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TRIGONOMETRIC WIDTHS OF CLASSES OF PERIODIC FUNCTIONS
OF MANY VARIABLES

N. V. Derev’yanko

We obtain exact-order estimates for the trigonometric widths of the classes B�
p;�

of periodic functions
of many variables in the space Lq for some relationships between the parameters p and q:

Introduction

In the present paper, we study the trigonometric widths of the classes B�
p;�

of periodic functions of many
variables in the space Lq for 1 � p; q; � � 1:

To pose the problem, we introduce necessary notation and the definitions of the classes B�
p;�

and the investi-
gated approximative characteristic.

Let Rd ; d � 1; be an d -dimensional Euclidean space with elements x D .x1; : : : ; xd /; y D .y1; : : : ; yd /;
.x; y/ D x1y1 C : : : C xdyd ; and let Lp.�d / be a space of functions f .x/ D f .x1; : : : ; xd / 2�-periodic in
each variable and summable to the power p; 1 � p <1 (resp., essentially bounded for p D1 ), in the cube

�d D

dY
jD1

Œ�� I��:

The norm in this space is defined as follows:

kf kLp.�d / D kf kp D

0@.2�/�d Z
�d

jf .x/jpdx

1A1=p ; 1 � p <1;

kf kL1.�d / D kf k1 D ess sup
x2�d

jf .x/j:

For f 2 Lp.�d / and h 2 Rd ; we set

�hf .x/ D f .x C h/ � f .x/

and define the multiple difference of order l 2 N for a function f .x/ at the point x D .x1; : : : ; xd / with steps
h by the formula

�lhf .x/ D �h�
l�1
h f .x/; �0hf .x/ D f .x/:
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This difference can also be represented in the form

�lhf .x/ D

lX
nD0

.�1/lCnC nl f .x C nh/:

Denote the modulus of continuity of the function f 2 Lp.�d / of order l 2 N by the formula

�l.f I t /p D sup
jhj�t

k�lhf .x/kp;

where jhj is the Euclidean norm of h:
Let �.t/ be a function of the type of modulus of continuity of order l defined on RC D ft; t � 0g and

satisfying the following conditions:

(i) �.0/ D 0; �.t/ > 0 for t > 0 ;

(ii) �.t/ is continuous;

(iii) �.t/ increases;

(iv) for all n 2 ZC; �.nt/ � Cnl�.t/; where l 2 N and C � 0 is a constant independent of n and t:

By ‰l we denote the set of these functions �: Note that if f 2 Lp.�d /; then �l.f I t /p 2 ‰l :
We write

(i) � 2 S˛ if �.�/=�˛ almost increases for some ˛ > 0; i.e., there exists a constant C1 > 0 independent
of �1 and �2 and such that

�.�1/

�˛1
� C1

�.�2/

�˛2
; 0 < �1 � �2 � 1I

(ii) � 2 Sl ; l > 0 if �.�/=� almost decreases for some 0 <  < l; i.e., there exists a constant C2 > 0

independent of �1 and �2 and such that

�.�1/

�

1

� C2
�.�2/

�

2

; 0 < �1 � �2 � 1:

The conditions under which the function � belongs to the sets S˛ and Sl are called the Bari–Stechkin
conditions [1].

We also set ˆ˛;l D ‰l \ S˛ \ Sl :
For the sake of clarity, we present an example of the function � 2 ˆ˛;l :

�.t/ D

8̂<̂
:t

r

�
logC

1

t

�b
; t > 0;

0; t D 0;

where logC t D maxf1; log tg; 0 < r < l; and b is a fixed real number.
We now directly pass to the definition of the spaces B�

p;�
[2, 3].

Let 1 � p; � � 1 and let � 2 ˆ˛;l : Assume that f 2 B�
p;�

if f satisfies the following conditions:



3

(i) f 2 Lp.�d / ;

(ii) kf kb�
p;�

<1; where kf kb�
p;�

is given by the formula

kf kb�
p;�
D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

0@ C1Z
0

�
�.f I t /p

�.t/

�� dt
t

1A1=� ; 1 � � <1;

sup
t>0

�l.f; t/p

�.t/
; � D1:

The space B�
p;�

is a linear normed space with the norm

kf kB�
p;�
D kf kp C kf kb�

p;�
:

If �.t/ D tr ; then the spaces B�
p;�

coincide with the Besov spaces Br
p;�

[4]. In particular, for � D 1; we
get Brp;1 D H r

p ; where H r
p are the spaces introduced by Nikol’skii in [5]. If kf kB�

p;�
� 1; then we say that

the function f belongs to the class B�
p;�

and preserve for the classes the same notation as for the corresponding
spaces B�

p;�
:

In what follows, we use certain ordering relations. We now specify these relations. For two sequences �1.n/
and �2.n/; the relation �1 � �2 means that there exist constants C3; C4 > 0 such that

C3�1.n/ � �2.n/ � C4�1.n/:

The relations �1 � �2 or �1 � �2 mean that C�1.n/ � �2.n/ and �2.n/ � C�1.n/; respectively. All
constants Ci ; i D 1; 2; : : : ; encountered in the present paper may depend solely on the parameters contained in
the definitions of the class, metric in which the analyzed approximation is realized, and dimension of the space
Rd :

By Vm.t/; m 2 N; t 2 R; we denote the de la Vallée-Poussin kernel of the form

Vm.t/ D 1C 2

mX
kD1

cos kt C 2
2mX

kDmC1

�
2m � k

m

�
cos kt:

The multidimensional kernel Vm.x/; m 2 N; x 2 Rd; is defined by the formula

Vm.x/ D

dY
jD1

Vm.xj /:

For a function f 2 Lp.�d /; we consider the operator Vm of convolution of this function with the kernel
Vm.x/; i.e.,

Vmf D f � Vm D Vm.f; x/:
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Thus, Vm.f; x/ is the de la Vallée-Poussin multiple sum of the function f .x/: For f 2 Lp.�d /; we set

�0.f; x/ D V1.f; x/; �s.f; x/ D V2s .f; x/ � V2s�1.f; x/; s 2 N:

In this notation, for 1 � p � 1; the classes B�
p;�

can be defined as follows (to within absolute constants;
see [3]):

B�p;� D ff 2 Lp.�d /W kf kB�
p;�
� 1g;

where

kf kB�
p;�
�

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

0@ X
s2ZC

�
k�s.f; �/kp

�.2�s/

��1A1=� ; 1 � � <1;

sup
s2ZC

k�s.f; �/kp

�.2�s/
; � D1:

(1)

Note that, for 1 < p < 1; we can write an equivalent relation for the norms of functions from the classes
B�
p;�
; 1 � � � 1; by using “blocks” of the Fourier series of the function f .x/ instead of �s.f; x/ in relation

(1)

1. Definitions of the Approximative Characteristics and Auxiliary Statements

We define approximative characteristics of the classes B�
p;�

studied in the present paper.
Let F � Lq.�d / be a functional class. The trigonometric width of the class F in the space Lq is defined

by the formula [6]

dTm .F;Lq/ D inf
�m

sup
f 2F

inf
t.�m;x/

kf .�/ � t .�m; �/kq; (2)

where

t .�m; x/ D

mX
jD1

cj e
i.kj ;x/; �m D fk

1; : : : ; kmg

is a collection of vectors kj D .kj1 ; : : : ; k
j

d
/; j D 1;m; from the integer-valued lattice Zd and cj are arbitrary

numbers.
For the first time, the notion of trigonometric width was introduced by Ismagilov [6]. For different func-

tional classes, quantity (2) was studied in numerous works. For the detailed presentation and the corresponding
references, we refer the reader, e.g., to [7–10].

In estimating the widths dTm .B
�
p;�
; Lq/; we use the well-known estimates for the best m-term trigonometric

approximations of functions from the classes B�
p;�

and the approximations of these classes by trigonometric poly-
nomials with spectra in cubic domains. To formulate the corresponding results, we introduce the required notation
and definitions.
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Let f 2 Lq.�d / and let em.f; Lq/ be the best m-term trigonometric approximation of the function f in
the space Lq defined as follows:

em.f; Lq/ D inf
fkj gm

jD1

inf
fcj g

m
jD1

f .�/ �
mX
jD1

cj e
i.kj ;�/


q

;

where fkj gmjD1 is a collection of vectors kj D fkj1 ; : : : ; k
j

d
g with integer-valued coordinates, cj are arbitrary

numbers, and .kj ; x/ D kj1x1 C : : :C k
j

d
xd :

If F is a functional class, then we set

em.F; Lq/ D sup
f 2F

em.f; Lq/: (3)

The quantity em.f; L2/ for a function of one variable was introduced by Stechkin in [11] in formulating
a criterion of absolute convergence for orthogonal series. Later, the quantities em.f; Lq/ and em.F;Lq/; 1 �

q � 1; were studied from the viewpoint of approximation of individual functions and classes of functions,
respectively. The first estimates for the quantities em.f; L1/ for some specific functions were established by
Ismagilov [6]. The systematic investigation of quantity (3) for the Sobolev (W r

p;˛ ) and Nikol’skii (H r
p ) classes

of periodic functions of many variables was originated by Temlyakov [12]. The subsequent investigations of the
quantities em.F;Lq/ in the classes of functions W r

p;˛ and H r
p were performed by Belinskii [8, 13]. We also

mention the works [14–16] devoted to the study of quantity (3) for some important classes of functions.
Further, let T�2n

D ft .x/W t .x/ D
X

k2�2n
cke

i.k;x/; ck 2 C; where

�2n D
¶
k D .k1; : : : ; kd /W jkj j < 2

n; 1 � j � d
·
:

For f 2 Lq; 1 � q � 1; we set

E�2n
.f; Lq/ D inf

t.�/2T�2n
kf .�/ � t .�/kq:

Moreover, for the functional class F � Lq; we, respectively, set

E�2n
.F;Lq/ D sup

f 2F

E�2n
.f; Lq/:

We now formulate several statements used to establish the required results.

Theorem A [5]. Let nj 2 N; j D 1; d ; and let

t .x/ D
X
jkj j�nj

ck e
i.k;x/:

Then the following inequality holds for 1 � q < p � 1W

ktkp � 2
d

dY
jD1

n
1=q�1=p
j ktkq: (4)
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Inequality (4) was proved by Nikol’skii. It is called the “inequality of different metrics.” In the case d D 1

and p D1; the corresponding inequality was proved by Jackson [17].

Lemma A [18]. Let 2 � q <1: Then, for any trigonometric polynomial

P.‚m; x/ D

mX
jD1

ei.k
j ;x/

and any n � m; one can find a trigonometric polynomial zP .‚n; x/ containing at most n harmonics and a
constant Cq > 0 such that

P.‚m; �/ � zP .‚n; �/
q
� Cqmn

�1=2:

Moreover, ‚n � ‚m; all coefficients zP .‚n; x/ are equal, and their absolute values do not exceed mn�1:

Now let �.s/; s D 0; 1; 2; : : : ; be a subset of an integer-valued lattice of the form

�.s/ D

¼
k D .k1; : : : ; kd /W 2

s�1
� max
jD1;d

jkj j < 2
s

½
:

For f 2 Lp.�d /; we introduce the notation

f0.x/ D yf .0/ and fs.x/ D
X
k2�.s/

yf .k/ei.k;x/; s D 1; 2; : : : ;

where

yf .k/ D .2�/�d
Z
�d

f .t/e�i.k;t/dt

is the Fourier coefficient of the function f:

Theorem B [19]. Let f 2 Lp.�d /; 1 < p <1: Then there exist constants C5.p/ and C6.p/ such that

C5.p/kf kp �


 
1X
sD0

jfsj
2

!1=2
p

� C6.p/kf kp: (5)

Theorem C [20]. Let 1 � p; q; � � 1 and let � 2 ˆ˛;l with some ˛ > ˛.p; q/; where

˛.p; q/ D

8<:d.1=p � 1=q/C; 1 � p � q � 2 or 1 � q � p � 1;

maxfd=pI d=2g otherwise.
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Then the following estimate is true for any m 2 N W

em.B
�
p;� ; Lq/ � �.m

�1=d /m.1=p�maxf1=qI1=2g/C ;

where aC D maxfa; 0g:

Theorem D [21]. Let 1 � p; q; � � 1 and let a function � 2 ˆ˛;l with some ˛ > d.1=p� 1=q/C: Then

E�2n
.B�p;� ; Lq/ � �.2

�n/2nd.1=p�1=q/C ;

where aC D maxfaI 0g:

2. Estimation of the Trigonometric Widths of the Classes B�
p;�

in the Space Lq

The following statement is true:

Theorem 1. Let 1 � p < 2 � q < p=.p � 1/; let 1 � � � 1; and let the function � belong to ˆ˛;l for
some ˛ > d: Then

dTm .B
�
p;� ; Lq/ � �.m

�1=d /m1=p�1=2: (6)

Proof. Note that the lower bound in (6) follows from Theorem C. Moreover, according to the definitions of
the quantities em.F;Lq/ and dTm .F;Lq/; we have

em.F;Lq/ � d
T
m .F;Lq/ (7)

Therefore, we can write (even for ˛ > d=p )

dTm .B
�
p;� ; Lq/ � em.B

�
p;� ; Lq/� �.m�1=d /m1=p�1=2:

The lower bound is established.
We now establish the upper bound. Since the right-hand side of (6) is independent of � and the classes B�

p;�

are extended as the parameter � increases, i.e., for 1 � � � � 0 � 1; we have the inclusions

B�p;1 � B
�
p;� � B

�
p;� 0 � B

�
p;1 � H

�
p ;

it suffices to establish the upper bound for dTm .B
�
p;1; Lq/; i.e., dTm .H

�
p ; Lq/:

We take an arbitrary m 2 N and choose n 2 N such that

2.n�1/d � m � 2nd ;

i.e., m � 2nd :
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For s D 0; 1; 2; : : : ; we set

ms D

8̂̂̂̂
<̂
ˆ̂̂:
2sd ; 0 � s < n;h
��1.2�n/2sd�.2�s/

i
C 1; n � s � n0;

0; s > n0;

where Œa� is the integer part of the number a and

n0 D

�
n
˛=d � 1=p C 1=2

˛=d � 1=p C 1=q

�
C 1:

This enables us to estimate the sum
Xn0

sD0
ms: Thus, we get

n0X
sD0

ms �

n�1X
sD0

2sd C

n0X
sDn

��1.2�n/2sd�.2�s/C

n0X
sDn

1

� 2nd C��1.2�n/

n0X
sDn

�.2�s/

2�˛s
2�s.˛�d/ C .n0 � nC 1/ D J1:

Since �.t/ 2 S˛ with some ˛ > d; the following relation is true:

�.2�s/

2�˛s
�
�.2�n/

2�˛n
; s � n:

We can continue the estimate for J1 as follows:

J1 � 2nd C��1.2�n/
�.2�n/

2�˛n

n0X
sDn

2�s.˛�d/ C .n0 � nC 1/

� 2nd C 2˛n2�n.˛�d/ C .n0 � nC 1/

D 2nd C 2nd C .n0 � nC 1/� 2nd
�
1C

n0 � nC 1

2nd

�
� m:

Hence, we get

n0X
sD0

ms � m:

Consider a trigonometric polynomial

ts.x/ D
X
k2�.s/

ei.k;x/:
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Note that, for any s; this polynomial has j�.s/j terms, i.e., their number has the order 2.sC1/d : By jAj we
denote the number of elements of the finite set A � Zd :

Further, since the inequality ms � 2.sC1/d holds for any s D 0; 1; 2; : : : ; by Lemma A, there exist a trigono-
metric polynomial t .‚ms ; x/ containing at most ms harmonics and a constant Cq such thatts.�/ � t .‚ms ; �/q � Cq2.sC1/dm�1=2s � 2sdm�1=2s :

Moreover, ‚ms � ‚2.sC1/d ; all coefficients t .‚ms ; x/ are equal, and their absolute values do not exceed
2.sC1/dm�1s :

We now construct a subspace of trigonometric polynomials with the “numbers” of harmonics from the union
of the sets

P D
[

0�s<n
�.s/ and Q D

[
n�s�n0

‚ms

and show that the approximation by polynomials from this space realizes the order of the trigonometric width
dTm .H

�
p ; Lq/ for 1 � p < 2 � q < p=.p � 1/:

Let f be an arbitrary function from the class H�
p : For this function, we consider an approximating polyno-

mial with the “numbers” of harmonics from P
S
Q of the form

t .x/ D

n�1X
sD0

fs.x/C

n0X
sDn

.t.‚ms ; x/ � fs.x//:

Then

kf .�/ � t .�/kq �


n0X
sDn

fs.�/ � .fs.�/ � t .‚ms ; �//


q

C

X
s>n0

fs.�/


q

D J2 C J3: (8)

First, we establish the upper bound of the term J3 for p ¤ 1: Note that, for f 2 H�
p ; we have

k�s.f; �/kp � �.2
�s/; s D 0; 1; 2; : : : :

Thus, according to the Minkowski inequality and the “inequality of different metrics,” we get

J3 D

X
s>n0

fs.�/


q

X
s>n0

kfs.�/kq

�

X
s>n0

2sd.1=p�1=q/k�s.f; �/kp

�

X
s>n0

2sd.1=p�1=q/�.2�s/ D
X
s>n0

�.2�s/

2�˛s
2�sd.˛=d�1=pC1=q/:

Since �.t/ 2 S˛; the inequality ˛ > d implies the following formula:

�.2�s/

2�˛s
�

�.2�n/

2�˛n
; s > n0 > n:
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Hence, for the term J3; we now get

J3 �
�.2�n/

2�˛n

X
s>n0

2�sd.˛=d�1=pC1=q/

�
�.2�n/

2�˛n
2
�n
˛=d�1=pC1=2
˛=d�1=pC1=q

d.˛=d�1=pC1=q/

D
�.2�n/

2�˛n
2�nd.˛=d�1=pC1=2/

D �.2�n/2nd.1=p�1=2/ � �.m�1=d /m1=p�1=2: (9)

We now find the upper bound of the quantity J2: To this end, for each s 2 Œn; n0�; we consider a linear
operator Ts acting upon the function f .x/ 2 Lp as follows:

Tsf .x/ D f .x/ � .ts.x/ � t .‚ms I x//:

Then the following assertion is true:

Lemma B [22]. Let 1 < p < 2 < q < p=.p � 1/: Then the norm of the operator Ts from Lp in
Lq.kTskp!q/ satisfies the relation

kTskp!q D sup
kf kp�1

kTsf kq � 2sdm�.1=2C1=p
0/

s ;

where p0 D p=.p � 1/:

First, let p 2 .1; 2/: We successively apply Theorem B, the Minkowski inequality, and Lemma B (for n �
s � n0 ). This yields

J2 �


 
n0X
sDn

jfs.�/ � .fs.�/ � t .‚ms ; �//j
2

!1=2
q

D


n0X
sDn

jfs.�/ � .fs.�/ � t .‚ms ; �//j
2


1=2

q=2

�

 
n0X
sDn

kjfs.�/ � .fs.�/ � t .‚ms ; �//j
2
kq=2

!1=2

D

 
n0X
sDn

kfs.�/ � .fs.�/ � t .‚ms ; �//k
2
q

!1=2
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D

 
n0X
sDn

kTsfs.�/k
2
q

!1=2
�

 
n0X
sDn

kTsk
2
p!qkfs.�/k

2
p

!1=2

�

 
n0X
sDn

22sdm�.1C2=p
0/

s kfs.�/k
2
p

!1=2
: (10)

Substituting the values of ms in (10), after necessary transformations, we obtain

J2 �
 
n0X
sDn

22sd�1C2=p
0

.2�n/2�sd.1C2=p
0/��.1C2=p

0/.2�s/k�s.f; �/k
2
p

!1=2

� �1=2C1=p
0

.2�n/

 
n0X
sDn

��.1C2=p
0/.2�s/�2.2�s/2sd.1�2=p

0/

!1=2

D �3=2�1=p.2�n/

 
n0X
sDn

�2=p�1.2�s/2sd.2=p�1/

!1=2

D �3=2�1=p.2�n/

 
n0X
sDn

�
�.2�s/

2�˛s

�2=p�1
2�s.˛�d/.2=p�1/

!1=2
:

In view of the fact that, according to the conditions of the theorem, the function �.t/ 2 S˛ with some ˛ > d
and the inequalities 2=p � 1 > 0 and ˛ � d > 0 are true, we can continue the estimate of the quantity J2 as
follows:

J2 � �3=2�1=p.2�n/

�
�.2�n/

2�˛n

�1=p�1=2  n0X
sDn

2�s.˛�d/.2=p�1/

!1=2

� �.2�n/2˛n.1=p�1=2/2�n.˛�d/.1=p�1=2/

D �.2�n/2nd.1=p�1=2/ � �.m�1=d /m1=p�1=2: (11)

Thus, substituting (9) and (11) in (8), we arrive at the estimate

kf .�/ � t .�/kq � �.m�1=d /m1=p�1=2; 1 < p < 2 � q <
p

p � 1
:

dTm .H
�
p ; Lq/ and, hence, for the width

dTm .B
�
p;� ; Lq/; 1 < p < 2 � q < p=.p � 1/; 1 � � <1:

We now establish the upper bound for the trigonometric width dTm .H
�
1 ; Lq/; 2 � q <1:
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Let p1 be a number satisfying the condition 1 < p1 < 2: In what follows, we determine its value more
precisely. We estimate the term J3 as in the previous case. For the quantity J2; we first repeat the reasoning
used above and obtain

J2 �
 
n0X
sDn

kTsfs.�/k
2
q

!1=2
�

 
n0X
sDn

kTsk
2
p1!q

kfs.�/k
2
p1

!1=2

�

 
n0X
sDn

kTsk
2
p1!q

k�s.f; �/k
2
p1

!1=2
�

 
n0X
sDn

22sdm
�.1C2=p01/
s k�s.f; �/k

2
p1

!1=2
: (12)

Applying the inequality of different metrics to k�s.f; �/kp1 and substituting the values of ms in (12) , we
find

J2 �
 
n0X
sDn

22sdm
�.1C2=p01/
s 22sd.1�1=p1/k�s.f; �/k

2
1

!1=2

� �1=2C1=p
0
1.2�n/

 
n0X
sDn

�1�2=p
0
1.2�s/2sd

!1=2

D �1=2C1=p
0
1.2�n/

 
n0X
sDn

�
�.2�s/

2�˛s

�1�2=p01
2�s.˛�2˛=p

0
1�d/

!1=2

� �1=2C1=p
0
1.2�n/

�
�.2�n/

2�˛n

�1=2�1=p01  n0X
sDn

2�s.˛�2˛=p
0
1�d/

!1=2

D �.2�n/2˛n.1=2�1=p
0
1/

 
n0X
sDn

2�s.˛�2˛=p
0
1�d/

!1=2
:

We now choose a number p1 for which the inequality ˛ � 2˛=p01 � d > 0; where 1=p1 C 1=p01 D 1; is
satisfied. This is possible because, according to the conditions of the theorem, ˛ > d:

Thus, for the quantity J2; we get

J2 � �.2�n/2˛n.1=2�1=p
0
1/2�n.˛=2�˛=p

0
1�d=2/ � �.2�n/2nd=2 � �.m�1=d /m1=2:

In view of the estimate for the quantity J3; this yields the required estimate for the width dTm .H
�
1 ; Lq/ and,

hence, the estimate for dTm .B
�
1;�
; Lq/; 1 � � <1:

The theorem is proved.

In conclusion, we present an assertion for the orders of the trigonometric widths dTm .B
�
p;�
; Lq/ for some other

relations between the parameters p and q: This assertion is a corollary of the well-known results.
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Theorem 2. Let 1 � q � p � 1 or 1 � p � q � 2 and 1 � � � 1 and let the function � belong to
ˆ˛;l for some ˛ > d.1=p � 1=q/C: Then the following order estimate is true:

dTm .B
�
p;� ; Lq/ � �.m

�1=d /m.1=p�1=q/C : (13)

The upper bound in (13) is obtained from Theorem D by using the inequality

dTm .B
�
p;� ; Lq/ � E�2n

.B�p;� ; Lq/; m � 2nd ;

The lower bound is a corollary of Theorem C.

Remark 1. If

�.t/ D tr ; r > d; 1 � p < 2 � q < p=.p � 1/ 1 � � � 1;

then

dTm .B
r
p;� /q � m

�r=dC1=p�1=2: (14)

Estimate (14) was established in [22].

Remark 2. For the relationships between the parameters p and q satisfying the conditions of Theorems 1
and 2, according to Theorem C, we can write

dTm .B
�
p;� ; Lq/ � em.B

�
p;� ; Lq/:

Remark 3. The problem of orders of the widths dTm .B
�
p;�
; Lq/ in the cases 2 � p < q � 1 and 1 < p <

2; p=.p � 1/ < q � 1 remains open.

REFERENCES

1. N. K. Bari and S. B. Stechkin, “Best approximations and differential properties of two conjugate functions,” Tr. Mosk. Mat. Obshch.,
5, 483–522 (1956).

2. Yongping Liu and Guiqiao Xu, “The infinite-dimensional widths and optimal recovery of generalized Besov classes,” J. Complexity,
18, No. 3, 815–832 (2002).

3. Guiqiao Xu, “The n-widths for a generalized periodic Besov classes,” Acta Math. Sci., 25, No. 4, 663–671 (2005).
4. O. V. Besov, “On a family of function spaces. Imbedding and continuation theorems,” Dokl. Akad. Nauk SSSR, 126, No. 6, 1163–1165

(1959).
5. S. M. Nikol’skii, “Inequalities for entire functions of finite power and their application to the theory of differentiable functions of

many variables,” Tr. Mat. Inst. Akad. Nauk SSSR, 38, 244–278 (1951).
6. R. S. Ismagilov, “Widths of sets in linear normed spaces and the approximation of functions by trigonometric polynomials,” Usp. Mat.

Nauk., 29, No. 3, 161–178 (1974).
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