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We establish upper estimates for the approximation of the classes H⌦
p of periodic functions of many

variables by polynomials constructed by using the system obtained as the tensor product of the systems
of functions of one variable. These results are then used to establish the exact-order estimates of the or-
thoprojective widths for the classes H⌦

p in the space Lp with p 2 {1,1}.

1. Introduction

In the present paper, we study the problems of approximation of periodic functions of many variables from
the classes H⌦

p by polynomials constructed by using the system of functions obtained as the tensor product of
systems of functions of one variable. The trigonometric system {ei(k,x)}

k2Zd is a classical example of a system
of this kind:

ei(k,x) =

dY

j=1

eikjxj , x = (x
1

, . . . , xd),

where Zd is an integer-valued d-dimensional lattice.
The Haar system {HI(x)} :

HI(x) =

dY

j=1

HIj (xj), I = I
1

⇥ . . .⇥ Id, x = (x
1

, . . . , xd),

where Ij stands for the double integral, which is the support of the Haar function HIj (t), t 2 R, is another
important example.

For a more detailed statement of the problem, we present necessary notation and definitions.
Let Rd, d ≥ 1, be a d-dimensional Euclidean space with elements x = (x

1

, . . . , xd), y = (y
1

, . . . , yd),

(x, y) = x
1

y
1

+ . . . + xdyd, and let Lp(⇡d), ⇡d =

Yd

j=1

[0, 2⇡], be a space of functions f(x) = f(x
1

, . . . , xd)

2⇡ -periodic in each variable and summable to the power p, 1  p < 1 (and essentially bounded for p = 1)
in the cube ⇡d whose norm is defined as follows:

kfkLp(⇡d)
= kfkp =

0

@
(2⇡)−d

Z

⇡d

|f(x)|pdx

1

A
1/p

, 1  p < 1,

kfkL1(⇡d)
= kfk1 = ess sup

x2⇡d

|f(x)|.
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In the present paper, we consider only functions f 2 Lp(⇡d) satisfying the condition

2⇡Z

0

f(x)dxj = 0, j = 1, d.

For simplicity, instead of Lp(⇡d), we write Lp.

For f 2 Lp and h 2 Rd, we define a mixed difference of order l by the formula

∆

l
h

f(x) = ∆l
hd
(. . . (∆l

h1
f(x)) . . .),

where

∆

l
hj
f(x) =

lX

n=0

(−1)

l−nCn
l f(x1, . . . , xj−1

, xj + nhj , xj+1

, . . . , xd).

For f 2 Lp and t = (t
1

, . . . , td), tj ≥ 0, j = 1, d, we define a mixed modulus of smoothness of order l 2 N by
the formula

⌦l(f, t)p = sup

|hj |tj ,j=1,d

k∆l
h

f(·)kp.

Let ⌦(t) = ⌦(t
1

, . . . , td) be a function of the type of mixed modulus of smoothness of order l, i.e., a function
defined on Rd

+

= {t 2 Rd
: tj ≥ 0, j = 1, d} and satisfying the following conditions:

(i) ⌦(t) > 0, tj > 0, j = 1, d, and ⌦(t) = 0,
Yd

j=1

tj = 0 ;

(ii) ⌦(t) does not decrease in each variable tj ≥ 0, j = 1, d, for all values of the other variables ti, i 6= j ;

(iii) ⌦(m
1

t
1

, . . . ,mdtd) 
✓Yd

j=1

mj

◆l

⌦(t), mj 2 N, j = 1, d ;

(iv) ⌦(t) is continuous for tj ≥ 0, j = 1, d.

The set of these functions ⌦ is denoted by  l.

For a given function ⌦ 2  l, we define a class of functions (see, e.g., [1])

H⌦

p = {f 2 Lp : ⌦l(f, t)p  ⌦(t)} .

Note that, in the case where r = (r
1

, . . . , rd), 0 < rj < l, j = 1, d, and ⌦(t) =
Yd

j=1

t
rj
j , the classes H⌦

p

coincide with the well-known Nikol’skii classes Hr

p [2]. We also assume that ⌦ belongs to the sets S↵ and Sl.

We say that a function of one variable ' belongs to S↵, ↵ > 0, if the function '(⌧)/⌧↵ almost increases,
i.e., there exists a constant C

1

> 0 independent of ⌧
1

and ⌧
2

such that

'(⌧
1

)

⌧↵
1

 C
1

'(⌧
2

)

⌧↵
2

, 0 < ⌧
1

 ⌧
2

.

A function ' belongs to Sl if there exists γ, 0 < γ < l, such that the function '(⌧)/⌧γ is almost decreasing,
i.e., there exists a constant C

2

> 0 independent of ⌧
1

and ⌧
2

such that

'(⌧
1

)

⌧γ
1

≥ C
2

'(⌧
2

)

⌧γ
2

, 0 < ⌧
1

 ⌧
2

.
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The conditions under which a function belongs to the sets S↵ and Sl are called the Bari–Stechkin condi-
tions [3].

Assume that ⌦ belongs to S↵ (respectively, ⌦ belongs to Sl ) if ⌦(t1, . . . , td), as a function of the variable tj ,
j = 1, d, for all values of the other variables ti, i 6= j, belongs to the set S↵ (respectively, to the set Sl ).

Denote Φ↵,l =  l \ S↵ \ Sl.

Further, assume that, for two nonnegative quantities A and B, the relation A ⇣ B means that there are
constants C

3

, C
4

> 0 such that C
3

A  B  C
4

A. The relations A ⌧ B or A � B mean that C
5

A  B

and B  C
6

A, C
5

, C
6

> 0, respectively. The constants Ci, i = 1, 2, . . . , used in the present paper may depend
only on the parameters from the definitions of a class and of a metric in which the accuracy of approximation is
estimated, as well as on the dimension of the space Rd.

By Vm(x), m 2 N, x 2 R, we denote the de-la-Vallée-Poussin kernel

Vm(x) = 1 + 2

mX

k=1

cos kx+ 2

2m−1X

k=m+1

✓
2m− k

m

◆
cos kx .

For a function f 2 Lp and a vector s 2 Zd
+

, we consider the polynomial

A
s

(f) = f ⇤
dY

j=1

(V
2

sj−1 − V
2

sj−2).

The following theorem on functions belonging to the class H⌦

p was proved in [1]:

Theorem A. Let a function ⌦ belong to Φ↵,l, ↵ > 0. Then f belongs to H⌦

p , 1  p  1, if and only if
the following order inequality is true:

kA
s

(f)kp ⌧ ⌦(2

−s

), (1)

where 2

−s

= (2

−s1 , . . . , 2−sd
).

For the construction of approximate aggregates, we now introduce some sets. For any N 2 N, we denote

(N) = (⌦, N) =

⇢
s = (s

1

, . . . , sd) : sj 2 N,⌦(2−s

) ≥ 1

N

�
, (2)

?(N) =

⇢
s = (s

1

, . . . , sd) : sj 2 N,⌦(2−s

) <
1

N

�
, (3)

⇥(N) = ?(N) \ ?(2lN). (4)

It follows from (3) and (4) that ⇥(N) ⇢ ?(N) and ⇥(N) \ ?(2lN) = ?, i.e.,

1

2

lN
 ⌦(2−s

) <
1

N

or

⌦(2

−s

) ⇣ 1

N
, s 2 ⇥(N). (5)
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In [4], it is shown that the following relation is true:

|⇥(N)| ⇣ (log

2

N)

d−1, (6)

where |M| is the number of elements in the set M .
To prove our main results, we need the following lemma:

Lemma A [4]. Let a function ⌦ belong to  l \ S↵, ↵ > 0. Then, for 0 < p < 1,

X

s2?
(N)

(⌦(2

−s

))

p ⌧
X

s2⇥(N)

(⌦(2

−s

))

p.

We define the operator F⇢ as an operator of convolution with the Bernoulli kernel,

F⇢(x) = 1 + 2

1X

k=1

k−⇢
cos

✓
kx− ⇢⇡

2

◆
, x 2 R, ⇢ > 0.

By F⇢(Lp), we denote a set of functions defined in the form of the convolution of the Bernoulli kernel with some
function ' 2 Lp, i.e.,

F⇢(Lp) = {f 2 Lp : f = ' ⇤ F⇢, ' 2 Lp} .

Further, we define the classes of Sobolev functions W ⇢
p considered in what follows,

W ⇢
p =

8
<

:f : f(x) =
1

2⇡

Z

⇡1

F⇢(x− y)'(y)dy, ' 2 Lp, k'kp  1

9
=

; .

Consider a set of operators {Yn}1n=0

defined on F⇢(Lp) with the properties:

(A) k(I − Yn)F⇢kp!p ⌧ 2

−⇢n, n 2 Z
+

, where I is the identity operator and kTkp!p = kTkLp!Lp is
the norm of the operator T from Lp into Lp ;

(B) for an arbitrary trigonometric polynomial t of degree 2

µ and for some β ≥ 0,

kYntkp ⌧ 2

β(µ−n)ktkp, µ ≥ n.

We give several examples of the sets of operators satisfying the conditions (A) and (B).

I. Yn = S
2

n is an operator that associates each function f 2 L
1

with a partial sum of the Fourier series
of degree 2

n. Then property (A) for 1 < p < 1 follows from the known results of approximation
of functions from Sobolev classes by trigonometric polynomials of the corresponding degree (see, e.g.,
[5, p. 48]). By Theorem 1.1 in [5, p. 26], we can write

kS
2

nkp!p  C
7

(p), C
7

(p) > 0, 1 < p < 1.

Hence, for an arbitrary p 2 (1,1), property (B) with β = 0 is true.
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5

II. Yn = I
2

n is the operator of interpolation by trigonometric polynomials of degree 2

n at the nodes
2⇡l

2

n+1

+ 1

, l = 0, . . . , 2n+1. It is known (see, e.g., [5, p. 86]) that, for these operators, relation (A) is

true for 1 < p < 1 for ⇢ >
1

p
and relation (B) is true for 1 < p < 1 with β =

1

p
.

In examples I and II, the case 1 < p < 1 is considered. We give one more example for cases p 2 {1,1}.

III. Yn = V
2

n is a de la Vallée-Poussin operator of order 2n. Property (A) for 1  p  1 follows from
estimates for the best approximation of Sobolev classes (see, e.g., [5, p. 47]). Relation (B) is true for
1  p  1 for β = 0 (see, e.g., [5, p. 28]).

We define the operator TN , N 2 N, acting on a function of d variables as follows:

(7)

where Y i
n is the operator Yn acting on a function of the variable xi. Assume that Y−1

⌘ 0.

For the first time, operators of the form (7) were considered in [6]. For subsequent results concerning the inves-
tigation and use of operators of this type, see, e.g., [7–10]. In the case Yn = S

2

n , the corresponding operators TN

were studied in [5, 11, 12] (see also the references in these works).

2. Approximation of Functions from the Classes H⌦
p

We formulate and prove the following statement:

Theorem 1. Let the operators Yn, n 2 Z
+

, satisfy conditions (A) and (B). Then, for any function f 2 H⌦

p ,

1  p  1, where the function ⌦ 2 Φ↵,l, ↵ > β, and l < ⇢, the error of its approximation by the operator TN

given by relation (7) is estimated as follows:

kf − TNfkp ⌧
1

N
(log

2

N)

d−1.

Proof. For a fixed vector s
1

, . . . , sd), we define the operator ∆ acting from Lp into Lp, 1  p  1,

as follows:

∆n = Yn − Yn−1

, n 2 N, ∆

0

= Y
0

.

Further, we define the Bernoulli kernel F⇢(x), x = (x
1

, . . . , xd), by the relation

F⇢(x) =

dY

j=1

F⇢(xj)

and

(8)

∆s =

d∏
i=1

∆si ,

∆sFρ =
d∏
i=1

∆siFρ.

TN =
∑

s∈κ(N)

d∏
i=1

(Y i
si − Y

i
si−1),
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∆

s

Then properties (A) and (B) lead to the following relations for the operators [9]:

(A 0 ) k∆ F⇢kp!p ⌧ 2

−⇢ksk1 ;

(B 0 ) for an arbitrary trigonometric polynomial t of degree 2

vi in the variable xi, i = 1, d, for some β ≥ 0

we have

v ≥ s.

Here and below, the inequalities a > b, where a = (a
1

, . . . , ad) and b = (b
1

, . . . , bd), mean that ai > bi,

i = 1, d.

We show that, for each function f 2 H⌦

p , 1  p  1, the following representation is true:

(9)

where convergence is understood in the metric of the space Lp.

For d = 1, property (A) implies that
���f −

Xn

s=0

∆sf
���
p
! 0, n ! 1, and, hence,

f =

1X

s=0

∆sf. (10)

We now show that this decomposition holds for d > 1. To this end, we estimate the quantity k∆
s

fkp from
above. Since an arbitrary function f 2 Lp, 1  p  1, can be represented in the form [13, p. 304]

f =

X

v≥1

A
v

(f), (11)

where, for f 2 H⌦

p ,

kA
v

(f)kp ⌧ ⌦(2

−v

),

according to the Minkowski inequality, we get

k
s

fkp 
X

v≥1

k∆
s

A
v

(f)kp. (12)

We estimate 1  p  1. Let D⇢ denote an operator defined on a set of trigonometric polyno-
mials that is inverse to the operator F⇢. It is clear that this is a generalization of the operator of differentiation to
the case of nonnatural ⇢. Thus, we can write

By using property (A 0 ) and the Bernstein inequality for trigonometric polynomials that, in terms of this notation,
has the form

kD⇢Av

(f)kp  2

⇢kvk1kA
v

(f)kp,

{∆s}s≥0

‖∆st‖p � 2β(‖v‖1−‖s‖1)‖t‖p,

f =
∑
s∈Zd+

∆s(f),

‖∆sAv(f)‖p,

‖∆sAv(f)‖p = ‖∆sFρDρAv(f)‖p ≤ ‖∆sFρ‖p→p‖DρAv(f)‖p = J1.
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we extend the estimate for the quantity J
1

:

J
1

⌧ 2

−⇢ksk1
2

⇢kvk1kA
v

(f)kp = 2

−⇢(ksk1−kvk1)kA
v

(f)kp. (13)

On the other hand, by the property (B 0 ), for v ≥ s and some β ≥ 0, we obtain

(14)

Thus, according to (13) and (14), in view of relation (1), we find

Returning to (13), we can write

⌧
X

v<s

2

−⇢(ksk1−kvk1)
⌦(2

−v

) +

X

v≥s

2

β(kvk1−ksk1)
⌦(2

−v

) = J
2

.

Since the function ⌦ belongs to S↵, ↵ > 0, the function ⌦(2−v

)/
Yd

j=1

2

−↵vj almost increases in each variable.

Similarly, since the function ⌦ belongs to Sl, the function ⌦(2−v

)/
Yd

j=1

2

−γvj , 0 < γ < l, almost decreases

in each variable. Hence,

J
2

=

X

v<s

2

−⇢(ksk1−kvk1)
)

⌦(2

−v

)

Yd

j=1

2

−γvj

dY

j=1

2

−γvj
+

X

v≥s

2

β(kvk1−ksk1) ⌦(2

−v

)

Yd

j=1

2

−↵vj

dY

j=1

2

−↵vj

⌧ ⌦(2

−s

)

Yd

j=1

2

−γsj
2

−⇢ksk1
X

v<s

2

(⇢−γ)kvk1
+

⌦(2

−s

)

Yd

j=1

2

−↵sj
2

−βksk1
X

v≥s

2

(β−↵)kvk1 .

For β < ↵ and ⇢ > l, we obtain

J
2

⌧ ⌦(2

−s

)

2

−γksk1
2

−⇢ksk1
2

(⇢−γ)ksk1
+

⌦(2

−s

)

2

−↵s
2

−βksk1
2

(β−↵)ksk1 ⌧ ⌦(2

−s

). (15)

It follows from (12)–(15) that, for an arbitrary vector s 2 Zd
+

, the order inequality

k∆
s

fkp ⌧ ⌦(2

−s

), 1  p  1, (16)

is true. In turn, it leads to representation (9).
Further, by using this representation, the notation TNf, and the Minkowski inequality, we obtain

(17)

‖∆sAv(f)‖p � 2β(‖v‖1−‖s‖1)‖Av(f)‖p.

‖∆sAv(f)‖p ≤ min

(
2−ρ(‖s‖1−‖v‖1)Ω(2−v), 2β(‖v‖1−‖s‖1)Ω(2−v)

)
.

‖∆s(f)‖p ≤
∑
v≥1

‖∆sAv(f)‖p

‖f − TNf‖p =

∥∥∥∥ ∑
s∈Zd+

∆s(f)−
∑

s∈κ(N)

∆s(f)

∥∥∥∥
p

≤
∑

s∈κ⊥(N)

‖∆s(f)‖p.
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By substituting (16) into (17), by Lemma A and relations (5) and (6), we obtain

kf − TNfkp ⌧
X

s2?
(N)

⌦(2

−s

) ⌧
X

s2⇥(N)

⌦(2

−s

) ⇣ 1

N

X

s2⇥(N)

1 ⇣ 1

N
(log

2

N)

d−1.

Thus, the theorem is proved.

Now let

⌦(t) = !

0

@
dY

j=1

tj

1

A, (18)

where ! is a given function of one variable of the type of modulus of smoothness of order l that belongs to the sets
S↵ and Sl. It is clear that the function ⌦ thus defined belongs to the set Φ↵,l.

Taking into account the special form of the function ⌦, we rewrite operators (7) in the form

Tm =

X

ksk1m

dY

i=1

(Y i
si − Y i

si−1

), (19)

where m 2 N, according to (2)–(5), is determined from the relation

!(2−m
) ⇣ 1

N
. (20)

In [14], one more relationship between m and N

log

2

N ⇣ m (21)

is established.
By using Theorem 1 and estimates (20) and (21), we arrive at the following statement:

Theorem 1 0. Let the conditions of Theorem 1 be satisfied and let the function ⌦ be defined by relation (18).
Then, for any function f 2 H⌦

p , 1  p  1, the error of its approximation by the operator Tm defined by
relation (19) is estimated as follows:

kf − Tmfkp ⌧ !(2−m
)md−1.

3. Estimates for the Orthoprojective Widths of the Classes H⌦
p in the Space Lp for p 2 {1,1}

As a corollary of Theorem 1 0 and known results, we establish the order of orthoprojective widths for the
classes H⌦

p .

Recall that the orthoprojective width of a functional class F ⇢ Lq in the space Lq is defined by the formula

d?m(F, Lq) = inf

{ui}mi=1

sup

f2F

�����f −
mX

i=1

(f, ui)ui

�����
q

, (22)
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where infimum is taken over all orthonormal systems of functions {ui}1i=1

⇢ L1, i = 1,m. The width d?m(F, Lq)

was introduced by Temlyakov in [15].
Parallel with widths d?m(F, Lq), we consider the quantities dBm(F, Lq) also introduced by Temlyakov (see,

e.g., [16]) and defined by the formula

dBm(F, Lq) = inf

G2Lm(B)q

sup

f2F\D(G)

kf −Gfkq. (23)

Here, Lm(B)q denotes a set of linear operators G satisfying the conditions:

(a) the domain of definition D(G) of these operators contains all trigonometric polynomials and their range
of values is contained in a subspace of dimension m of the space Lq ;

(b) there exists a number B ≥ 1 such that, for all vectors k = (k
1

, . . . , kd), the inequality

kGei(k,·)k
2

 B

is true.

Since the operators of orthogonal projection onto subspaces of dimension m belong to Lm(1)

2

, according to
the definition of the quantities d?m(F, Lq) and dBm(F, Lq), the following inequality is true:

dBm(F, Lq)  d?m(F, Lq). (24)

The results of investigation of the quantities (22) and (23) for various functional classes can be found, e.g.,
in [12, 17, 18] and in the monographs [5, 16].

The following statement is true:

Theorem 2. Let

⌦(t) = !

0

@
dY

j=1

tj

1

A,

where ! is a function of one variable that belongs to the set Φ↵,l, ↵ > 0. Then, for p 2 {1, 1}, the following
order estimate is true:

d?m(H⌦

p , Lp) ⇣ !(2−l
)ld−1, (25)

where m ⇣ 2

lld−1.

Proof. First, we find the upper bound for (25). To this end, we take an arbitrary basis {Pk}1|k|=1

with
the following properties:

(i) for any |k| ≥ 1, Pk(x) is a trigonometric polynomial of degree of at most |k| ;

(ii) for any k 6= l 2 Z\{0}, (Pk, Pl) = 0 and (Pk, Pk) = 1 ;

(iii) LN = max

x2[0,2⇡]

Z
2⇡

0

����
XN

|k|=1

Pk(t)Pk(x)

����dt  C
8

, C
8

> 0, for any N 2 N ;
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(iv) for any function f 2 Lp, 1  p  1,

������
f −

NX

|k|=1

(f, Pk)Pk

������
p

 KEC9N (f)p ,

where K,C
9

> 0 and El(f)p is the best approximation of the function f by trigonometric polynomials
of degree of at most l in the metric of the space Lp.

For the examples of construction of these bases with the corresponding constants, see [19, 20].
We set

Ynf =

2

nX

|k|=1

(f, Pk)Pk, n ≥ 0, (26)

and show that this sequence of operators {Yn}1n=0

satisfies the conditions (A) and (B).
First, we show that the operators Yn, n 2 Z

+

, satisfy the condition (B) with β = 0. Consider the case p = 1

(for p = 1, the proof is similar). Let t be an arbitrary trigonometric polynomial. Then

kYntk1 = (2⇡)−1

2⇡Z

0

������

2

nX

|k|=1

(t, Pk)Pk(x)

������
dx

= (2⇡)−1

2⇡Z

0

������

2

nX

|k|=1

(2⇡)−1

2⇡Z

0

t(y)Pk(y)dyPk(x)

������
dx

= (2⇡)−1

2⇡Z

0

������
(2⇡)−1

2⇡Z

0

t(y)

2

nX

|k|=1

Pk(y)Pk(x)dy

������
dx


2⇡Z

0

������
max

y2[0,2⇡]

0

@
2

nX

|k|=1

Pk(y)Pk(x)

1

A
(2⇡)−1

2⇡Z

0

|t(y)|dy

������
dx

= ktk
1

2⇡Z

0

������
max

y2[0,2⇡]

2

nX

|k|=1

Pk(y)Pk(x)

������
dx = J

3

.

By using property (iii), we complete the estimation of J
3

:

J
3

 ktk
1

max

y2[0,2⇡]

2⇡Z

0

������

2

nX

|k|=1

Pk(y)Pk(x)

������
dx = L

2

nktk
1

⌧ ktk
1

.

Further, we show that the operators Yn, n 2 Z
+

, satisfy condition (A) with arbitrary ⇢ > 0. By using
the estimates of the best approximation of functions from the Sobolev classes by trigonometric polynomials with
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the corresponding spectrum (see [5, p. 47] ) and property (iv), we obtain

k(I − Yn)F⇢kp!p = sup

k'kp1

k(I − Yn)F⇢'kp = sup

f2W ⇢
p

kf − Ynfkp

= sup

f2W ⇢
p

kf −
2

nX

|k|=1

(f, Pk)Pkkp ⌧ sup

f2W ⇢
p

E
2

n
(f)p ⌧ 2

−⇢n.

We take m 2 N and choose l = l(m) 2 N such that m ⇣ 2

lld−1. By Theorem 1 0, for any f 2 H⌦

p ,

p 2 {1, 1}, the estimate

kf − Tlfkp ⌧ !(2−l
)ld−1

is true. It follows from (26) that Tlf is an operator of taking partial sums of the Fourier series in the system
{P

k

}|k|≥1

, where

P
k

(x) = Pk1(x1) . . . Pkd(xd).

According to the definition of orthoprojective width, we have

d?m(H⌦

p , Lp) ⌧ sup

f2H⌦
p

kf − Tlfkp ⌧ !(2−l
)ld−1, p 2 {1,1},

where m ⇣ 2

lld−1.

The lower bound in (25) follows from inequality (24) and the results obtained in [21].
The theorem is proved.

Remark 1. For ⌦(t) =

Yd

j=1

t
rj
j , rj > 0, j = 1, d, the statements similar to Theorems 1 and 2 were

established in [9].

Remark 2. Theorem 2 complements the results obtained in [21, 22].
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