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Abstract

We investigate model reduction of large-scale linear time-invariant systems in gen-
eralized state-space form. We consider sparse state matrix pencils, including pencils
with banded structure. The balancing-based methods employed here are composed
of well-known linear algebra operations and have been recently shown to be applica-
ble to large models by exploiting the structure of the matrices defining the dynamics
of the system.

In this paper we propose a modification of the LR-ADI iteration to solve large-
scale generalized Lyapunov equations together with a practical convergence cri-
terion, and several other implementation refinements. Using kernels from several
serial and parallel linear algebra libraries, we have developed a parallel package for
model reduction, SpaRed, extending the applicability of balanced truncation to
sparse systems with up to O(105) states. Experiments on an SMP parallel architec-
ture consisting of Intel Itanium 2 processors illustrate the numerical performance
of this approach and the potential of the parallel algorithms for model reduction of
large-scale sparse systems.
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1 Introduction

We address model reduction of continuous linear time-invariant (LTI) systems,
defined in generalized state-space form by

Eẋ(t) = Ax(t) + Bu(t), t > 0, x(0) = x0,

y(t) = Cx(t) + Du(t), t ≥ 0,
(1)

where E,A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n, D ∈ R

p×m, and x0 ∈ R
n is

the initial state of the system. Throughout this paper, we assume E to be
nonsingular (a usual case as, in general, E will represent the mass matrix
corresponding to a finite-element discretization). The number of states, n,
is known as the state-space dimension or the order of the system and, in
practice, is often much larger than its numbers of inputs and outputs, m
and p, respectively. The corresponding transfer function matrix (TFM) of the
system is given by

G(s) := C(sE − A)−1B + D,

which defines the relation between the inputs and the outputs in the frequency
domain, as y(s) = G(s)u(s). Hereafter, we assume that the generalized spec-
trum of the state matrix pencil A−λE is contained in the open left half plane,
implying that the system is stable. Despite the fact that under the given as-
sumptions (1) is equivalent to the standard state-space realization given by

ẋ(t) = E−1Ax(t) + E−1Bu(t) = Asx(t) + Bsu(t),

y(t) = Cx(t) + Du(t),
(2)

performing this transformation explicitly is often undesirable as, in general, it
will destroy the sparsity structure of the state matrix pencil, and it may also
introduce large rounding errors at an early stage of the computation due to
possible ill-conditioning of E.

The model reduction problem consists in finding a reduced-order realization

Erẋr(t) = Arxr(t) + Bru(t), t > 0 xr(0) = x0
r,

yr(t) = Crxr(t) + Dru(t), t ≥ 0,
(3)

of order r ≪ n, so that the output error y − yr is “small”. Now, assuming the
input of the system is bounded, this is equivalent to requiring that the TFM
of the reduced-order realization (3),

Gr(s) := Cr(sEr − Ar)
−1Br + Dr,

“approximates” G(s), as y − yr = Gu − Gru = (G − Gr)u.
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Model reduction is an important task in control design because real-time con-
trol is only possible using controllers of low complexity and the fragility of such
devices increases with the complexity. In particular, control and optimization
of the large-scale systems arising from spatial finite element discretization of
systems governed by partial differential equations vary from difficult to impos-
sible without model reduction. Also, simulation of many physical phenomena
greatly benefits from important reductions in time when using small, reduced-
order realizations. Model reduction of large-scale generalized LTI systems is
employed in control of multibody (mechanical) systems, manipulation of fluid
flow, (e.g., Navier-Stokes equations), circuit simulation, VLSI chip design, in
particular when modeling the interconnections via RLC networks, simulation
of MEMS and NEMS (micro- and nano-electro-mechanical systems), etc.; see,
e.g., [2,7,21] and references therein. State-space dimensions n of order 102–104

are common in these applications. Very large systems, with state-space dimen-
sion as high as O(105)–O(106), arise in weather forecast, circuit simulation,
VLSI design, and air quality simulation among others (see, e.g., [2,7]). It is
quite frequent that the state matrix pencils in these problems contain a small
number of nonzero entries, i.e., they can be defined as sparse (Hereafter, we
use the term sparse to refer to both unstructured sparse matrices and banded
matrices.) It is this particular type of systems, with large and sparse state
matrix pencils, that we address in this paper.

The methods for model reduction can be classified into two different families:
moment matching-based methods and SVD-based methods. (For a thorough
analysis of these two families of methods, see [2]). The efficacy of model reduc-
tion methods strongly relies on the problem and there is no technique that can
be considered optimal in an overall sense. In general, moment matching meth-
ods employ numerically stable and efficient Arnoldi and Lanczos procedures
in order to compute the reduced-order realizations. These methods, however,
are specialized for certain problem classes and often do not preserve important
properties of the system such as stability or passivity.

On the other hand, SVD-based methods are appealing in that they usually
preserve these properties, and also provide bounds on the approximation er-
ror. However, SVD-based methods present a higher computational cost. In
particular, all SVD-based methods require, as the major computational stage,
the solution of two Lyapunov (or other matrix) equations. The Lyapunov
equations arising in balanced truncation when applied to (1) are

AWcE
T + EWcA

T + BBT = 0, (4)

AT ŴoE + ET ŴoA + CT C = 0, (5)

where due to the assumed stability of A − λE, matrices Wc, Wo are sym-
metric, positive semi-definite. Unfortunately, Wc, Wo are dense, square n× n
matrices even if A,E are sparse. These equations can for instance be solved
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by codes from the SLICOT library 3 using “direct” Lyapunov solvers as those
in [4,18], which allows the reduction of small LTI systems (roughly speaking,
n ≤ 5000 on current desktop computers with 32-bit architecture). Larger prob-
lems, with tens of thousands of state-space variables, can be reduced using the
sign function-based methods in PLiCMR 4 [9,10] on parallel computers [10].
However, the difficulties of exploiting the usual sparse structure of the Lya-
punov equations using direct or sign function-based solvers ultimately limits
the applicability of the SVD-based algorithms in these two libraries. Most re-
cently, a new approach has been proposed for the solution of large Lyapunov
equations arising in special classes of dense problems via the sign function. The
method features a linear-polylogarithmic complexity, achieved by employing
hierarchical matrix structures and the related formatted arithmetic [5].

In the last years, with the formulation of the low-rank alternating direction

implicit (LR-ADI) iteration for the Lyapunov equation [16,17,20,24,25], SVD-
based methods have regained interest. This iteration exploits the sparse struc-
ture of the coefficient matrices of the Lyapunov equation and, therefore, can
be employed to construct SVD-based model reduction algorithms for large
LTI systems. Using this approach, standard LTI systems (E = In, the iden-
tity matrix of order n) with tens of thousands of state-space variables can be
reduced using desktop computers.

In this paper we present a variant of the LR-ADI iteration adapted for the
solution of generalized Lyapunov equations. In order to extend the applicabil-
ity of the algorithms to larger problems, we have used existing efficient dense
and sparse linear algebra libraries to develop a parallel library SpaRed 5 for
model reduction of large-scale (standard and generalized) sparse systems, in-
cluding those with state matrix pencils with banded structure. Note that the
parallelization approach considered here can be based on processes or threads.
The latter variant can be used to efficiently exploit the parallelism in modern
shared-memory architectures so that SpaRed may become a useful software
tool for model reduction on next generation desktop multi-core computers. Ex-
periments on a SMP system with 16 Intel Itanium 2 processors demonstrate
that balanced truncation can be an efficient approach for model reduction of
large-scale systems.

The paper is structured as follows: In Section 2 we briefly review how to re-
duce generalized LTI systems efficiently. There we also describe a simple gen-
eralization of the LR-ADI iteration for generalized Lyapunov equations that
preserves the sparse structure of the coefficient matrices of the equation; we
discuss strategies to detect convergence of the iteration; and we give hints on
how to select the shifts for the iteration depending on the structure of the ma-
trices. Details of the parallel implementation of the corresponding algorithms
are then given in Section 3, and the numerical and parallel performances of the

3 Available from http://www.slicot.org.
4 Available from http://www.pscom.uji.es/software.
5 Available from http://www.pscom.uji.es/software.
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new algorithms are reported in Section 4. Finally, some concluding remarks
follow in Section 5.

2 Balanced Truncation for Model Reduction

Balanced truncation (BT) [22] belongs to the class of absolute error methods
and is part of the family of SVD-based methods [2,23]. Absolute error methods
attempt to minimize

‖∆a‖∞ := ‖G − Gr‖∞,

where ‖G‖∞ denotes the L∞- or H∞-norm of a stable, rational matrix function
which is defined for proper transfer functions as

‖G‖∞ := sup
ω∈R

σmax(G(ω)),

with  :=
√
−1; here, σmax(M) stands for the largest singular value of the

matrix M .

We next review two BT approaches for model reduction of generalized LTI
systems and then present a modification of the LR-ADI iteration [20,24] that
can be used to solve generalized Lyapunov equations.

2.1 Obtaining the reduced-order system

BT methods are strongly related to the controllability and observability Grami-
ans the system, Wc and Wo, respectively. These Gramians are given by the
solutions of the two dual generalized Lyapunov equations from (4), (5),

AWcE
T + EWcA

T + BBT = 0, AT ŴoE + ET ŴoA + CT C = 0,

and Wo = ET ŴoE. As A−λE is assumed to be stable, Wc and Wo are positive
semidefinite and therefore there exist factorizations Wc = ST S and Wo =
RT R. Matrices S and R are called the “Cholesky” factors of the Gramians
(even if they are not Cholesky factors in a strict sense).

Consider now the singular value decomposition (SVD) of the product

SRT = UΣV T = [UL UR]







ΣL 0

0 ΣR













V T
L

V T
R






, (6)

where the matrices Σ, U , and V are conformally partitioned at a given dimen-
sion r such that ΣL = diag (σ1, . . . , σr), ΣR = diag (σr+1, . . . , σn), σj ≥ 0 for
all j, and σr > σr+1. Here, σ1, . . . , σn are the Hankel singular values (HSV)
of the system. In case σr > σr+1 = 0, then r is the McMillan degree of the
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system. That is, r is the state-space dimension of a minimal realization of the
system. The HSV contain important information about the system dynamics
as they measure “how much” a state is involved in the energy transfer from a
given input to a certain output.

Square-root (SR) BT algorithms use the products of the SVD in (6) to obtain
the reduced-order model as

Er := TLETR, Ar := TLATR, Br := TLB, Cr := CTR, Dr := D,(7)

where the truncation (or projection) matrices TL ∈ R
r×n and TR ∈ R

n×r are
given by

TL := Σ
−1/2
L V T

L RE−1 and TR := ST ULΣ
−1/2
L . (8)

Note that Er = Ir and thus need not be computed.

The balancing-free square-root (BFSR) BT algorithms can provide more ac-
curate reduced-order models in the presence of rounding errors [28,33]. These
algorithms share the first two stages (solving the coupled equations and com-
puting the SVD of SRT ) with the SR methods, but differ in the procedure
to obtain TL and TR. Specifically, the following two QR factorizations are
computed,

ST UL = [P1 P2]







R̂

0






, RT VL = [Q1 Q2]







R̄

0






, (9)

where P1, Q1 ∈ R
n×r have orthonormal columns, and R̂, R̄ ∈ R

r×r are upper
triangular. The reduced-order system in (7) is then given by the truncation
matrices

TL := (QT
1 P1)

−1QT
1 E−1 and TR := P1.

In this version, we again obtain Er = Ir. As this may not be desirable or
necessary if we start out with an LTI system in generalized state-space form,
one can also use

(Er, Ar, Br, Cr) =
(

QT
1 P1, Q

T
1 E−1AP1, Q

T
1 E−1B,CP1

)

.

Both SR and BFSR BT algorithms provide a realization Gr which satisfies
the theoretical error bound

‖∆a‖∞ = ‖G − Gr‖∞ ≤ 2
n

∑

j=r+1

σj. (10)

This allows an adaptive choice of the state-space dimension r of the reduced-
order model once the HSV are known. Further details on model reduction of
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generalized LTI systems using BT methods, in particular when E is singular,
are given in [29].

2.2 Computing low-rank solutions of generalized Lyapunov equations

In this section we re-elaborate the Lyapunov solvers introduced in [20,24] in
order to deal with the generalized Lyapunov equation. This is a fundamental
part of the model reduction methods described in the previous subsection. The
software package lyapack 6 [25] provides matlab scripts for solving general-
ized Lyapunov equations as in (4), (5) by using an implicit transformation to
standard state-space form based on a sparse Cholesky (or LU) factorization
of E. Here, we will follow an approach discussed in [6,19] which avoids this
factorization. Another variation of this idea can be found in [30].

The methods considered here benefit from (4)–(5) sharing A and E as co-
efficient matrices of the Lyapunov equation. Part of their efficiency comes
also from the constant terms in the equations, BBT and CT C, being formed
as rank-k products, with k ∈ {m, p} in general much smaller than n. The
proposed iterative algorithms exploit the frequent low-rank property of the
constant terms in (4)–(5) to provide low-rank approximations to the Cholesky
or full-rank factors of the solution matrices. These approximations can reliably
substitute S and R in the computation of (6), (8), and (9); see [9].

From the relation between the standard and generalized systems in (2) and (1),
the controllability Gramian Wc is also given by the solution of the Lyapunov
equation

AsWc + WcA
T
s + BsB

T
s = 0.

Now, given a set of shift parameters τ = {τ1, τ2, . . .} with negative real part
such that τj = τj+ts , j = 1, 2, . . . (that is, the set is cyclic of period ts), the
LR-ADI iteration [20,24] delivers a pair of sequences of matrices, {Uj}∞j=1 and
{Yj}∞j=1, as follows. Initially,

U1 := γ1 (As + τ1In)−1Bs,

Y1 := U1,

where γ1 =
√

−2 Re(τ1) and Re(τk) stands for the real part of τk. From then

on (j > 1),

Uj := γj

(

In − (τj + τj−1)(As + τjIn)−1
)

Uj−1,

Yj := [Yj−1, Uj] .

Here, τj denotes the conjugate of τj, and γj =
√

Re(τj)

Re(τj−1)
, j > 1. On con-

6 Available from http://www.slicot.org.
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vergence, after lc iterations, the procedure provides an approximation matrix
Ylc ∈ R

n×(m·lc) such that YlcY
T
lc ≈ ST S = Wc.

Let us rewrite the LR-ADI iteration in order to avoid explicit references to As

or Bs. Thus, for the first iteration,

U1 := γ1 (As + τ1In)−1Bs = γ1 (E−1A + τ1In)−1E−1B

= γ1 (E−1(A + τ1E))−1E−1B = γ1 (A + τ1E)−1EE−1B

= γ1 (A + τ1E)−1B,

while, for the remaining ones (j > 1),

Uj := γj

(

In − (τj + τj−1)(As + τjIn)−1
)

Uj−1

= γj

(

In − (τj + τj−1)(E
−1A + τjIn)−1

)

Uj−1

= γj

(

In − (τj + τj−1)(E
−1(A + τjE)−1

)

Uj−1

= γj

(

In − (τj + τj−1)(A + τjE)−1E
)

Uj−1

= γj

(

Uj−1 − (τj + τj−1)(A + τjE)−1EUj−1

)

.

The situation is slightly different for the observability Gramian. Rather than
working with (5), we use here

AT
s Wo + WoAs + CT C = 0.

Following the same idea as above, the LR-ADI iteration can be re-formulated
to produce the sequence {Vj}∞j=1 as

V1 := γ1 (AT
s + τ1In)−1CT = γ1 ET (A + τ1E)−T CT ,

and for j > 1

Vj := γj

(

In − (τj + τj−1)(A
T
s + τjIn)−1

)

Vj−1

= γj

(

In − (τj + τj−1)((E
−1A)T + τjIn)−1

)

Vj−1

= γj

(

Vj−1 − (τj + τj−1)E
T (A + τjE)−T Vj−1

)

.

Similarly to the previous case, during the iteration we construct a sequence
{Zj}∞j=1 using

Z1 := V1,

Zj := [Zj−1, Vj] , j > 1,

so that, on convergence after lo iterations, we obtain a matrix Zlo ∈ R
n×(p·lo)

such that ZloZ
T
lo ≈ RT R = Wo. Note that we do not compute an approximation

to the solution of (5), but we go for R directly without the detour to solve
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(5) for a solution factor R̂. Working with the latter and noting that R̂E = R,
in (6) we would need to compute the SVD of SET R̂T . On the other hand, in

(8) we could work with TL := Σ
−1/2
L V T

L R̂ and thus save the inversion with E
there. The question here is which version is to be preferred. We chose to work
with R instead of R̂ as this delays, as long as possible, the application of E−1

and rounding errors introduced by a possibly ill-conditioned E. In both cases,
a (Cholesky or LU) factorization of E has to be computed. But if R̂ were
computed, we would have to use this factorization to solve p · lo linear systems
of equations while in (8), only r ≤ p · lo linear systems have to be solved! As
usually, r ≪ p · lo, this can yield a significant savings of computational time.

Now, consider that both lc, lo > ts. Then, provided sufficient storage space
is available, a significative computational cost can be saved by using direct
methods to solve the linear systems (of equations) that appear in the previous
iterations. In particular, we only need to factorize matrices (A + τjE) and
(AT +τjE

T ) once, but we can then use the same factors in iterations j+kts, k =
0, 1, . . .. Actually, only one factorization is needed here as the LU factorization
(with row pivoting) (A + τjE) = PLU yields a factorization of (AT + τjE

T )
as well:

AT + τjE
T = (A + τjE)T = U

T
L

T
P.

Moreover, the shifts are always chosen to yield a set that is closed under com-
plex conjugation. Let τi = τj; then iterations j and i involve linear systems
with coefficient matrices that are complex conjugates of each other. Hence,
only one factorization is required to perform these two iterations. In sum-
mary, if {τ1, . . . , τts} is composed of trs real and tcs complex shifts, then we
need to compute (and store) trs factorizations with real arithmetic and tcs/2
factorizations with complex arithmetic.

Current direct methods for the solution of unstructured sparse linear systems
are usually composed of three stages: analysis, factorization, and resolution,
with a significative portion of the time spent in the first one [1,14]. As all
matrices (A + τjE) and (AT + τjE

T ), j = 1, 2 . . . , ts, share the same sparsity
pattern, a major part of the analysis stage needs to be performed only once.

The previous discussion justifies that we prefer direct methods for the solution
of sparse linear systems over iterative ones [1]. Nevertheless the use of direct
methods is not compulsory at all. As a matter of fact, some sparse systems
cannot be solved using direct methods because of the fill-in that occurs during
the factorization. In such case, we can still rely on iterative methods.

The LR-ADI iterations are also easily adapted to exploit a banded structure
in the state matrix pencils. In this case, the fill-in during the factorization is
bounded so it is unlikely that iterative methods are needed.
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2.2.1 Symmetric-definite state-matrix pencils

In case both A and E are symmetric, and one of them is definite, the corre-
sponding matrix pencil only has real eigenvalues and is said to be symmetric-
definite. In fact, because of the stability of A − λE, if A is negative definite
then E must be positive definite (and vice versa). In such case all shifts must
be chosen to be real, and the iterations for Uj and Vj boil down to

U1 := γ1(A + τ1E)−1B,

Uj := γj

(

Uj−1 − (τj + τj−1)(A + τjE)−1EUj−1

)

, j > 1,

and

V1 := γ1E(A + τ1E)−1CT ,

Vj := γj

(

Vj−1 − (τj + τj−1)E(A + τjE)−1Vj−1

)

, j > 1,

where γj =
√

τj

τj−1

.

As τj < 0 and A−λE is symmetric-definite stable, the matrix −(A+τjE)−1 is
symmetric positive definite and the linear systems that appear in the iteration
can be solved via a (sparse) Cholesky factorization.

2.2.2 Selection of the shifts parameters

The performance of the previous iterations strongly depends on the selection
of the shift parameters.

For A or E unsymmetric, we propose to employ a modification of the heuristic
proposed in [24] for standard LTI systems. This procedure delivers approxi-
mations for the generalized eigenvalues of A − λE and (A − λE)−1 of largest
magnitude using the shift-and-invert Arnoldi iteration [15]. In such a case it is
important that the set of selected shifts is closed under complex conjugation.

In case A − λE is symmetric definite, we utilize a procedure to compute
the optimal shifts which requires estimators of both the largest and smallest
magnitude generalized eigenvalue of the pencil. Efficient codes to compute
these approximations are based on generalizations of the Lanczos iteration.
The shifts are then computed from these estimators with a negligible cost [8].

For further details on the convergence of the LR-ADI iteration and the prop-
erties of the heuristic selection procedure, see [24,35].

2.2.3 Convergence criteria

The LR-ADI iterations present (at best) a superlinear convergence. A practical
stopping criterion is to halt the iteration when the contribution of the norm

of the columns that are added to the solution is relatively “small”. This is
equivalent, e.g., to stop the computation of the sequences when

‖Uj‖F < ε · γ · ‖Yj‖F and ‖Vj‖F < ε · γ · ‖Zj‖F , (11)
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where ε denotes the machine precision and γ is a tolerance threshold for the
iteration; in our experiments we set γ := 100 · n.

A different approach requires computation of the relative residuals for the
approximations Yj and Zj to the solutions of the Lyapunov equations. The
idea here is to stop when the residuals

RWc
(Yj) :=

‖A(YjY
T
j )ET + E(YjY

T
j )AT + BBT‖F

2‖A‖F‖E‖F‖YjY T
j ‖F + ‖BBT‖F

, (12)

RWo
(Zj) :=

‖AT E−T (ZjZ
T
j ) + (ZjZ

T
j )E−1A + CT C‖F

2‖A‖F‖E‖F‖E−T ZjZT
j E−1‖F + ‖CT C‖F

, (13)

are smaller than a given tolerance threshold.

In practice, neither of these criteria (nor their combination) is completely
satisfactory and a “trial-and-error” approach together with careful monitoring
of the iteration is necessary.

As the cost of computing the previous convergence criteria can be quite large
(specially for the one based on the residuals), we propose to reduce it by using
the following techniques:

1.) The norms of ‖Yj‖F and ‖Zj‖F can be computed incrementally. For ex-

ample, as Yj = [Yj−1, Uj], by construction ‖Yj‖F =
√

‖Yj−1‖2
F + ‖Uj‖2

F so
that only the norm of the n × m matrix Uj is required at each iteration
step.

2.) In several norm computations, we can avoid forming full dense n × n
matrices by using ‖MT M‖F = ‖MMT‖F . This is the case, e.g., when
computing ‖YjY

T
j ‖F or ‖BBT‖F and implies a significant reduction both

in storage and computational costs.
3.) We can also generalize the approach for computing the residual norms

in [26] as follows. Assume E is invertible; then YjY
T
j is an approximation

of the solution of

A(YjY
T
j )ET + E(YjY

T
j )AT + BBT = 0.

Let

M j
c = [AYj, EYj, B] = Qj

cR
j
c = Qj

c [R1, R2, R3] (14)

be a (skinny) QR factorization of M j
c , where Qj

c ∈ R
n×rq has rq = 2(j +

1)m orthonormal columns, and Rj
c ∈ R

rq×rq is an upper triangular matrix
partitioned into blocks R1, R2, and R3 of j · m, j · m, and m columns,
respectively. Then, we can use that

‖A(YjY
T
j )ET + E(YjY

T
j )AT + BBT‖F
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= ‖ [AYj, EYj, B] [EYj, AYj, B]T ‖F = ‖M j
c















0 Irq
0

Irq
0 0

0 0 Im















(M j
c )T‖F

= ‖(M j
c )T M j

c ‖F = ‖(Rj
c)

T Rj
c‖F = ‖RT

1 R1 + RT
2 R2 + RT

3 R3‖F .

As the orthogonal factor need not be computed, the cost for this procedure
is 2(nrq − 1

3
r2
q +(2j2 +1)m2)rq floating-point arithmetic operations (flops)

and thus increases in each step. Thus, if many iterations are required, the
cost for evaluating the residual dominates the cost of the iteration even if
no full n × n matrices need be formed.

The idea is analogously derived for the residual (12).
4.) Instead of evaluating the residual convergence criteria at each iteration,

we can do it periodically every few iterations.
5.) The iterations for Yj and Zj can be dealt with independently so that one

of them can be stopped earlier.

2.2.4 Keeping the storage needs within limits

The LR-ADI iterations add m and p columns per step to the approximation
factors Yj and Zj. As these are dense matrices (with possibly complex entries),
the storage needs of the algorithm increase by n(m + p) entries per iteration.
In order to keep the required workspace within reasonable limits, we can com-
press the matrices Yj and Zj during the iteration. Specifically, it is possible to
reduce the number of columns in the factors by computing a rank-revealing
QR (RRQR) factorizations [15]. For this purpose, we proceed to compute the
RRQR factorization

Y T
j = QsRsΠs, rs := rank (Yj) = rank (Rs) ,

where Qs ∈ R
n×rs has orthonormal columns, Rs ∈ R

rs×rs is an upper triangu-
lar matrix, and Πs is a square permutation matrix of order rs. Then, we can
substitute Yj by its full-rank factor

Yj := RsΠ
T
s .

A similar strategy delivers a compressed matrix for Zj. Whether the savings
in storage introduced by this column compression technique are worth the
cost of the procedure depends on the rank of the computed factors. Also, the
procedure for evaluating the residuals (12) and (13) greatly benefits from a
reduction in the number of columns of Yj, Zj.

Traditionally the QR factorization with column pivoting [15] is employed for
rank-revealing purposes because of its low computational cost and high relia-
bility. (Although the SVD usually provides better accuracy, it does so at the
expense of a considerable higher cost. An SVD-based compression technique
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is discussed in [17].) In [27] a BLAS-3 variant is proposed for this algorithm
which maintains the same numerical behavior.

2.2.5 Computational savings using the LR-ADI solvers

It should be emphasized that the methods just described for solving (4)–(5)
and computing (6) significantly differ from standard methods used in the
Matlab toolboxes or SLICOT [34]. First, the proposed LR-ADI iteration for
the solution of the coupled Lyapunov equation has the potential to exploit the
sparsity of the coefficient matrices A and E. Besides, as we are using low-rank
approximations to the full-rank or Cholesky factors, the computation of the
SVD in (6) is usually less expensive: instead of a computational cost of O(n3)
when using the Cholesky factors, this approach leads to an O(lcm · lop · n)
cost where, in model reduction, often max{m, p} ≪ n; see [10]. If column
compression is applied, the cost of the SVD can be even more reduced. However
then we need to pay for the cost of the column compression procedure.

The reduction of the cost of the SVD is an advantage shared by the routines
in our dense parallel model reduction library PLiCMR [10,3]. However, the
routines in PLiCMR cannot exploit the sparsity of the coefficient matrices of
the Lyapunov equation.

2.3 Computational cost

For simplicity, we make the following assumptions in the evaluation of the
computational cost of a serial implementation of the SR-BT model reduction
algorithm:

• Matrices A and E are unsymmetric. We refer to the number of nonzeros in
these matrices as z̄(A) and z̄(E), respectively.

• In case one of the state matrices M ∈ {A,E} presents a banded struc-
ture, we denote by ku(M) and kl(M) the dimensions of its upper and lower
bandwidths, respectively.

• All the shifts {τ1, . . . , τts} are considered to be real.
• Only computational costs, measured in flops, are considered. Minor order

terms are neglected in the expressions.

With the previous premises, the costs of a few basic sparse linear algebra
operations are introduced in Table 1.

The algorithm for model reduction is composed of four main stages: com-
putation of shifts, LR-ADI iteration, SVD (of SRT ), and application of the
SR formulae. Table 2 reports the operations involved in these stages together
with approximations of their computational costs. Only the cost for RWc

(Yj)
is given, the cost for RWo

(Zj) being analogous.
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Operation Notation Structure

Sparse Banded

Matrix-vector product CMV (M) 2z̄(M) 2n(ku(M) + kl(M) + 1)

with matrix M

Factor M → LMUM ; CLU (M) Unknown 2n ku(M) kl(M)

general matrix M a priori

Solve from LMUM CSV (M) 2(z̄(LM ) 2n(ku(LM ) + kl(LU )

single right-hand side +z̄(UM )) +ku(UM ) + kl(UM ))

Table 1
Computational cost of sparse linear algebra operations appearing in the model re-
duction algorithm.

3 Moving the Frontier Further: Parallel Implementation

Parallelism can be exploited in the SR-BT algorithm at two different levels.
In our “fine-grain” variant, parallelism is exploited at the level of linear alge-
bra kernels. The idea here is that all “computational resources” (CRs), usually
processes or threads, cooperate in the solution of each one of the linear algebra
operations in the SR-BT algorithm: factorizations, triangular solves, matrix-
vector products, etc. On the other hand, in most stages of the algorithm,
different linear algebra operations can be executed concurrently using differ-
ent CRs, which results in a new opportunity to exploit parallelism at a higher,
“coarse-grain” level. A simple example are the two iterations for the compu-
tations of the shifts, which are completely independent, and can be computed
in parallel using two separate CRs. Both approaches can be combined in a
two-level (hybrid) parallel SR-BT algorithm.

While the coarse-grain approach only employs serial implementations of linear
algebra operations, the fine-grain approach requires the use of parallel codes
for these operations. Parallel routines for the solution of sparse linear systems
are available in packages such as MUMPS and SuperLU [1,14]. A parallel im-
plementation of the sparse matrix-vector product Mx is easily obtained by
computing the operation row-wise, as a series of dot (inner) products among
rows of the matrix and vector x, and distributing the task so that each CR
performs some of the dot products. Provided x is accessible to all CRs, the
operation can be performed fully in parallel. The efficiency of the procedure
depends on how the computational load is balanced among the CRs which, in
turn, is dependent on the sparsity pattern of M and the specific mapping of
dot products to CRs. Finally, two other major linear algebra operations in the
SR-BT algorithm are the dense matrix product and the SVD. Parallel codes
for these two operations are provided in the libraries ScaLAPACK and PLA-
PACK [12,32]. Note that the SVD routine in ScaLAPACK is used despite the
fact that we are computing only a small size SVD here: the reason is that the
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Phase Procedure Cost (flops)

Comp. shift Factor A, E CLU (A) + CLU (E)

Solve with single right-hand side (CSV (A) + CSV (E)) ts/2

MatVec with A, E (CMV (A) + CMV (E)) ts/2

LR-ADI. Iter.:

Factor (A + τ1E) CLU (A + τ1E)

j = 1 Solve with right-hand side B, CT CSV (A + τ1E) (m + p)

MatVec with E CMV (E) p

Factor (A + τjE) CLU (A + τjE)

1 < j ≤ ts Solve with right-hand side Uj , Vj CSV (A + τjE) (m + p)

MatVec with E CMV (E) (m + p)

ts < j Solve with right-hand side Uj , Vj CSV (A + τjE) (m + p)

MatVec with E CMV (E) (m + p)

All j ‖Uj‖F , ‖Vj‖F 2n(m + p)

RWc
(Yj) Incremental AYj = A[Yj−1, Uj ] CMV (A) m

Incremental EYj = E[Yj−1, Uj ] CMV (E) m

QR factorization of M j
c 2(n − rq/3)r2

q

‖RT
1 R1 + RT

2 R2 + RT
3 R3‖F 2m2(2j2 + 1)rq

SVD MatMat Y T
lc

Zlo ≈ SRT 2lc lo mp n

(Y T
lc

Zlo) = UΣV T 4l2c lo m2p + 22l3op
3

SR formulae TL := Σ
−1/2
L (V T

L ZT
lo

)E−1 2l2o n p2r + CSV (E) r

TR := Y T
lc

U1Σ
−1/2
L 2lc mn r

Ar := TLATR 2CMV (A) r

Br := TLB 2mn r

Cr := CTR 2n p r

Table 2
Operations during the different stages of the SR-BT model reduction algorithm
in SpaRed. MatMat and MatVec stand for the matrix-matrix and matrix-vector
products, respectively.

data required by the SVD is distributed due to the preceding computations.

We next describe how to parallelize each one of the stages in the SR-BT model
reduction algorithm. We consider that the premises made for the presentation
of the computational cost in the previous section still hold.

We will use the following notation hereafter: given a sparse matrix M , TMV (M),

15



TLU(M), and TSV (M) stand, respectively, for the (sequential) times of comput-
ing a matrix-vector product involving M , factorizing the matrix, and solving
the corresponding triangular linear systems with a single RHS. These times
are directly proportional to the costs reflected in Table 1. (More specifically,
TLU(M) and TSV (M) depend on the platform, the sparse solver that is em-
ployed, and the structure of the coefficient matrix of the linear system.) Given
dense matrices M1 and M2, TMM(M1M2) will be used for the (sequential)
time to compute the dense matrix-matrix product M1M2, while TSD(M1) will
denote the (sequential) time for computing the SVD of M1. When the routine
is executed in parallel, we will denote its time using a “p” superscript; thus,
e.g., T P

MV (M) is the time to compute a (sparse) matrix-vector product with
coefficient matrix M using a certain parallel code. The superscripts “cp” and
“fp” will denote coarse-grain and fine grain parallelism, respectively.

3.1 Computation of shifts

The two iterations in this stage require sparse matrix-vector products with
AE−1 and EA−1, where the inversions are performed as two triangular solves
each given factorizations of A and E. The coefficient matrices only need to
be factorized once, and the triangular factors can be used as many times as
needed during the iteration. However, there is a strict dependence between
consecutive steps so that iteration j + 1 requires the results from iteration j.

The minimum execution time for the fine-grain parallelization of this stage is

T FP
SHC = T P

LU(A) + T P
LU(E)

+(T P
SV (A) + T P

SV (E) + T P
MV (A) + T P

MV (E)) ts/2,

which corresponds to having computed all operations in the stage, one by one,
in parallel.

The coarse-grain approach to parallelizing the computation of shifts employs
two CRs to compute the two iterations independently. This results in the
coarse-grain parallel execution time

TCP
SHC = max(TLU(A) + (TSV (A) + TMV (E)) ts/2,

TLU(E) + (TSV (E) + TMV (A)) ts/2).

Clearly, the maximum speed-up in this case is 2.

3.2 LR-ADI iteration

In order to better illustrate this stage, we will consider the following simplifi-
cations:

• The first one performs the same operations as all the subsequent ones.
• Both sequences perform the same number of iterations, lc = lo.
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• The number of iterations is larger than the number of shifts, lc > ts.
• The number of inputs equals the number of outputs of the system, m = p.
• We will obviate the computation of the Frobenius norm for the sequences
{Uj}∞j=1, {Vj}∞j=1, as well as the procedure to compute the residual norms
associated with the convergence criterion.

The fine-grain variant of this stage results in the parallel execution time

T FP
ADI = T P

LU(Fj) ts +
(

T P
SV (Fj) + T P

MV (E)
)

lc (m + p),

where Fj = A + τjE.

F2

F3

F4

F5

S1

S2

S3

S4

S5

S7

S6

S4

S3

S7

S6

S5

S1

S2

F1

Fig. 1. Data dependencies graph among factorizations (F1, F2, . . .) and triangular
solves/matrix-vector products (two sequences S1, S2, . . ., for {Uj}∞j=1 and {Vj}∞j=1)
with ts=5 shifts and lc=7 iterations.

The coarse-grain variant of the LR-ADI iteration is more elaborated due to
the dependency between the j-th factorization and the solutions of the trian-
gular linear systems/matrix-vector products in iterations j, j + ts, j +2ts, . . . .
(see Figure 1). As all factorizations are independent, we can compute them in
parallel using np CRs. On the other hand, the triangular solves/matrix-vector
products for each one of the sequences need to be computed sequentially, as
the result of iteration j is needed during iteration j+1. Therefore, we can over-
lap factorizations, factorizations and triangular solves/matrix-vector products,
but not triangular solves/matrix-vector products. We have devised two differ-
ent ways of exploiting the parallelism that will referred to as heterogeneous
and homogeneous. In the heterogeneous scheme, np − 2 “producers” (CRs)
are in charge of computing the factorizations while two “consumers”, one per
iteration sequence, is dedicated to the solution of triangular linear systems
and computing the matrix-vector products. In the homogenous scheme, all np

CRs perform analogous tasks, combining factorizations and solutions/matrix-
vector products. Figure 2 illustrates the functional differences between the two
schemes.

In both these schemes, at best, we can expect the time for all the factorizations,
except the first one, to be overlapped with the triangular solves/matrix-vector
products. Now, as the two iterations are themselves independent, we could
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Fig. 2. Two different schemes to organize the computations (F1, F2, . . . for the fac-
torizations, and S1, S2, . . . for the triangular solves/matrix-vector products) in the
coarse-grain approach, heterogeneous (left) and homogeneous (right); the number
of CRs is np=5 in both cases.

theoretically obtain a parallel execution time for this coarse-grain approach

TCP
ADI = TLU(F1) + (TSV (Fj) + TMV (E)) lc max(m, p). (15)

However, due to the need to synchronize factorizations and solutions, the
execution time of the heterogeneous and homogeneous coarse-grain parallel
schemes will, in general, be higher, as is analyzed next.

Consider the left-hand side plot in Figure 3, corresponding to the heterogenous
scheme. The gap δHT , which exposes a deviation from the optimum due to the
factorizations not being computed fast enough, is given by

δHT = max (0, TLU(Fj) − (TSV (Fj) + TMV (E)) m (np − 2)) . (16)

This overhead is incurred till the last factorization is computed, at ⌈ ts−np−2
np−2

⌉,
after which the remaining triangular solves/matrix-vector products are com-
puted sequentially. Thus, the actual time for the heterogeneous scheme is given
by

THTCP
ADI = TCP

ADI + δHT

⌈

ts − np − 2

np − 2

⌉

. (17)

The analysis for the homogenous scheme is similar. The “gap” in the right-
hand side plot in Figure 3, δHM , is now given by

δHM = max (0, TLU(Fj) − (TSV (Fj) + TMV (E)) m (np − 1)) , (18)

which is now due to the solutions being delayed too long. This overhead is
incurred till the last factorization is computed, resulting in a time for the
homogenous scheme

THMCP
ADI = TCP

ADI + δHM

⌈

ts − np

np

⌉

. (19)

The two analyses result in similar expressions which converge asymptotically
as np is increased. The main difference is encountered for very small values
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of np (2 or 3), where the homogenous scheme is in theory better than the
heterogenous one. These formulae also yield an expression for the minimum
execution times, attained for

np ≥ ⌈ TLU(Fj)

TSV (Fj) + TMV (E)
⌉ + 2 and np ≥ ⌈ TLU(Fj)

TSV (Fj) + TMV (E)
⌉ + 1(20)

in the heterogeneous and homogeneous schemes, respectively.
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Fig. 3. “Idle” times, or gaps, that result in deviations from the minimum in the two
different schemes to organize the computations (F1, F2, . . . for the factorizations,
and S1, S2, . . . for the triangular solves/matrix-vector products) in the coarse-grain
approach, heterogeneous (left) and homogeneous (right); the number of CRs is np=5
in both cases.

3.3 SVD

As a result of the LR-ADI iteration we obtain two dense “skinny” matrices,
Ylc and Zlo , that need to be multiplied together, resulting in a dense, small
matrix whose SVD is to be computed next. We can approximate the execution
time of a fine-grain parallelization of this stage as

T P
SV D = T P

MM

(

Y T
lc Zlo

)

+ T P
SD

(

(Y T
lc Zlo)

)

.

There is a strict dependency between these two operations that does not al-
low a coarse-grain parallelization of the stage. Nevertheless, the bulk of the
computations here comes from the product Y T

lc Zlo , while the cost for the SVD
is almost negligible.

3.4 SR formulae

A fine-grain parallelization of this stage yields an execution time

T FP
SRF = T P

MM

(

V T
L ZT

lo

)

+ T P
SV (E) r + T P

MM

(

Y T
lc UL

)

+ T P
MV (A) r + T P

MM((TLA)TR) + T P
MM(TLB) + T P

MM(CTR) .
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Alternatively, we could calculate TL and TR in two different CRs and, once
these projectors are available, obtain the matrices of the reduced-order system
using three CRs. This yields the parallel execution time

TCP
SRF = max

(

TMM

(

V T
L ZT

lo

)

+ TSV (E) r, TMM

(

Y T
lc UL

))

+ max(TMV (A) r + TMM((TLA)TR) , TMM(TLB) , TMM(CTR)).

3.5 Overlapping stages

There is still some more parallelism that can be extracted from part of the
SR-BT model reduction algorithm. Consider the product Y T

lc Zlo needed to
compute the SVD. Assume we are just about to start step j in the LR-ADI it-
eration so that Yj−1/Zj−1, composed of (j−1)m/(j−1)p columns, are known,
and consider we have already computed the product Y T

j−1Zj−1. Then, during
iteration j, Uj/Vj are computed so that Yj = [Yj−1, Uj] and Zj = [Zj−1, Vj].
Therefore, using one additional CR, we can overlap the computations cor-
responding to step j + 1 of the LR-ADI iteration with the products Y T

j−1Uj,
V T

j Zj−1, and UT
j Vj that are necessary as part of the construction of the overall

product Y T
lc Zlo . Proceeding in this manner, a major bulk of the computation of

the product can be overlapped with the LR-ADI iteration. Note that forming
this product is the major part of the SVD stage, so that overlapping can here
yield a significant reduction in the total computational time.

A second overlap can be attained by rearranging the computation of the pro-
jector TL := Σ

−1/2
L (V T

L ZT
lo)E

−1 so that the linear system ZT
loE

−1 is solved first,
and then the matrix product of V T

L with this partial result is computed. Al-
though this increases the overall cost of the procedure, the solution of the
linear system can be then overlapped with the LR-ADI iteration resulting in
a lower execution time.

3.6 Threads vs. processes as CRs

The fine-grain variants require parallel implementations of several linear alge-
bra operations. Thread-level parallelism can be exploited by simply linking in
multithreaded implementations of BLAS (e.g., Intel MKL 7 or GotoBLAS 8 ),
both for sparse and dense linear algebra operations. To exploit process-level
parallelism, we can use message-passing packages as, e.g., MUMPS or Su-
perLU for sparse linear algebra, or ScaLAPACK, the message-passing version
of LAPACK, for dense linear algebra.

The coarse-grain variants can be implemented using higher level tools for the
shared-memory and the message-passing programming models as OpenMP
and MPI. Naturally, thread-level parallelism is only appropriate for shared-

7 Available from http://www.intel.org.
8 Available from http://www.tacc.utexas.edu/resources/software.
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memory multiprocessors (SMM). The process-level/message passing combina-
tion is possible both in SMM and distributed-memory platforms (multicom-
puters).

Consider now the coarse-grain heterogeneous and homogeneous schemes for
the LR-ADI iteration. The former computes the solutions in two CRs (the
consumers) so that factorizations computed at any other CRs need to be
streamlined through these. This can result in a high volume of data movement
(This is clearly true in multicomputers, but also in shared-memory platforms
with a ccNUMA or NUMA organization). In the homogeneous scheme, it is
the solutions that are to be passed between “neighbour” CRs. Therefore, we
can expect the amount of data movement to be lower in this scheme.

The hybrid two-level approach could be easily implemented by combining
processes at the coarse-level and threads at the fine-grain level. However, this
implementation is not considered further as thread-safe implementations of
the linear algebra libraries are needed and, unfortunately, as to date, MUMPS
does not satisfy this property.

4 Numerical Experiments

All the experiments presented in this section were performed on a ccNUMA
SGI Altix 350 platform with 8 nodes using ieee double-precision floating-point
arithmetic (ε ≈ 2.2204e−16). Each node consists of two Intel Itanium 2 pro-
cessors@1.5 GHz with 2 GBytes of RAM. We employ a BLAS library specially
tuned for this processor that achieves around 5300 Mflops (millions of flops
per second) for the matrix product (routine DGEMM in MKL 8.0). The nodes
are connected via an SGI NUMAlink network and the MPI communication
library is specially developed and tuned for this network.

All results were obtained using the SR-BT algorithm in our library SpaRed.
We found no significative difference when using the BFSR-BT code for the
examples reported in the following.

4.1 Model reduction benchmarks

In the evaluation we employ several examples coming from two different bench-
marks: the first one is part of the NICONET project 9 , which led to the devel-
opment of the SLICOT library 10 , and includes several small-scale examples for
standard realizations (E = In) with unsymmetric sparse state matrix A [13].
The second benchmark is the result of a recent effort to assemble large-scale
examples in the Oberwolfach model reduction collection coordinated at the
University of Freiburg 11 . Table 3 and the following brief description feature

9 http://www.icm.tu-bs.de/NICONET
10 http://www.slicot.org
11 http://www.imtek.de/simulation/benchmark/
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some of the relevant aspects of the models.

CD player (C DISC). This example is frequently used as a benchmark for
model reduction. The system describes the dynamic behavior of the mech-
anisms of the swing arm and the lens of a portable Compact Disc player.
The goal is to obtain a low-cost controller which is both fast and robust to
external shocks.

Random model (RAND). This is a randomly generated single-input, single-
output model. There is no real application behind this example.

Hospital building (BUILD I). This example comes from modeling vibra-
tions of a building at Los Angeles University Hospital. The model is dis-
cretized with 8 floors and 3 degrees of freedom each, which correspond to
the displacements in the x and y directions, and the rotation. A second-
order differential equation is thus obtained which is then transformed into
an standard continuous-time LTI system.

Clamped beam (BEAM). This system results from the discretization of
a hyperbolic PDE modeling a clamped beam with proportional damping,
resulting in a second-order system. Here the input contains the force applied
to the structure while the output represents the corresponding displacement.

Russian service module ISS (ISS I). This is a (linearized second-order)
system modeling component 1R of the International Space Station (ISS).
The challenge is to control a flexible structure in space in real-time so that
it becomes necessary to reduce the flex models in order to complete the
analysis in a timely manner.

Extended service module ISS (ISS II). This model corresponds to a sec-
ond assembly stage of the ISS, also known as module 12A. The goal of model
reduction here is similar to that of the previous example.

Optimal cooling of steel profiles (STEEL I and STEEL II). This model
arises in a manufacturing method for steel profiles [11,31]. The goal is to de-
sign a control that achieves moderate temperature gradients when the rail is
cooled down. The mathematical model corresponds to the boundary control
for a 2-D heat equation. A finite element discretization, followed by adaptive
refinement of the mesh result in the two examples in this benchmark.

Micropyros thruster (T3DL). This is a model of a microthruster array
based on the co-integration of solid fuel with a silicon micromachined sys-
tem [21]. The design problem is to reach the critical temperature within
the fuel but, at the same time, do not reach the critical temperature at the
neighboring microthrusters. The model for the device was constructed and
meshed using ANSYS.

Chip cooling model (CHIP). This is a design corresponding to a 3-D model
of a chip cooled by forced convection that is used in the thermal simulation
of heat exchange between a solid body (the chip) and a fluid flow.
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SLICOT benchmark collection

Example n m p z̄(A) z̄(E)

C DISC 120 2 2 240 = z̄(In)

RAND 200 1 1 2,132 = z̄(In)

BUILD I 48 1 1 1,176 = z̄(In)

BEAM 348 1 1 60,726 = z̄(In)

ISS I 270 3 3 405 = z̄(In)

ISS II 1,412 3 3 2,118 = z̄(In)

Oberwolfach benchmark collection

Example n m p z̄(A) z̄(E)

STEEL I 20,209 7 6 139,233 139,473

STEEL II 79,841 7 6 553,921 554,913

T3DL 20,360 1 7 265,113 20,360

CHIP 20,082 1 5 281,150 20,082

Table 3
Examples included in the evaluation of the SpaRed model reduction routine.

4.2 Numerical performance of the Lyapunov solver

We first study the convergence rate and the numerical performance of the LR-
ADI Lyapunov solvers. Table 4 reports, for each example, the number of shifts
used for the iteration, ts, the number of iterations required for convergence,
lc, the relative contribution of the last columns added to the solution (11),
and the residuals (12)–(13) after lc iterations. As the convergence is strongly
dependent on the selection and the number of shifts, repeated executions were
performed in order to choose those values reported in the table.

A few comments are worth about the results in the table:

• The iteration did not converge according to any of the criteria for examples
C DISC, BUILD I, ISS I, ISS II, and T3DL. (Due to the scale of problem
T3DL, we only allowed 140 iterations for this case.) Although the residuals
RWc

(Ylc) and RWo
(Zlo) can be considered small for the former two examples,

both ISS examples offers poor residuals. Example T3DL also offer unsatis-
factory residuals for one of the equations. Notice however that the quality
of the solutions should be judged by the soundness of the reduced-order
systems, to be evaluated in short.

• The convergence criterion based on the contribution of the columns added
to the solution is appropriate for examples BEAM, STEEL I, STEEL II,
and CHIP.
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Example ts lc
‖Ulc‖F

‖Ylc‖F

‖Vlc‖F

‖Zlo‖F
RWc

(Ylc) RWo
(Zlo))

C DISC 25 1,000 1.24e−05 1.24e−05 1.36e−11 1.33e−11

RAND 20 40 6.29e−08 6.94e−08 1.47e−16 1.20e−16

BUILD I 40 1,000 9.87e−06 4.40e−05 7.30e−12 4.29e−11

BEAM 20 40 1.96e−03 5.90e−04 2.06e−08 2.17e−09

ISS I 20 1,000 1.24e−03 1.41e−03 6.02e−07 2.11e−05

ISS II 20 1,000 1.17e−02 1.74e−03 9.36e−06 3.35e−06

STEEL I 25 76 4.25e−10 4.21e−11 2.94e−09 4.89e−20

STEEL II 26 78 1.63e−10 1.59e−09 1.80e−08 4.54e−21

T3DL 29 140 1.45e−02 1.49e−02 4.04e+00 1.32e−12

CHIP 20 59 1.43e−10 5.00e−11 4.45e−09 1.28e−25

Table 4
Convergence and numerical performance of LR-ADI iteration routine.

• The LR-ADI iteration for the RAND example was stopped after only 40
iterations with residuals as low as one could expect. The convergence cri-
terion based on the residuals, combined with a careful monitoring, served
its purpose for this example as we detected that no improvement in the
residuals was obtained by iterating further.

4.3 Numerical performance of the SR-BT model reduction algorithm

We next compare the frequency response of the original systems with that
of the reduced-order realizations obtained using SpaRed. For the small-scale
problems in SLICOT, we include a reliable BT model reduction routine from
PLiCMR in the experiments. The kernels in PLiCMR, though parallel, do not
preserve nor exploit the sparsity of E or A, and therefore cannot deal with
the large examples from the Oberwolfach benchmark.

Both the SpaRed and the PLiCMR routines select the order r automatically
so that

σr > max(γ1, n · ε · σ1) > σr+1,

where ε is the machine precision and γ1 is a user-specified tolerance threshold.
In our case, we set γ1 = η · σ1, with the value η adjusted for each particular
example. Obviously, a larger order provides a more accurate model, but also
increases the cost of latter computations involving the reduced-order model.
For each example, Table 5 shows the values of r and σ1, and the theoretical
error bound ∆a the reduced-order realization must satisfy (see (10)). As a
measure of the quality of the reduced-order systems, in the table we also

24



report the difference

‖G − Gr‖∞ = σmax(G − Gr);

here, the TFMs are evaluated at w, with w composed of 1,000 frequency
samples logarithmically distributed in the interval [fmin, fmax], and fmin and
fmax chosen specifically for each different example.

Example r σ1 ∆a [fmin, fmax] SpaRed PLiCMR

‖G − Gr‖∞ ‖G − Gr‖∞

C DISC 42 1.17e+6 2.35e−01 [1e−1,1e+5] 1.64e−2 1.64e−2

RAND 7 8.19e+6 1.79e+01 [1e+1,1e+5] 6.29e+0 6.29e+0

BUILD I 30 2.50e−3 2.69e−05 [1e−1,1e+3] 4.92e−6 4.92e−6

BEAM 12 2.38e+3 1.24e+01 [1e−2,1e+3] 2.98e+0 2.37e+0

ISS I 36 5.79e−3 1.83e−03 [1e−2,1e+3] 2.03e−3 8.61e−5

ISS II 66 5.84e−3 4.21e−02 [1e−2,1e+3] 7.06e−3 7.38e−4

STEEL I 45 2.55e−2 1.47e−04 [1e−2,1e+6] 1.54e−5 –

STEEL II 60 2.57e−2 4.56e−06 [1e−2,1e+6] 5.29e−6 –

T3DL 30 2.81e+2 2.16e−06 [1e+0,1e+8] 6.74e−4 –

CHIP 40 5.27e+1 6.71e−10 [1e+0,1e+5] 3.35e−10 –

Table 5
Numerical performance of SpaRed model reduction routine.

A close inspection of the results in the table reveals the following:

• All the examples satisfy the theoretical bound, except for the ISS I and
T3DL examples computed using the SpaRed routine. We can impute this
on the low quality of the approximations to the solutions of the Gramians
produced by the LR-ADI iteration for these particular examples.

• A comparison between the SpaRed and PLiCMR codes reports close results
except for the two ISS examples, where PLiCMR performs better.

• It is quite remarkable that models of order 45 and 60 are enough to capture
the dynamics of the large systems of the STEEL examples.

The measure ‖G−Gr‖∞ compresses all the information relative to the absolute
error of the reduced-order system into a single number. However, in general it
is more enlightening to analyze the frequency response dynamics and its error
over the relevant frequency spectrum. Figures 4–7 report next the frequency
responses

|Gik( ω)|, 1 ≤ k ≤ p, 1 ≤ i ≤ m,

of the transfer function from input i to output k for the examples in the SLI-
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COT benchmark. These figures show the virtues of the reduced-order models
computed using SpaRed and PLiCMR over a large portion of the frequency
spectrum, and also offer an idea of the complexity of the model reduction task.
In particular, those systems with a large number of peaks in a transfer function
are expected to present major difficulties for the reduced-order systems.

The plots in Figure 4 report the dynamics of the rotating arm for each input-
output pair of the CD player example. Two main difficulties here are the lack
of a significative gap in the distribution of the Hankel singular values and the
“shaky” dynamics of the transfer functions, in particular for G12 and G21,
which requires a considerable number of states in the reduced-order model
in order to capture all the significant peaks in the frequency response. The
results report no visible difference in the reduced-order models computed by
PLiCMR or SpaRed.
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Fig. 4. Frequency responses of the CD player example (C DISC).

The left-hand side plot in Figure 5, corresponding to the frequency response
for the random example, shows that reduced-order models with only 7 states
are sufficient to match the dynamical behavior of the original system smoothly,
both for PLiCMR and SpaRed.

The plot in the middle of Figure 5 reports the frequency response of the
building example. A good approximation is obtained for both reduced-order
models, computed using PLiCMR and SpaRed, but the achieved reduction
is not quite satisfactory (from 48 to 30 states). The problem here is that
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all poles have imaginary parts, resulting in a dynamics which is difficult to
approximate (just counting peaks shows that the reduced-order model needs
at least 20 states to match all of them).

The right-hand side plot in Figure 5 illustrates the frequency response of the
beam example. Though most of the poles of the system are slightly undamped,
a good approximation at low frequencies (which are the relevant ones for
vibration analysis) is achieved with a quite reduced-order by both methods.
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Fig. 5. Frequency responses of the random (left), the building (center), and the
beam examples (RAND, BUILD I, and BEAM respectively).

Figures 6 and 7 report the frequency responses associated with each input/out-
put pair for the ISS models. The large deviations in some of the cases are due to
the nature of absolute error methods: as the gain in the corresponding input-
output channels is much smaller than, e.g., in the (1, 1)-component, and hence
much smaller than the H∞-norm of the system, a better approximation cannot
be expected as the absolute error is small enough; the plots give a different
impression, though.

As in the large-scale examples the number of input/outputs in the system is
considerable, in order to limit the number of figures we only present for those
the behavior of the error in the frequency response itself; that is, the figures
show ‖G − Gr‖2.

Figure 8 reports the absolute error in frequency response for both STEEL
examples. The figure shows that the absolute error is well below the theoretical
bound in both cases.

The plots in Figure 9 presents the behavior of the absolute error for the T3DL
and CHIP examples. The large error for the T3DL example at small frequen-
cies comes from a severe ill-conditioning of A− jωE for small ω which makes
an approximation of G(jω) there very difficult and on the other hand leads to
huge errors in the evaluation of the frequency response.

4.4 Parallel performance

In this subsection we evaluate the parallelism of the solutions proposed for each
one of the stages in the SR-BT algorithm as well as the overall performance,
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Fig. 6. Frequency responses of the Russian service module example (ISS I).

using the large-scale examples from the Oberwolfach model reduction bench-
mark. In order to reduce the number of results, we will only consider a parallel
implementation based on message-passing (parallelism using processes), both
for the fine-grain and coarse-grain approaches. A different possibility would
be to exploit parallelism at thread-level.

4.4.1 Computation of shifts

Table 6 reports the execution times and speed-ups of the parallelizations of
this first stage of the algorithm. To note in the table are the speed-ups lower
than 1 (decelerations or slowdowns) when the fine-grain parallel algorithm is
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Fig. 7. Frequency responses of the extended service module example (ISS II).

applied in the three smaller examples: STEEL I, T3DL, and CHIP. Only for
example STEEL II we obtain a positive speed-up from this approach. Fur-
ther experiments showed that it is the factorization stage in MUMPS that is
responsible for this poor results, while the triangular solves and the matrix-
vector products offer a reasonable parallel efficiency.

The coarse-grain approach delivers higher speed-ups on two processors for
the three small examples, and similar to those of the fine-grain approach for
example STEEL II. The speed-ups of this second parallel alternative using
two processors vary from 1.27 to 1.72 depending on how well balanced are the
costs of the two (Arnoldi) iterations.
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Fig. 8. Absolute error in the frequency responses of the optimal cooling examples
STEEL I (left) and STEEL II (right).
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Fig. 9. Absolute error in the frequency responses of the T3DL (left) and CHIP
(right) examples.

Example Sequential Fine-grain Coarse-grain

(1 Proc.) 2 Proc. 4 Proc. 2 Proc.

STEEL I 5.44 6.98 (0.78) 7.82 (0.69) 3.86 (1.40)

STEEL II 35.94 28.29 (1.27) 28.30 (1.27) 28.38 (1.27)

T3DL 7.55 9.25 (0.81) 9.84 (0.76) 4.33 (1.74)

CHIP 6.07 7.63 (0.79) 8.13 (0.74) 3.51 (1.72)

Table 6
Execution time (in secs.) and speed-ups (inside parenthesis) for the two parallel
approaches, fine-grain and coarse-grain, considered for the computations of shifts.

4.4.2 LR-ADI iteration

The previous experimental analysis showed that very little parallelism is ex-
tracted during the factorizations of the state matrices using MUMPS. Our ex-
periments with the LR-ADI iteration reported that the same problem persists
for the factorizations of the sequences of matrices Fj = A + τjE, j = 1, 2, . . .,
in the LR-ADI iteration. Therefore, we will not consider the fine-grain parallel
implementation of this stage.
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Two different variants were proposed for the coarse-grain approach, corre-
sponding to the CRs playing heterogeneous or homogeneous roles. As we are
using processes as CRs with nonshared memory, the heterogenous variant re-
quires the communication of the factorizations between processes while in the
homogeneous variant it is the solutions Uj and Vj that are transferred. Now,
MUMPS (as well as most other sparse direct solvers) keeps the factorized ma-
trices in internal data structures, hidden from the user, in order to offer an
object-oriented interface. As a consequence, transferring the factors becomes
too complex and we therefore rely only on the homogeneous approach. (Nev-
ertheless, experiments similar to those presented next, using the band direct
solvers in LAPACK, where the data structures for the factors are explicitly
available to the user, showed close results.)

Figure 10 compares the theoretical and experimental execution times (see
equations (18) and (19)) of the parallel homogeneous coarse-grain approach
for the four examples, as the number of processors is increased. In all four
examples the theoretical models capture the behavior of the actual parallel
codes remarkably well. The expression in the right-hand side of equation (20)
also offers the number of processors for which the minimum execution time is
obtained: np ≈ 3.7, 2.8, 19.8, and 22.1 for the STEEL I, STEEL II, T3DL, and
CHIP examples. This roughly corresponds to the moment the curves in the
first two plots flatten, while, for the last two examples, not enough processors
are available to contrast this result.

Figure 11 reports the acceleration obtained in each example using the homo-
geneous coarse-grain parallel code. Although the speed-ups are only moderate
when the number of processes is large, it is necessary to realize that for these
problems, using up to np = 14 nodes can be excessive. Indeed, the speed-ups
are 1.47/1.62 for examples STEEL I/STEEL II on 2 processors, and 3.13/3.69
for examples T3DL/CHIP on 5 processors, which can be considered as notable.

4.4.3 SVD

Table 7 lists the execution times and speed-ups of the parallelization of this
stage using the only option that is available: the fine-grain approach. The
two operations in this stage, the computation of the product Y T

lc Zlo and its
SVD, operate on dense matrices using parallel kernels from ScaLAPACK. The
overall performance of the stage is thus determined by the parallel efficiency
of routines pdgemm and pdgesvd in this library. Again we note that the bulk
of the computations here usually comes from the product Y T

lc Zlo rather than
the small-size SVD.

4.4.4 SR formulae

In subsection 3.5 we discussed two orders in which the computation of TL

could be arranged, as TL := Σ
−1/2
L (V T

L ZT
lo)E

−1 or TL := Σ
−1/2
L V T

L (ZT
loE

−1). As
we aim at partially overlapping this stage with the LR-ADI iteration, we only
investigate the second choice.
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Fig. 10. Execution time (in secs.) the homogeneous variant of the coarse-grain ap-
proach considered for the LR-ADI iteration.
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Table 8 displays execution times and speed-ups of the fine- and coarse-grain
parallelization approaches considered for the application of the SR formulae.
Except for the STEEL II example, none of the approaches achieves a signifi-
cant reduction in the execution time so that the best option here basically cor-
responds to a serial execution. A more detailed analysis revealed that the low
efficacy of the parallel fine-grain algorithms is due to the poor performance of
the sparse linear system solvers during the computation of the system ZT

loE
−1.
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Example Sequential Fine-grain

(1 Proc.) 2 Proc. 4 Proc. 6 Proc.

STEEL I 8.27 5.03 (1.64) 2.31 (3.58) 1.58 (5.23)

STEEL II 379.27 219.75 (1.72) 109.62 (3.45) 69.09 (5.48)

T3DL 1.64 0.92 (1.78) 0.53 (3.09) 0.37 (4.43)

CHIP 0.22 0.13 (1.69) 0.08 (2.75) 0.06 (3.43)

Table 7
Execution time (in secs.) and speed-ups (inside parenthesis) for the two parallel
approaches, fine-grain and coarse-grain, considered for the SVD stage.

For the coarse-grain algorithm, the reason is different. This approach proposed
to overlap the computations of TL and TR using 2 processes, and then those
of Ar, Br, and Cr using three processes. However, the computations that are
performed concurrently are highly unbalanced, with most of the time being
spent in the computation of TL and Ar, so that no benefit results from the
parallel execution.

Example Sequential Fine-grain Coarse-grain

(1 Proc.) 2 Proc. 4 Proc. 3 Proc.

STEEL I 10.05 10.85 (0.92) 11.32 (0.88) 9.86 (1.01)

STEEL II 90.13 64.73 (1.39) 52.27 (1.72) 79.93 (1.12)

T3DL 14.20 23.96 (0.59) 24.07 (0.58) 14.15 (1.00)

CHIP 6.37 9.06 (0.70) 9.34 (0.68) 6.34 (1.00)

Table 8
Execution time (in secs.) and speed-ups (inside parenthesis) for the two parallel
approaches, fine-grain and coarse-grain, considered for the SR formulae.

4.4.5 SR-BT algorithm

Table 9 collects the serial time for the four stages and the total execution time.
A parallel algorithm results from a combination of the best parallelization
approach for each stage, together with the necessary communication of data
between consecutive stages. We selected the coarse-grain approaches for the
first two stages; the fine-grain approach for the third stage; and the sequential
algorithm in the last stage, except to the STEEL II example, where the fine-
grain approach is employed. The number of processes employed in each stage of
the algorithm is given in Table 10; the goal here is to reduce the total execution
time significantly by employing all the platform resources. This objective will
surely yield a low efficiency in the form of resources that are not fully exploited,
but on the other hand produces a solution fast.

The results from the parallel SR-BT algorithm are given in Table 11. When
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there is no overlapping of stages, the low parallelism of the first and last stage
determine the low speed-up of the algorithm. By overlapping, the influence of
the last stage is significantly reduced, so that higher speed-ups are obtained.

Example Computation LR-ADI SVD SR Total

of shifts iteration formulae

STEEL I 5.44 (13.7%) 15.89 (40.0%) 8.27 (20.8%) 10.05 (25.3%) 39.65

STEEL II 35.94 (6.0%) 112.22 (18.8%) 379.27 (63.8%) 90.13 (15.1%) 594.42

T3DL 7.55 (10.0%) 52.10 (69.0%) 1.64 (2.1%) 14.20 (18.8%) 75.49

CHIP 6.07 (15.7%) 25.91 (67.1%) 0.22 (0.05%) 6.37 (16.5%) 38.57

Table 9
Execution time (in secs.) and percentage of time (inside parenthesis) for the four
stages executed in the sequential SR-BT algorithm.

W/out overlapping

Example Computation LR-ADI SVD SR

of shifts iteration formulae

STEEL I 2 6 6 1

STEEL II 2 6 6 4

T3DL 2 10 6 1

CHIP 2 10 6 1

With overlapping

Example Computation LR-ADI it. Remainder Remainder

of shifts +ZloE
−1 SVD SR

+Y T
lc

Zlo formulae

STEEL I 2 6+1+2 1 1

STEEL II 2 6+4+6 1 4

T3DL 2 10+1+4 1 1

CHIP 2 10+1+4 1 1

Table 10
Number of processes employed in each stage of the parallel SR-BT algorithm without
and with overlapping. In the second case, the figures in the column corresponding
to the LR-ADI iteration correspond to the numbers of processors used in each one
of the overlapped processes. Thus, e.g., for the STEEL I example, 6, 1, and 2 pro-
cessors are employed, respectively, for the LR-ADI iteration, and the computations
of ZloE

−1 and Y T
lc

Zlo .
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W/out overlapping

Example Computation LR-ADI SVD SR Total

of shifts iteration formulae (Speed-up)

STEEL I 3.86 7.50 1.58 10.05 22.99 (1.72)

STEEL II 28.38 58.76 69.09 52.27 208.50 (2.85)

T3DL 4.33 12.74 0.37 14.20 31.64 (2.38)

CHIP 3.51 4.68 0.08 6.37 14.64 (2.63)

With overlapping

Example Computation LR-ADI it. Remainder Remainder Total

of shifts +ZloE
−1 SVD SR (Speed-up)

+Y T
lc

Zlo formulae

STEEL I 3.86 7.50 0.48 4.15 15.99 (2.48)

STEEL II 28.38 68.69 0.58 23.60 121.25 (4.90)

T3DL 4.33 12.47 0.09 2.99 19.88 (3.79)

CHIP 3.51 4.68 0.03 2.76 10.98 (3.51)

Table 11
Execution time (in secs.) and speed-up (inside parenthesis) for the parallel SR-BT
algorithm without and with overlapping.

5 Conclusions

We have described a method for model reduction of large-scale continuous
generalized LTI systems via BT. A simple extension of the LR-ADI iteration
is used to solve large-scale generalized Lyapunov equations, which is the major
computational task in the method. These equations and all other major com-
putational stages in the procedure are solved (in parallel) using kernels from
well-known linear algebra libraries. The methods are collected in a parallel
library for model reduction of sparse LTI systems, SpaRed, on architectures
with multiple processors. SVD-based methods can thus be of application to
systems with sparse state matrix pencils with up to O(105) states.

The efficiency and parallelism of our algorithms is strongly determined by the
efficacy of the underlying computational and communication libraries and the
problem data.
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