

The closest one is [1], where (7) arises as special case of their error reduction
formula (6). This work also gave a link to earlier works by Zienkiewicz et. al.
[12, 22] who considered a p-hierarchical error estimate in the context of isotropic
refinement h-refinement.

In the context of hp refinement similar expressions appear in the decision pro-
cess between h and p refinement, e.g. [14, Sec. 3.4] and [10, Sec. 3.2.1].

In [27] the error reduction idea was also considered in the isotropic context,
enforced by newest vertex bisection refinement.

We conclude from this representative example that the edge bubble residuals
provide directional information on the error. The results which we present in Sec-
tion 6, will further support this.

5.2 Edge oriented anisotropic refinement

Unfortunately the edge oriented bisection of triangles alone is not sufficient in order
to achieve true anisotropic adaptation [32, Section 4.3]. To illustrate this we follow
our arguments from [32], and consider them in more detail in the context of (4) and
Example 2.

In Figure 7 different directional refinement approaches are given, together with
the number of nodes they produce for an initial uniform mesh of four nodes af-
ter one, two and three refinements according to each strategy. As for Exam-
ple 2, refinement is only desired in horizontal direction. Thus variant a) would
be ideal. However, this variant, also known as blue refinement due to Kornhu-
ber and Roitzsch [23], can not be achieved by just splitting edges and elements.
The two original elements must be treated together and the original diagonal edge
must be removed. So this does not fit directly into the framework of the proposed
refinement principle (4).

Variant b) does in each step refine the edges indicated most suitable by the
refinement criterion, i.e. all edges whose projection onto the x axis has positive
length. This is closer to the framework given by (4) and Subsection 5.1, but the
number of nodes created due to the refinement is far higher than necessary, as new
nodes are also introduced along vertical lines. In fact, asymptotically this will be
almost as bad as isotropic refinement (quadrupling the number of nodes instead of
doubling as in variant a)).

Variant c) attempts to get closer to a) by ignoring the fact that the diagonal
actually produces the larges edge bubble residual. While the number of nodes is
the same as for variant a), the error will be far worse, because the edges have the
wrong alignment.

12

a)

4 Nodes

c)

86 10

86 10

9 81

d)

25

b)

7 15 37

Figure 7: Directional refinement possibilities for triangles, a) blue refinement, b)
splitting all edges with positive length in x-direction, c) splitting only edges in
horizontal direction, d) red refinement (non-directional).

13

4 Nodes

6 6

7 6

e)

f)

Figure 8: Directional refinement, e) combining variant b) with edge swapping, f)
combining b) with node removal by edge collapsing.

For comparison red refinement (uniform) is included as variant d), producing
the largest number of nodes.

Several authors combine the splitting of elements with other mesh modification
operations in order to achieve anisotropic refinement, e.g. [13, 17, 19, 25, 26]:
mesh reconnection (edge swapping), mesh coarsening (node removal) and node
movement.

For the reasons indicated in Section 4 node movement does not appear practical
in the context of our guiding principle (4), thus we will not discuss it here.

On first sight, reconnection and coarsening do not fit in directly with (4) either,
but as we will demonstrate in sections 5.2.2 and 5.2.3 they can be used in the
context of (4). But first we will demonstrate how these operations allow to attain
anisotropic refinement similar to variant a).

Consider a refinement step according to variant c), followed by an edge swap of
the badly aligned diagonal edge, as illustrated in Figure 8 e). Repeated application
of this procedure would generate the same sequence of meshes as variant a).

In a similar way we may combine a refinement step according to variant c) with
the removal of the undesired node in the centre of the mesh patch by collapsing
one of the new vertical edges as illustrated in Figure 8 f). The resulting mesh
is not identical to the one created by variant a), but it fits the idea of directional
refinement, and repeated application of this procedure will generate a sequence of
meshes with the same number of nodes as in variant a).

In theory any given mesh can be generated from any given initial triangula-
tion of a domain (subject to constraints on topology and boundary of the meshes)
by combining green refinement with reconnection and coarsening in a (possibly
infinite) sequence of steps.

In addition we will consider a procedure that attempts to perform a blue re-
finement as in variant a) by refining a patch of two neighbouring elements simul-

14

taneously. We call this the red-green-blue-refinement (RGB-refinement) strategy,
which we describe in the following subsection.

5.2.1 Red-green-blue-refinement

Let us modify the strategy (4) by moving to more practical considerations. Re-
fining only one edge or element per step of the refinement algorithm is clearly
computationally too expensive, as this would imply an excessive number of refine-
ment steps, which each require the solution of a relatively large linear system of
equations (up to an appropriate accuracy). Instead one should see (7) in the role of
an error indicator, and all edges respectively elements with large contributions to
the global error should be refined.

The favourable refinement variant a) from Figure 7 (blue refinement) can be
applied in a three step approach, summarised in Algorithm 1. The first step consid-
ers on each element if it is most appropriate to refine one, two or all three edges.
This decision is also taken in the spirit of (4), marking within the element all edges
with more then c1 times the maximum absolute value of the elements largest edge
bubble residual, where c1 ∈ (0, 1) is a constant. We use the value c1 = 1/2 in
our experiments in an attempt to facilitate approximate equidistribution of the er-
ror, noting that the local error is supposed to be reduced to ≈ 1/2 if the edge is
refined. Once the refinement pattern for the element is decided, an estimation for
the error reduction weighted with the number of additional degrees of freedom in
the discretisation due to the elements proposed refinement is computed and stored
for each element.

In the second step the elements which reduce the error most efficiently by their
proposed refinement are marked. The resulting element refinement pattern is then
closed by green refinement in order to avoid hanging nodes, i.e. those elements
which are not marked for refinement, but which have edges marked for refinement
due to neighbouring elements, are marked to refine exactly those edges. Thus a
pattern of red, green and blue refinement, representing elements with three, one,
respectively two marked edges is created.

The third step then performs this refinement in the usual way for the red and
green elements. The blue elements are treated specially. We attempt to group the
blue elements into pairs whose marked edges obey the Z-pattern of the original
element in Figure 7 (the two horizontal and the diagonal edge). If a pair obeys
the pattern and the geometry of the pair permits refinement according to variant a),
i.e. the resulting elements do not degenerate, then this blue refinement is executed.
This is repeated as long as possible. The remaining blue elements are then refined
according to variant b).

In theory this RGB refinement strategy allows the generation of meshes with
pure directional refinement, where the number of degrees of freedom is inverse
proportional to the discretisation step size in only this one direction. This is a big
achievement, and may reduce the number of degrees of freedom required to achieve

15

Algorithm 1 RGB-refinemnent
Require: a mesh, edge-error-indicators ηE,i ≥ 0, i = 1, . . . , nE , c1 ∈ (0, 1)
Ensure: refined mesh

{1. stage}
1: for all elements T do
2: ηmax,T := largest edge-error-indicator ηE,j in this element T
3: σT := set of edges in this element T with ηE,j ≥ c1ηmax,T

4: ηT := 1
#σT

∑
j∈σT

η2E,j

5: end for

{2. stage}
6: sort the elements in decreasing order of ηT
7: T = 1, ηsum = 0
8: while ηsum < sufficient do
9: mark element T for refinement according to σT

10: ηsum+ = ηT
11: T + +
12: end while
13: mark all elements which would get hanging nodes for green refinement

{3. stage}
14: red-refine all elements T with #σT == 3
15: green-refine all elements T with #σT == 1
16: while there are marked elements T with #σT == 2 do
17: starting from the first marked element T with #σT == 2, find as long

a string as possible of such marked elements, that obey the Z-Pattern of
variant a)

18: if string has only one element then
19: refine that element according to varaint b)
20: else
21: for each pair of elements in the string do
22: if refinement of the pair according to varaint a) is possible then
23: refine the pair according to varaint a), blue refinement
24: else
25: refine the pair according to varaint b)
26: end if
27: end for
28: end if
29: un-mark the elements of the string
30: end while

16

α) β)

γ)

Figure 9: Edge swapping. α) original edge, β) candidate swapped edge, γ) inter-
section mesh

a given accuracy enormously if the solution that has to be approximated shows such
an anisotropic behaviour. However, the blue refinement crucially depends on the
alignment of the initial mesh with the directions of the anisotropy in the solution.

In practise however, the marking for red, green or blue refinement does not
always produce the ideal strings of elements. Thus, due to the green closure refine-
ments in each step, after a number of steps it becomes more and more difficult to
find strings of elements suitable for variant a), and the other less desirable variants
start to dominate. A more complicated variant of Algorithm 1 may be designed to
be more robust in this respect.

5.2.2 Mesh reconnection by edge swapping

Our initial motivation for this edge swapping stems from [26], where the edge
swapping was used to improve the alignment of the mesh with the solution in a
general fashion. Including such an edge swapping step into the adaptive refinement
procedure can potentially resolve two issues, the anisotropic refinement according
to variant e) and automatic realignment of the mesh with solution features.

In [26] the PDE problem (1) was formulated as energy minimisation problem

u := arg min
v∈V

1

2
a(v, v)− b(v).

Now, given a mesh and corresponding solution uh for Lagrangian elements, one
can keep the nodal values fixed, but change the connectivity of the mesh, i.e. swap
an edge (Figure 9 α) → β)). One considers the function ûh which is defined by
the old nodal values on the modified mesh. If the energy

1

2
a(ûh, ûh)− b(ûh) (9)

17

Figure 10: Possible degeneration due to edge swapping

for the modified mesh is less than that for the old mesh 1
2a(uh, uh) − b(uh), then

the modified mesh obviously allows better approximation of the minimiser u ∈ V.
Likely an even better solution would be attained after recomputing the nodal values
corresponding to the new mesh.

Of course one has to safeguard against degeneration of the mesh, as the edge
swapping could easily produce self overlapping elements, see Figure 10 for an
illustration. We allow the consideration of the swap if the surface area A0 of the
union of both triangles is not changed after swapping (up to accuracy of computing
A0) and none of the new triangles has an area of less than 10−2A0.

So if the swap would reduce (9) and not degenerate the mesh, then it will be
executed, otherwise not. This procedure is used in an iterative process with other
mesh modifications as well.

We denote one sweep of this procedure over all interior edges of the mesh as
swap-by-energy.

A variation of this edge-swapping strategy may be defined in terms of our cri-
terion (4). To this end, consider one interior edge with its two neighbouring ele-
ments. We define approximate solutions uh and ûh as above, by swapping the edge
but keeping nodal values fixed. For both uh and ûh the quantity (4) is evaluated
with ṽ as the linear edge-bubble function defined by the intersection of both candi-
date edges, see Figure 9 γ). Thus, ṽ is the same for both candidate connectivities.
If no mesh degeneration occurs, the connectivity with the lower value of (4) is cho-
sen, since this produces a lower estimated edge error indicator. Note that Galerkin
orthogonality is not fulfilled for ûh (the modified mesh).

We denote one sweep of this procedure over all interior edges of the mesh as
swap-by-residual.

5.2.3 Mesh coarsening by edge collapsing

The second mesh modification operation, that in combination with element bisec-
tion can allow true anisotropic refinement, is node removal by edge collapsing,
variant f). The principle of this operation is illustrated in Figure 11. For each node
i in the mesh, one may consider, to move that node along one of the adjacent edges
to the neighboring node, thus collapsing the edge and the elements that contain this
edge. The node i, the collapsed edge and the collapsed elements are then removed
and adjacent elements updated accordingly.

18

α) β)

δ)γ)

Figure 11: Node removal by edge collapsing. α) original mesh patch with candi-
date edge-collaps, β) resulting mesh patch; γ) original mesh patch with different
candidate edge-collaps, δ) resulting degenerated mesh patch

Again care has to be taken, as this operation may produce degenerate meshes,
see Figure 11 γ)→ δ). For this purpose, we consider this operation only if it does
not change the area of the element patch (up to computation accuracy), and none
of the modified elements has an area of less than 10−2 of the area of the patch.

The selection criterion which nodes and edges are to be removed can be de-
signed in the same spirit as the edge-swapping in Section 5.2.2, by consideration
of either the energy (9) of the solution, or by the residual (4).

In any case, in order to allow node removal at all, one has to accept a slight
deterioration of solution quality. As long as this deterioration is significantly less
than the improvement due to the refinement step of the overall adaptive algorithm,
the error is reduced overall.

In the energy criterion, for each interior node i of the mesh, the patch of el-
ements containing this node is found and this patches local contribution to the
solution energy (9) is computed, denoted by Eloc. Then each edge e connected to
node i is considered for removal, leaving the nodal values of the solution fixed,
the local energy contribution of the modified patch of elements is computed and
denoted by Eloc,e. The value of Einc,i := Eloc,e − Eloc and the edge number for
the edge which produces the least increase in energy are then stored for node i.

When this is done for all interior nodes, these nodes are sorted in increasing
order of Einc,i. Then starting with the node of least increase in energy, the collapse
of the corresponding edges is executed, as long as the sum of energy increase is
less than an allowed increase Etol. In this only edges are removed, whose nodes
have not been affected by previous node removals in this sweep.

We denote this procedure as node-remove-by-energy.

The procedure for the residual-criterion is similar. Instead of choosing the edge

19

of minimum increase in energy for each node i, we choose the edge whose collapse
produces the least value of criterion (4), where the uh is taken to be the interpolant
of the fixed nodal values on the resulting mesh after edge collapse and ṽ as the
nodal basis function for node i on the original mesh. To evaluate (4) in this setting,
one has to temporarily create an intersection mesh for the patch meshes before and
after collapse of the candidate edge, to facilitate the use ṽ and uh in one assembly
routine for a(uh, ṽ) on the patch.

We denote this procedure as node-remove-by-residual.

5.2.4 Anisotropic adaptive algorithm

As an alternative to the RGB refinement algorithm, we combine edge oriented
green refinement with edge-swapping (variant e)) and edge-collapsing (variant f)
) into one general anisotropic adaptive algorithm, which is summarised as Algo-
rithm 2.

Note that it may be possible to replace some of the assemble and solve for uh
steps by less expensive operations, or even to leave them out entirely. For example
after a refinement it may be sufficient to do just one Gauß-Seidel or Jacobi sweep in
order to update the solution uh to have sufficient information for the edge-swapping
or node removal. Indeed one may even use the information from the evaluation
of the edge-error-indicators (4) to perform a pseudo-Jacobi-update without even
assembling the new stiffness matrix.

However, our main goal in this paper is a first evaluation of the merits of the
approach, testing what is possible. Thus, to avoid side effects, the solution uh is
recomputed after each modification sweep of the mesh.

Algorithm 2 Anisotropic adaptive algorithm
Require: initial mesh

1: while not satisfied do
2: assemble and solve for uh
3: edge swapping
4: assemble and solve for uh
5: node removal
6: assemble and solve for uh
7: evaluate edge-error-indicators
8: edge-oriented refinement
9: end while

Further it is not necessary to have all mesh modification operations in the algo-
rithm. In the numerical examples we will also consider variants of this algorithm,
where one ore more steps are left out.

20

6 Numerical experiments

In this section we investigate the performance and robustness of the proposed re-
finement indicator (7) and the refinement algorithms by testing them on suitably
chosen example problems. The results are presented in figures which show the
error indicator η ((8), denoted err-est), the energy norm of the error |||u − uh|||
(err-eng), the efficiency index η/|||u − uh||| and the maximum and mean aspect
ratios of elements in the mesh (maxAR and meanAR) for the different refinement
algorithms.

We compare the refinement algorithms

UNI: uniform (red) mesh refinement,

Baensch: isotropic local refinement by bisection (algorithm of Bänsch, [8]),

RGB: RGB-refinement Algorithm 1

and several variants of Algorithm 2 which are distinguished by specifying the com-
ponents of Algorithm 2 that are used,

Green: green refinement according to edge indicator (7),

SE: edge-swapping (one sweep over all interior edges, as described in Subseciton 5.2.2),

NR: edge-collapsing, resulting in node removal (one sweep as described in Sub-
section 5.2.3).

For the SE and NR components two variants are considered, either based on the
energy considerations (SEe and NRe), or based on the residuals (SEr and NRr).

6.1 Poisson equation on the unit-square

First we demonstrate effectiveness and shortcomings of the proposed refinement
strategies. To this end, figures 12 and 13 show for Example 2 the development of
the error, the indicator, the efficiency index and aspect ratio during refinement with
various refinement algorithms. First we observe that the efficiency index stays in
the fairly tight interval (0.65, 1) for all of the refinement algorithms. Thus the error
indicator can even be interpreted as error estimate in these cases.

In Figure 12 it is easily observed that both variants (“Green SEe NRe” and
“Green SEr NRr”) of the refinement Algorithm 2 are able to exploit the lower
dimensional structure of the solution of this problem, gaining an improved con-
vergence rate of (close to) O(N−1) instead of the O(N−1/2) = O(h) in isotropic
refinement. The RGB-refinement Algorithm 1 and the Green refinement without
edge swapping or edge collapsing also show a slightly improved convergence or-
der, but are significantly outperformed by Algorithm 2. The observed growth in
aspect ratio matches the error reduction.

The different variants of Algorithm 2 are explored in Figure 13. The left col-
umn shows variants with the energy criterion for edge swapping (SEe) and collaps-
ing (NRe), while the right column shows those with the residual counterpart (SEr,
NRr). The difference between these criteria appears to be minor. If we compare

21

the effects of edge swapping (SE) versus edge collapsing (NR), the NR has a far
stronger impact while SE gives only a slight improvement. This may be explained
by the observation that the refinement pattern e) in Figure 8 requires that the di-
agonal edge is not refined, for which the edge error indicators in Figure 6 give no
justification. However, we observed that edge swapping is a very powerful tool for
realignment of the mesh with solution features, which we investigate with the next
example.

Example 3. Consider the Poisson problem

−∆u = 1 on Ω := (−1, 1)2,

u = g on ΓD := ∂Ω,

with g(x, y) := a (x+ c y)2 + b (y− c x)2. If a+ b = − 1
2 (1+c2)

, then u = g fulfills
the PDE, thus in this case it is the unique solution to this problem.

If a, b > 0, then this solution describes an elliptic paraboloid z = u(x, y), with
parameter c for the stretching directions ((c,−1)T and (1, c)T) and parameters a,
b for the stretching of the of the principal axes. Thus this example allows to study
if realignment of the mesh takes place, and if the appropriate stretching ratios are
approached.

We set c = π, b = −a− 1
2 (1+c2)

and consider three settings for a:

(a) a = 0 (parabolic cylinder),

(b) a = 1
10

1
2 (1+c2)

(elliptic paraboloid),

(c) a = 1
100

1
2 (1+c2)

(elliptic paraboloid).

Figure 14 shows the development of the error in Example 3 (a), which is very
similar to that of Example 2 in Figure 12. In Figure 17 the FE solution is plot-
ted for the refinement algorithms of Figure 14, at the last adaptive step before the
number of nodes reached 500. The bottom left picture with the mesh from uniform
refinement shows that the initial mesh was not well aligned with the stretching di-
rections (π,−1) and (1, π)T . The bottom right picture shows some mild stretching
produced by the RGB-refinement Algorithm 1. The two top pictures illustrate that
Algorithm 2 is far better able to re-align the mesh with the stretching directions,
and then perform anisotropic refinement.

These results are indeed very promising. Unfortunately the tests with Exam-
ple 3 (b) and (c) reveal a shortcoming, see figures 15 and 16. Here the solution
is not (degenerate) one-dimensional, but shows mild anisotropic behaviour. The
optimal aspect ratio ropt is now finite, ropt =

√
b/a, i.e. ropt =

√
10 ≈ 3.1623

in Example 3 (b) and ropt = 10 in Example 3 (b)). Both variants of Algorithm 2
reduce the error indicators at a similar pace as in Example 3 (a), but the actual
error stagnates, the efficiency index appears to converge to zero. Investigating this
phenomenon closer, we observed that the refinement procedure stretches the mesh
way too far, since the error indicators still dominate in the direction of “strong
curvature”, even when the optimal aspect ratio is exceeded.

22

error and indicator

10
1

10
2

10
3

10
4

10
5

10
−4

10
−3

10
−2

10
−1

10
0

#nodes

e
rr

o
r

Green, SEr, NRr err−eng

Green, SEr, NRr err−est

Green, SEe, NRe err−eng
Green, SEe, NRe err−est

Green err−eng

Green err−est
RGB err−eng

RGB err−est

UNI err−eng
UNI err−est

slope = −1/2

slope = −1

10
1

10
2

10
3

10
4

10
5

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
efficiency−indices

#nodes

Green, SEr, NRr

Green, SEe, NRe

Green

RGB

UNI

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

10
5

aspect ratio

#nodes

Green, SEr, NRr mean

AR

Green, SEr, NRr max
AR

Green, SEe, NRe mean
AR

Green, SEe, NRe max
AR

Green mean
AR

Green max
AR

RGB mean
AR

RGB max
AR

UNI mean
AR

UNI max
AR

Figure 12: Comparison of different refinement algorithms for Example 2: error
and indicator, efficiency, aspect ratios.

23

energy criterion residual criterion
error and indicator error and indicator

10
1

10
2

10
3

10
4

10
5

10
−4

10
−3

10
−2

10
−1

10
0

#nodes

e
rr

o
r

Green, SEe, NRe err−eng

Green, SEe, NRe err−est

Green, NRe err−eng
Green, NRe err−est

Green, SEe err−eng

Green, SEe err−est
Green err−eng

Green err−est

UNI err−eng
UNI err−est

slope = −1/2

slope = −1

10
1

10
2

10
3

10
4

10
5

10
−4

10
−3

10
−2

10
−1

10
0

#nodes

e
rr

o
r

Green, SEr, NRr err−eng

Green, SEr, NRr err−est

Green, NRr err−eng
Green, NRr err−est

Green, SEr err−eng

Green, SEr err−est
Green err−eng

Green err−est

UNI err−eng
UNI err−est

slope = −1/2

slope = −1

10
1

10
2

10
3

10
4

10
5

0.65

0.7

0.75

0.8

0.85

0.9
efficiency−indices

#nodes

Green, SEe, NRe

Green, NRe

Green, SEe

Green

UNI

10
1

10
2

10
3

10
4

10
5

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
efficiency−indices

#nodes

Green, SEr, NRr

Green, NRr

Green, SEr

Green

UNI

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

10
5

aspect ratio

#nodes

Green, SEe, NRe mean

AR

Green, SEe, NRe max
AR

Green, NRe mean
AR

Green, NRe max
AR

Green, SEe mean
AR

Green, SEe max
AR

Green mean
AR

Green max
AR

UNI mean
AR

UNI max
AR

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

aspect ratio

#nodes

Green, SEr, NRr mean

AR

Green, SEr, NRr max
AR

Green, NRr mean
AR

Green, NRr max
AR

Green, SEr mean
AR

Green, SEr max
AR

Green mean
AR

Green max
AR

UNI mean
AR

UNI max
AR

Figure 13: Comparison of different variants of Algorithm 2 for Example 2: error
and indicator, efficiency, aspect ratios.

24

At this point we have to remember that (7) provides a lower bound to the error
reduction, see Lemma 1. We observe that in these cases the lower bound converges
to zero, even though the error does not. The actual error reduction due to refine-
ment of long edges in the direction of “weak curvature” is significantly larger than
predicted by Lemma 1.

We investigate this further with the following example.

Example 4. Consider a patch of P1 elements as given in Figure 19. Let

u(x, y) := −1

2

(
αx2 + (1− α) y2

)
,

such that −∆u = 1 and let uh be the nodal interpolant of u. We evaluate (7) for
the three edges E1, E2, E3 and compare the result to

|||u− uh|||T :=

∫
T

|∇u−∇uh|2 dΩ

1/2

,

where T is the triangle enclosed by E1, E2, E3. In this sense

r :=

(
η2E1

+ η2E2
+ η2E3

)1/2
|||u− uh|||T

is the (local) efficiency index of the estimate (8) on triangle T .
We define the geometry parameter a and h as multiples ofH , then the resulting

expression for the efficiency r is independent of H , it depends only on the factors
defining a and h. Specifically let k be the stretching factor, h := kH .

We used the computer algebra system Maple to evaluate and plot the efficiency
r over the stretching factor k for various settings of a and α, see Figure 20. The
middle column with a = H/2 corresponds to right angled triangles, the right
column to obtuse triangles and the left column to acute triangles for k > k0 and
obtuse for k < k0. The rows correspond to fixed anisotropy in u, with the centre
row corresponding to the isotropic case.

Interestingly, in the range between the isotropic k = 1 and the optimal stretch-
ing kopt =

√
α

1−α we always obtain good efficiency r, close to one. For k �
max(1, kopt) the estimate always deteriorates, while for k � min(1, kopt) it only
deteriorates for the right angled triangles.

In our experiments with Algorithm 2 we only observed this deterioration of the
efficiency of indicator (8) during refinement (and resulting failure of convergence),
when the solution u was significantly anisotropic but not lower dimensional. To
illustrate this, we present the following example.

25

error and indicator

10
1

10
2

10
3

10
4

10
5

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

#nodes

e
rr

o
r

Green, SEr, NRr err−eng

Green, SEr, NRr err−est

Green, SEe, NRe err−eng

Green, SEe, NRe err−est

RGB err−eng
RGB err−est

UNI err−eng

UNI err−est

slope = −1/2

slope = −1

10
1

10
2

10
3

10
4

10
5

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3
efficiency−indices

#nodes

Green, SEr, NRr

Green, SEe, NRe

RGB

UNI

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

10
5

aspect ratio

#nodes

Green, SEr, NRr mean

AR

Green, SEr, NRr max
AR

Green, SEe, NRe mean
AR

Green, SEe, NRe max
AR

RGB mean
AR

RGB max
AR

UNI mean
AR

UNI max
AR

Figure 14: Comparison of different refinement algorithms for Example 3 (a): error
and indicator, efficiency, aspect ratios.

26

error and indicator

10
1

10
2

10
3

10
4

10
5

10
−3

10
−2

10
−1

10
0

#nodes

e
rr

o
r

Green, SEr, NRr err−eng

Green, SEr, NRr err−est

Green, SEe, NRe err−eng

Green, SEe, NRe err−est

RGB err−eng
RGB err−est

UNI err−eng

UNI err−est

slope = −1/2

slope = −1

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

1.2

1.4
efficiency−indices

#nodes

Green, SEr, NRr

Green, SEe, NRe

RGB

UNI

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

aspect ratio

#nodes

Green, SEr, NRr mean

AR

Green, SEr, NRr max
AR

Green, SEe, NRe mean
AR

Green, SEe, NRe max
AR

RGB mean
AR

RGB max
AR

UNI mean
AR

UNI max
AR

Figure 15: Comparison of different refinement algorithms for Example 3 (b): error
and indicator, efficiency, aspect ratios.

27

error and indicator

10
1

10
2

10
3

10
4

10
5

10
−4

10
−3

10
−2

10
−1

10
0

#nodes

e
rr

o
r

Green, SEr, NRr err−eng

Green, SEr, NRr err−est

Green, SEe, NRe err−eng

Green, SEe, NRe err−est

RGB err−eng
RGB err−est

UNI err−eng

UNI err−est

slope = −1/2

slope = −1

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

1.2

1.4
efficiency−indices

#nodes

Green, SEr, NRr

Green, SEe, NRe

RGB

UNI

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

aspect ratio

#nodes

Green, SEr, NRr mean

AR

Green, SEr, NRr max
AR

Green, SEe, NRe mean
AR

Green, SEe, NRe max
AR

RGB mean
AR

RGB max
AR

UNI mean
AR

UNI max
AR

Figure 16: Comparison of different refinement algorithms for Example 3 (c): error
and indicator, efficiency, aspect ratios.

28

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−0.8

−0.6

−0.4

−0.2

0

x

Green, SEe, NRe, 411 nodes, maxAR=1.4e+02, meanAR=8.9e+01

y

s
o

lu
ti
o

n
 u

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−0.8

−0.6

−0.4

−0.2

0

x

Green, SEr, NRr, 375 nodes, maxAR=1.4e+02, meanAR=7.3e+01

y

s
o

lu
ti
o

n
 u

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−0.8

−0.6

−0.4

−0.2

0

0.2

x

UNI, 289 nodes, maxAR=1.0e+00, meanAR=1.0e+00

y

s
o

lu
ti
o

n
 u

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−0.8

−0.6

−0.4

−0.2

0

0.2

x

RGB, 443 nodes, maxAR=1.0e+01, meanAR=3.0e+00

y

s
o

lu
ti
o

n
 u

Figure 17: FE solution on meshes resulting from different refinement algorithms
for Example 3 (a)

29

energy criterion residual criterion
error and indicator error and indicator

10
1

10
2

10
3

10
4

10
5

10
−4

10
−3

10
−2

10
−1

10
0

#nodes

e
rr

o
r

Green, SEe, NRe err−eng

Green, SEe, NRe err−est

Green, NRe err−eng
Green, NRe err−est

Green, SEe err−eng

Green, SEe err−est
Green err−eng

Green err−est

UNI err−eng
UNI err−est

slope = −1/2

slope = −1

10
1

10
2

10
3

10
4

10
5

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

#nodes

e
rr

o
r

Green, SEr, NRr err−eng

Green, SEr, NRr err−est

Green, NRr err−eng
Green, NRr err−est

Green, SEr err−eng

Green, SEr err−est
Green err−eng

Green err−est

UNI err−eng
UNI err−est

slope = −1/2

slope = −1

10
1

10
2

10
3

10
4

10
5

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4
efficiency−indices

#nodes

Green, SEe, NRe

Green, NRe

Green, SEe

Green

UNI

10
1

10
2

10
3

10
4

10
5

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4
efficiency−indices

#nodes

Green, SEr, NRr

Green, NRr

Green, SEr

Green

UNI

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

aspect ratio

#nodes

Green, SEe, NRe mean

AR

Green, SEe, NRe max
AR

Green, NRe mean
AR

Green, NRe max
AR

Green, SEe mean
AR

Green, SEe max
AR

Green mean
AR

Green max
AR

UNI mean
AR

UNI max
AR

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

10
5

aspect ratio

#nodes

Green, SEr, NRr mean

AR

Green, SEr, NRr max
AR

Green, NRr mean
AR

Green, NRr max
AR

Green, SEr mean
AR

Green, SEr max
AR

Green mean
AR

Green max
AR

UNI mean
AR

UNI max
AR

Figure 18: Comparison of different variants of Algorithm 2 for Example 3 (a):
error and indicator, efficiency, aspect ratios.

30

E2E3

E1

(a−H, h) (a, h)

(−H/2, 0)

(a+H, h)

(+H/2, 0)

(−a, −h)

Figure 19: Patch of elements

Figure 20: Example 4: Efficiency in dependence of stretching factor k for various
settings of α and a.

31

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1

0

0.5

1

1.5

x

solution u

y

Figure 21: Solution of Example 5.

6.2 Poisson equation on an L-shape domain

Example 5. Consider the Poisson problem

−∆u = 1 on Ω := (−1, 1)2 \ [0, 1)× (−1, 0],

u = g on ΓD := ∂Ω,

with the well known exact solution (in polar coordinates (r, φ), r ≥ 0, 0 ≤ φ ≤
3
2π)

u(r, φ) = r
2
3 sin

(
2

3
φ

)
, (10)

see e.g. [15, Example 1.1.4]. The Dirichlet Data g is set accordingly, see Figure 21.

Figure 21 shows the convergence of the FE solution for the considered algo-
rithms. As well known, the uniform refinement achieves only convergence order
O(N−1/3) due to the corner singularity. The error plots show only very mild
differences between the adaptive refinement algorithms, all achieving the opti-
mal convergence order of O(N−1/2). The efficiency index stays in tight interval
(0.62, 0.78). The edge swapping in Algorithm 2 appears to produce a slight advan-
tage especially during the early stages of the refinement. Visual observation of the
FE solution on the developing meshes indicates that edges tend to get aligned with
contours of the solution.

Finally we present examples where strongly anisotropic solution features de-
velop naturally, in boundary layers.

32

error and indicator

10
1

10
2

10
3

10
4

10
5

10
−3

10
−2

10
−1

10
0

#nodes

e
rr

o
r

Green, SEr, NRr err−eng

Green, SEr, NRr err−est

Green, SEe, NRe err−eng
Green, SEe, NRe err−est

RGB err−eng

RGB err−est
Baensch err−eng

Baensch err−est

UNI err−eng
UNI err−est

slope = −1/2

slope = −1

10
1

10
2

10
3

10
4

10
5

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8
efficiency−indices

#nodes

Green, SEr, NRr

Green, SEe, NRe

RGB

Baensch

UNI

10
1

10
2

10
3

10
4

10
5

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

aspect ratio

#nodes

Green, SEr, NRr mean

AR

Green, SEr, NRr max
AR

Green, SEe, NRe mean
AR

Green, SEe, NRe max
AR

RGB mean
AR

RGB max
AR

Baensch mean
AR

Baensch max
AR

UNI mean
AR

UNI max
AR

Figure 22: Comparison of different refinement algorithms for Example 5: error
and indicator, efficiency, aspect ratios.

33

6.3 Reaction-Diffusion

Example 6. Consider the reaction-diffusion roblem

−∆u+ κu = κ on Ω := (0, 1)2,

u = 0 on Γ1 := {1} × [0, 1],

u = 1− exp(−
√
κ) on Γ2 := {0} × [0, 1],

∂u

∂n
= 0 on ΓN := ∂Ω \

(
Γ1 ∪ Γ2).

The unique solution to this problem is u(x, y) := 1 − exp(
√
κ (x − 1)), i.e. in-

dependent of y. Thus this is again a problem with a lower dimensional solution
feature.

Figure 23 shows the development of errors during refinement for a range of
parameters κ. Note that for large values of κ this may be considered as a singularly
perturbed problem, where boundary layers of thicknessO(κ−1/2) appear. Thus for
κ = 1010 the solution changes from zero to (almost) one in a boundary layer of
thickness 10−5. We include Bakhvalov meshes in this comparison to allow better
judgement of the performance of the anisotropic refinement algorithms. These
meshes are a priori adapted anisotropic meshes, designed for the typical boundary
layers of this problem [30, Section 2.4.1].

For κ = 1 and κ = 102 the results are similar to examples 2 and 3 (a) (Poisson
equation), where Algorithm 2 achieves an improved convergence order due to the
one-dimensional structure of the solution.

For larger values of κ the advantage of Algorithm 2 becomes even more pro-
nounced compared to (isotropic) Bänsch-refinement. RGB-refinment Algorithm 1
fails early on, because pairs of elements are chosen for blue refinement, where
the resulting mesh becomes self-overlapping. Of course this could be avoided by
adding exceptions, but the performance of the refinement strategy was quite poor
even for the simpler examples, and is not expected to become better by adding
these exceptions.

Figure 24 shows the FE solution on the last mesh in the refinement processes
before 300 nodes are reached, for κ = 104. Isotropic adaptive refinement (here
Bänsch-refinement) is barely able to put two elements across the layer (due to the
resulting fine resolution along the layer), while Algorithm 2 achieves a very good
resolution of the layer with far fewer nodes already. For larger values of κ it quickly
becomes impossible (or prohibitively expensive) to even put a single layer of el-
ements into the boundary layer by isotropic local refinement. The maximum and
mean aspect rations are given in the titles of the sub-figures (maxAR and meanAR).

For very large κ we again see some significant degeneration of the efficiency
index of the error indicator (8) for Algorithm 2 with resulting almost stagnation of
convergence. Our impression is that this results from wrongly stretched elements
along the Neumann boundary, which develop early on in the refinement procedure.
This results in a similar behaviour as described for Example 3 (b) and (c). None

34

the less, this algorithm outperforms isotropic adaptive refinement by several orders
of magnitude over large ranges in these experiments, and even outperforms the
Bakhvalov meshes.

7 Conclusions and outlook

The proposed approach allows to introduce substantial anisotropy into the mesh
and to re-align the mesh with solution features. In particular the results for the reac-
tion diffusion problems show that significant improvements compared to isotropic
refinement can be achieved.

However, the approach has to be refined in order to guarantee convergence,
since the sum of error indicators (8) is not reliable as error estimator, as demon-
strated by the numerical experiments.

It appears promising to combine the approach with some more sophisticated er-
ror estimation technique to overcome this limitation. I.e. isotropic (red) refinement
could be applied where green refinement is not sufficiently beneficial. Another
possibility may be to evaluate (4) in a different way, taking more general or com-
bined mesh modifications into consideration. This, however, shall be the topic of
future research.

35

κ = 1 κ = 102

10
0

10
1

10
2

10
3

10
4

10
5

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

#nodes

e
rr

o
r

Green, SEe, NRe err−eng

Green, SEe, NRe err−est

RGB err−eng
RGB err−est

Bakhvalov, UNI err−eng

Bakhvalov, UNI err−est
Baensch err−eng

Baensch err−est

UNI err−eng
UNI err−est

slope = −1/2

slope = −1

10
0

10
1

10
2

10
3

10
4

10
5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

#nodes
e

rr
o

r

Green, SEe, NRe err−eng

Green, SEe, NRe err−est

RGB err−eng
RGB err−est

Bakhvalov, UNI err−eng

Bakhvalov, UNI err−est
Baensch err−eng

Baensch err−est

UNI err−eng
UNI err−est

slope = −1/2

slope = −1

κ = 104 κ = 106

10
0

10
1

10
2

10
3

10
4

10
5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

#nodes

e
rr

o
r

Green, SEe, NRe err−eng

Green, SEe, NRe err−est

RGB err−eng
RGB err−est

Bakhvalov, UNI err−eng

Bakhvalov, UNI err−est
Baensch err−eng

Baensch err−est

UNI err−eng
UNI err−est

slope = −1/2

slope = −1

10
0

10
1

10
2

10
3

10
4

10
5

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

#nodes

e
rr

o
r

Green, SEe, NRe err−eng

Green, SEe, NRe err−est

RGB err−eng
RGB err−est

Bakhvalov, UNI err−eng

Bakhvalov, UNI err−est
Baensch err−eng

Baensch err−est

UNI err−eng
UNI err−est

slope = −1/2

slope = −1

κ = 108 κ = 1010

10
0

10
1

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

#nodes

e
rr

o
r

Green, SEe, NRe err−eng

Green, SEe, NRe err−est

RGB err−eng
RGB err−est

Bakhvalov, UNI err−eng

Bakhvalov, UNI err−est
Baensch err−eng

Baensch err−est

UNI err−eng
UNI err−est

slope = −1/2

slope = −1

10
0

10
1

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

#nodes

e
rr

o
r

Green, SEe, NRe err−eng

Green, SEe, NRe err−est

RGB err−eng
RGB err−est

Bakhvalov, UNI err−eng

Bakhvalov, UNI err−est
Baensch err−eng

Baensch err−est

UNI err−eng
UNI err−est

slope = −1/2

slope = −1

Figure 23: Comparison of different refinement algorithms for Example 6: error
and indicator for κ ∈

{
1; 102; 104; 106; 108; 1010

}

36

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.5

1

1.5

x

Green, SEe, NRe, 185 nodes, maxAR=2.2e+03, meanAR=6.3e+02

y

s
o

lu
ti
o

n
 u

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.5

1

1.5

x

Baensch, 289 nodes, maxAR=2.5e+00, meanAR=1.4e+00

y

s
o

lu
ti
o

n
 u

0.4

0.6

0.8

1

0

0.5

1
0

0.5

1

1.5

x

Bakhvalov, UNI, 289 nodes, maxAR=4.7e+01, meanAR=7.7e+00

y

s
o

lu
ti
o

n
 u

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.5

1

1.5

x

UNI, 289 nodes, maxAR=1.0e+00, meanAR=1.0e+00

y

s
o

lu
ti
o

n
 u

Figure 24: FE solution on meshes resulting from different refinement algorithms
for Example 6 with κ = 104

37

References

[1] J.C. Aguilar and J.B. Goodman. Anisotropic mesh refinement for finite ele-
ment methods based on error reduction. Journal of Computational and Ap-
plied Mathematics, 193:497–515, 2006.

[2] M. Ainsworth and J.T. Oden. A Posteriori Error Estimation in Finite Element
Analysis. Wiley, 2000.

[3] R.E. Bank amd R.K. Smith. A posteriori error estimates based on hierarchical
bases. SIAM Journal on Numerical Analysis, 30(4):921–935, 1993.

[4] T. Apel. Anisotropic Finite Elements: Local Estimates and Applications.
Teubner, Leipzig, 1999.

[5] T. Apel, S. Grosman, P.K. Jimack, and A. Meyer. A new methodology for
anisotropic mesh refinement based upon error gradients. Applied Numerical
Mathematics, 50:329–341, 2004.

[6] T. Apel and S. Nicaise. The finite element method with anisotropic mesh
grading for elliptic problems in domains with corners and edges. Mathemat-
ical Methods in the Applied Sciences, 21(6):519–549, 1998.

[7] W. Bangerth and R. Rannacher. Adaptive Finite Element Methods for Differ-
ential Equations. Birkhäuser Verlag, 2003.

[8] E. Bänsch. Local mesh refinement in 2 and 3 dimensions. Impact of Comput-
ing in Science and Engineering, 3:181–191, 1991.

[9] H. Borouchaki, P.L. George, F. Hecht, P. Laug, and E. Saltel. Delaunay
mesh generation governed by metric specifications. part i. algorithms. Fi-
nite Elements in Analysis and Design, 25:61–83, 1997. doi:10.1016/S0168-
874X(96)00057-1.

[10] M. Bürg and W. Dörfler. Convergence of an adaptive hp finite element strat-
egy in higher space-dimension. Applied Numerical Mathematics, 61:1132–
1146, 2011.

[11] W. Cao. On the error of linear interpolation and the orientation, aspect ra-
tio, and internal angles of a triangle. SIAM Journal on Numerical Analysis,
43:19–40, 2005.

[12] J.P. de S.R. Gago, D.W. Kelly, O.C. Zienkiewicz, and I. Babuska. A posteriori
error analysis and adaptive processes in the finite element method: Part ii —
adaptive mesh refinement. International Journal for Numerical Methods in
Engineering, 19:1621–1656, 1983.

38

[13] V. Dolejsi. Anisotropic mesh adaptation for finite volume and finite ele-
ment methods on triangular meshes. Computing and Visualisation in Science,
1:165–178, 1998.

[14] W. Dörfler and V. Heuveline. Convergence of an adaptive hp finite element
strategy in one space dimension. Applied Numerical Mathematics, 57:1108–
1124, 2007.

[15] H. Elman, D. Silvester, and A. Wathen. Finite Elements and Fast Iterative
Solvers. Oxford University Press, 2005.

[16] L. Formaggia, S. Micheletti, and S. Perotto. Anisotropic mesh adap-
tation in computational fluid dynamics: Application to the advection-
diffusion-reaction and the Stokes problems. Applied Numerical Mathematics,
51(4):511–533, December 2004.

[17] M. Fortin. Anisotropic mesh adaptation through hierarchical error estima-
tors. In P. Minev and Y. Lin, editors, Scientific computing and applications,
volume 7, pages 53–65. Nova Science Publishers, 2001.

[18] Sergey Grosman. Adaptivity in Anisotropic Finite Element Calculations. PhD
thesis, TU-Chemnitz, Chemnitz, Germany, 2006.

[19] W.G. Habashi, J. Dompierre, Y. Bourgault, D. Ait-Ali-Yahia, M. Fortin, and
M.-G. Vallet. Anisotropic mesh adaptation: towards user-independent, mesh-
independent and solver-independant cfd. part i: general principles. Interna-
tional Journal for Numerical Methods in Fluids, 32:725–744, 2000.

[20] F. Hecht. Bidimensional anisotropic mesh generator. Technical report, IN-
RIA, Rocquencourt, 1997. Software: http://www.ann.jussieu.fr/
hecht/ftp/bamg/.

[21] W. Huang, L. Kamenski, and J. Lang. A new anisotropic mesh adaptation
method based upon hierarchical a posteriori error estimates. Journal of Com-
putational Physics, 229(6):2179–2198, 2010.

[22] D.W. Kelly, J.P. de S.R. Gago, O.C. Zienkiewicz, and I. Babuska. A posteriori
error analysis and adaptive processes in the finite element method: Part i —
error analysis. International Journal for Numerical Methods in Engineering,
19:1593–1619, 1983.

[23] R. Kornhuber and R. Roitzsch. On adaptive grid refinement in the presence
of internal or boundary layers. Impact of Computing in Science and Engi-
neering, 2:40–72, 1990.

[24] G. Kunert and R. Verfürth. Edge residuals dominate a posteriori error esti-
mates for linear finite element methods on anisotropic triangular and tetrahe-
dral meshes. Numerische Mathematik, 86:283–303, 2000.

39

http://www.ann.jussieu.fr/hecht/ftp/bamg/
http://www.ann.jussieu.fr/hecht/ftp/bamg/

[25] X. Li, M.S. Shephard, and M.W. Beall. 3d anisotropic mesh adaptation by
mesh modification. Computer Methods in Applied Mechanics and Engineer-
ing, 194:4915–4950, 2005.

[26] R. Mahmood and P.K. Jimack. Locally optimal unstructured finite element
meshes in 3 dimensions. Computers and Structures, 82(23–26):2105–2116,
2004.

[27] W.F. Mitchell. Optimal multilevel iterative methods for adaptive grids. SIAM
Journal Scientific Computing, 13(1):146–167, 1992.

[28] M. Picasso, F. Alauzet, H. Borouchaki, and P.-L. George. A numerical study
of some Hessian recovery techniques on isotropic and anisotropic meshes.
SIAM Journal Scientific Computing, 33(3):1058–1076, 2011.

[29] T. Richter. A posteriori error estimation and anisotropy detection with the
dual-weighted residual method. International Journal for Numerical Methods
in Fluids, 62(1):90–118, 2010.

[30] H.-G. Roos, M. Stynes, and L. Tobiska. Robust Numerical Methods for Sin-
gularly Perturbed Differential Equations, volume 24 of Springer Series in
Computational Mathematics. Springer, second edition, 2008.

[31] S. Beuchler and A. Meyer. SPC-PM3AdH v1.0 - Programmer’s Manual.
Technical Report Preprint SFB393/01-08, TU Chemnitz, Chemnitz, 2001.
Available at http://www.tu-chemnitz.de/sfb393/.

[32] R. Schneider. A review of anisotropic refinement methods for triangular
meshes in fem. In T. Apel and O. Steinbach, editors, Advanced Finite Element
Methods and Applications, volume 66 of Lecture Notes in Applied and Com-
putational Mechanics, pages 133–152. Springer Berlin Heidelberg, 2013.

[33] D. Wang, R. Li, and N. Yan. An edge-based anisotropic mesh refinement al-
gorithm and its application to interface problems. Communications in Com-
putational Physics, 8(3):511–540, 2010.

40

http://www.tu-chemnitz.de/sfb393/

Chemnitz Scientific Computing Preprints – ISSN 1864-0087

	1 Introduction
	2 Extension of FEM ansatz spaces
	3 Optimality of the extension
	4 Application 1: graded refinement
	5 Application 2: anisotropic refinement in 2D
	5.1 Edge error indicator
	5.2 Edge oriented anisotropic refinement
	5.2.1 Red-green-blue-refinement
	5.2.2 Mesh reconnection by edge swapping
	5.2.3 Mesh coarsening by edge collapsing
	5.2.4 Anisotropic adaptive algorithm

	6 Numerical experiments
	6.1 Poisson equation on the unit-square
	6.2 Poisson equation on an L-shape domain
	6.3 Reaction-Diffusion

	7 Conclusions and outlook

