Henrik Schumacher (University of Georgia)

Geodesically complete Riemannian metrics on the space of embedded curves.

joint work with Elias Döhrer (Chemnitz University of Technology) and Philipp Reiter (Chemnitz University of Technology)

We consider a certain family of Riemannian metrics that has proven to be very useful in the numerical optimization of the so-called tangent-point energy. The latter is a geometric functional for curves whose finiteness implies that the curve must be embedded. Motivated by numerical evidence, we prove that these Riemannian metrics have the following properties:

- 1. bounded subsets are weakly relatively compact with respect to the "right" topology
- 2. geodesically completeness: One can travel in every direction with constant speed and never hit the boundary i.e., one cannot reach a non-embedded curve in finite time.
- 3. completeness: The distance induced by the metric turns the space into a complete metric space.
- 4. existence of length minimizers: Every two points in the same connected component can be joined by a length minimizing geodesic.

For finite-dimensional Riemannian manifolds the Hopf–Rinow Theorem shows that statements 1.) - 3.) are equivalent to each other, and that each of 1.), 2.), 3.) implies 4.). However, our setting is infinite-dimensional, so we have to show each of them "by hand" from some energy principles.

Last, but not least, we will see a couple of numerical simulations of lengthminimizing geodesics in the spaces of knots and links.