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Abstract. In this paper we compare non-linear sampling recovery methods for
multivariate function classes. In the first part of the paper we propose square
root Lasso with a particular choice of the regularization parameter 𝜆 > 0 as a
noise blind decoder which efficiently recovers multivariate functions from random
samples. In contrast to basis pursuit denoising the algorithm does not require
any additional information on the width of the function class in 𝐿∞. We then
relate the findings to commonly used linear recovery methods and compare the
performance in a model situation, namely periodic multivariate functions with
bounded mixed derivative in 𝐿𝑞 . The main observation is the fact, that square root
Lasso asymptotically outperforms Smolyak’s algorithm (sparse grids) in various
situations. For 𝑞 = 2 we even see that square root Lasso outperforms any linear
method including recently investigated optimal least squares methods.
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1 Introduction

In this paper we extend, discuss and compare recovery methods and sampling designs
for the recovery problem in classes of multivariate functions. A particular focus is put on
recent developments for non-linear recovery methods, i.e., a variant of square root Lasso
(rLasso) using function samples at random points, see, e.g., Adcock, Bao, Brugiapaglia
[1] or H. Petersen, P. Jung [28] and the references therein. The decoder (rLasso) turns
out to be noise blind and does not require any further information on the function class
𝑭, like for instance its width in 𝐿∞, in contrast to the recently proposed variant of
basis pursuit denoising, see Jahn, T. Ullrich, Voigtlaender [14] or Krieg [16]. Hence,
the corresponding recovery operator 𝑅𝑚,𝜆 (·; X) is a universal algorithm allowing for
individual estimates on the respective 𝑑-variate periodic function 𝑓 ∈ 𝑭 of interest. To
be more precise, for 𝑚 ≥ 𝛼 ·𝑑 ·𝑛 · (log(𝑛 + 1))2 · log 𝑀 random samples X = {𝒙1, ..., 𝒙𝑚}
it holds for 2 ≤ 𝑞 ≤ ∞, as stated in Theorem 3, that

∥ 𝑓 − 𝑅𝑚,𝜆 ( 𝑓 ; X)∥𝐿𝑞
≤ 𝐶𝑛1/2−1/𝑞

(
𝜎𝑛 ( 𝑓 ;T 𝑑)𝐿∞ + 𝐸 [−𝑀,𝑀 ]𝑑∩Z𝑑 ( 𝑓 ;T 𝑑)𝐿∞

)
. (1)

A function is recovered from the vector 𝒚 = 𝑓 (X) ∈ C𝑚 of point evaluations at random
nodes where the set of nodes is fixed in advance and is used for all functions belonging to
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𝐶 (T𝑑). One only has to solve the (rLasso) optimization program (12) for the coefficient
vector of the approximand 𝑅𝑚,𝜆 ( 𝑓 ; X).

We put that into perspective to other contemporary sampling recovery methods such
as sparse grids (Smolyak) and linear methods based on least squares with respect to
hyperbolic crosses on subsampled random points (Lsqr). Our results are collected in
Figure 1 below which illustrates the regions in the (1/𝑝, 1/𝑞) parameter domain for our
model scenario on the 𝑑-torus, namely spaces with bounded mixed derivative W𝑟

𝑝 in
𝐿𝑞 , where the different methods are known to be optimal, close to optimal or at least
superior over others. As optimality measure we use the classical notion of sampling
numbers introduced in (2) below. The picture is only partially complete which in turn
means that there are a lot of open problems, where the reader is invited to contribute.

We consider mixed Wiener spaces A𝑟
mix on the 𝑑-torus and function classes with

bounded mixed derivative W𝑟
𝑝 as surveyed in Dũng, Temlyakov, T. Ullrich [8, Chapt.

2]. These spaces have a relevant history in the former Soviet Union and serve as a
powerful model for multivariate approximation. Concretely, we study the situation W𝑟

𝑝

in 𝐿𝑞 where 1 < 𝑝 ≤ 2 ≤ 𝑞 and the case of small smoothness where 2 < 𝑝 < ∞ and
1/𝑝 < 𝑟 ≤ 1/2. We consider the worst-case setting where the error is measured in 𝐿𝑞 . It
turned out in [14] that for several classical smoothness spaces non-linear recovery in 𝐿2
outperforms any linear method (not only sampling). The results in this paper show that
this effect partially extends to 𝐿𝑞 with 2 ≤ 𝑞 < ∞. In fact, functions in mixed Wiener
classes A𝑟

mix provide an intrinsic sparsity with respect to the trigonometric system, such
that the additional gain in the rate does not seem to be a surprise. For 𝑟 > 1/2 Corollary
2 states that

𝜚⌈𝐶𝑟,𝑑𝑛(log(𝑛+1) )3 ⌉ (A𝑟
mix)𝐿𝑞

≲ 𝑛−(𝑟+1/𝑞) (log(𝑛 + 1)) (𝑑−1)𝑟+1/2 .

We determine a polynomial rate of convergence 𝑟 + 1/𝑞 which is at least sharp in the
main rate (apart from logarithms) and outperforms any linear algorithm. The situation
is not so clear when studying W𝑟

𝑝 classes in 𝐿𝑞 . Surprisingly, in the case 1 < 𝑝 < 2 < 𝑞

and 1/𝑝 + 1/𝑞 > 1 square root Lasso outperforms any sampling algorithm based upon
sparse grids if 𝑑 is large. The acceleration only happens in the logarithmic term. From
Corollary 3 and Remark 3 we obtain

𝜚⌈𝐶𝑟,𝑝,𝑑𝑛(log(𝑛+1) )3 ⌉ (W𝑟
𝑝)𝐿𝑞

≲ 𝑛
−(𝑟− 1

𝑝
+ 1

𝑞
) (log(𝑛 + 1)) (𝑑−1) (𝑟−2( 1

𝑝
− 1

2 ) )+
1
2 ,

which shows that in the regime where 𝑞 = 2 and 𝑑 is large (rLasso) has a faster
asymptotic decay than any linear method and in particular (Lsqr). This effect has been
observed already for basis pursuit denoising in [14]. Note that the described effects do
not appear when it comes to the uniform norm. This is a consequence of a general result
described in Novak, Woźniakowski [27, Chapter 4.2.2].

Other non-linear recovery methods have been considered in Dai, Temlyakov [10].
The authors complemented and partly improved the results from [14] by using greedy
methods. In Krieg [16, Theorem 1] it has been shown that for certain weighted Wiener
spaces the sampling recovery problem in 𝐿2 using basis pursuit denoising is polynomi-
ally tractable. A similar phenomenon has been observed recently in Moeller, Stasyuk,
T. Ullrich [23, Corollary 5.3] for certain Besov spaces with mixed smoothness. Indeed,
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if we combine (1) with Theorem 5.2 in [23] we obtain a corresponding tractability result
also for (rLasso).

1
𝑝

1
𝑞

1
2

1
2

𝜚𝑛 (W𝑟
𝑝 , 𝐿𝑞)

Lsqr , rLasso

(Remark 6)

Smolyak

(Remark 7)

Smolyak

(Remark 8)

1

1

rLasso
(Rem. 3, 4)

Fig. 1. Magenta area: Only comparison, optimal-
ity not clear. Orange area: Optimality w.r.t. Gelfand
widths. Green area: Optimality w.r.t. linear widths.

The bound in (1) has the strik-
ing advantage that one may directly
insert known bounds from the liter-
ature, see [3,34] and [8, Section 7]
for an overview. Other approaches,
like in [16], require the embedding of
the function class into the multivariate
Wiener algebra A which is not always
the case, not even for classical smooth-
ness spaces like Sobolev spaces W1/2

𝑝

for 𝑝 > 2. This non-trivial fact is a
corollary of the very recent Theorem
1.8 in Saucedo, Tikhonov [29].

Smolyak’s sparse grids [30] in
connection with functions providing
bounded mixed derivative or differ-
ence have a significant history not only
for approximation theory, see [31], [8]
and the references therein, but also
in scientific computing, see Bungartz,
Griebel [6]. The underlying spaces do
not only serve as a powerful model
for multivariate approximation theory
motivated from practical problems. Sparse grid algorithms allow for good (and some-
times optimal) approximation rates. It is strongly related to hyperbolic cross approxi-
mation. In Figure 1 we indicate the parameter regions where (Smolyak) is known to be
optimal with respect to Gelfand/approximation numbers.

Finally, we would like to mention the recent developments in the direction of least
squares methods (Lsqr). Beginning from the breakthrough result by Krieg, M. Ullrich
[19], where it was shown that sampling recovery for reproducing kernel Hilbert spaces in
𝐿2 is asymptotically equally powerful as linear approximation, the authors improved both
algorithm [24,2] and error guarantee [20] until the remaining

√︁
log 𝑛 gap has finally been

sealed by Dolbeault, Krieg, M. Ullrich [11] for RKHS which are sufficiently compact in
𝐿2. In Nagel, Schäfer, T. Ullrich [24] subsampled random points appeared for the first
time. The final solution [11] is again heavily based on the solution of the Kadison-Singer
problem [21], however it is highly non-constructive. As for the classical problem 𝑾𝑟

2 in
𝐿2 (the midpoint in Figure 1) the algorithm uses the basis functions from the hyperbolic
cross (left picture in Figure 2) with 𝑚 frequencies and inserts 𝑂 (𝑚) nodes which result
from a random draw (𝑂 (𝑚 log𝑚)) together with a subsampling to 𝑂 (𝑚) points (fourth
picture in Figure 2). The resulting overdetermined matrix is then used to recover the
coefficients from the sample vector. Apart from the Hilbert space setting, the situation
𝑾𝑟

𝑝 in 𝐿𝑞 has been investigated in [17,18].
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Hyperolic cross

𝐷𝑖𝑚 = 256

Sparse grid

𝑚 = 256

Full grid

𝑚 = 4225

Random+subsampling

𝑚 = 384

Random points

𝑚 = 384

Fig. 2. Hyperbolic cross in the frequency domain, different sampling designs in 𝑑 = 2

Notation For a number 𝑎, by 𝑎+ we denote max{𝑎, 0}, and by log(𝑎) its natural log-
arithm. C𝑛 shall denote the complex 𝑛-space, where we distinguish ∥𝒗∥ℓ1 :=

∑𝑛
𝑘=1 |𝑣𝑘 |

and ∥𝒗∥ℓ2 := (∑𝑛
𝑘=1 |𝑣𝑘 |2)1/2. Further letC𝑚×𝑛 denote the set of complex𝑚×𝑛-matrices.

Vectors and matrices are usually typesetted boldface. For a vector 𝒗 ∈ C𝑁 and a set
𝑆 ⊂ {1, ..., 𝑁} =: [𝑁] we mean by 𝒗𝑆 ∈ C𝑁 the restriction of 𝒗 to 𝑆, where all other
entries are set to zero and 𝑆𝑐 = [𝑁] \ 𝑆. We denote by 𝑓 ∈ T ([−𝑀, 𝑀]𝑑) that 𝑓 is
a trigonometric polynomial with support on the frequencies in the set [−𝑀, 𝑀]𝑑 . The
notation 𝐿𝑞 (T𝑑), 1 ≤ 𝑞 < ∞, indicates the classical Lebesgue space of periodic func-
tions on the 𝑑-torus T𝑑 = [0, 1]𝑑 with the usual modification for 𝑞 = ∞. The notation
𝐶 (T𝑑) stands for the space of continuous functions on T𝑑 with the sup-norm. All other
function spaces of 𝑑-dimensional functions will be typesetted boldface. Let 𝑋 and 𝑌

denote two normed spaces. The norm of an element 𝑥 in 𝑋 will be denoted by ∥𝑥∥𝑋.
The space of linear operators between 𝑋 and 𝑌 will be denoted by L(𝑋,𝑌 ). We write
𝑋 ↩→ 𝑌 indicates that the identity operator from 𝑋 to𝑌 is continuous. For two sequences
𝑎𝑛 and 𝑏𝑛 we will write 𝑎𝑛 ≲ 𝑏𝑛 if there exists a constant 𝑐 > 0 such that 𝑎𝑛 ≤ 𝑐 𝑏𝑛
for all 𝑛 ∈ N. We will write 𝑎𝑛 ≍ 𝑏𝑛 if 𝑎𝑛 ≲ 𝑏𝑛 and 𝑏𝑛 ≲ 𝑎𝑛. The implied constants
may depend on parameters of the source and target spaces and the dimension 𝑑 of the
domain, but not on 𝑛.

2 Best 𝒏-term and Linear Approximation

Let Ω denote a compact topological space and 𝐶 (Ω) the set of complex-valued contin-
uous functions on Ω. The (non-linear) sampling numbers for a quasi-normed space 𝑭
of functions 𝑓 : Ω → C which is continuously embedded into 𝑌 ∩𝐶 (Ω) such that point
evaluations are reasonably defined are given as follows:

𝜚𝑚 (𝑭)𝑌 := inf
X={x1 ,...,x𝑚 )

inf
𝑅 : C𝑚→𝑌

sup
∥ 𝑓 ∥𝑭 ≤1

∥ 𝑓 − 𝑅 ( 𝑓 (X)) ∥𝑌 . (2)

If one restricts oneself to linear recovery operators 𝑅 : C𝑚 → 𝑌 , then the corresponding
quantity is denoted by 𝜚lin

𝑚 (𝑭)𝑌 . This quantity is lower bounded by the Gelfand width
𝑐𝑚 (𝑭)𝑌 defined as

𝑐𝑚 (𝑭)𝑌 := inf
𝑅 : C𝑚→𝑌

𝐿∈L(𝑭 ,C𝑚 )

sup
∥ 𝑓 ∥𝑭 ≤1

∥ 𝑓 − 𝑅 ◦ 𝐿 ( 𝑓 )∥𝑌 .
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Note that this is not the original definition for the Gelfand numbers/widths. It is more
common to use (see [8, 9.6, (9.6.1)])

𝑐𝑚 (𝑭)𝑌 := inf
𝐿∈L(𝑭 ,C𝑚 )

sup
𝑓 ∈ker 𝐿
∥ 𝑓 ∥𝑭 ≤1

∥ 𝑓 ∥𝑌 .

The introduced quantities only differ by a small universal constant. Namely we have

𝑐𝑚 (𝑭)𝑌 ≤ 𝑐𝑚 (𝑭)𝑌 ≤ 2𝑐𝑚 (𝑭)𝑌 .

If we require 𝑅 : C𝑚 → 𝑌 to be a linear map we may even consider the linear widths

𝜆𝑚 (𝑭)𝑌 := inf
𝑇∈L(𝑭 ,𝑌 )
rank(𝑇 ) ≤𝑚

sup
∥ 𝑓 ∥𝑭 ≤1



 𝑓 − 𝑇 𝑓



𝑌
.

The following general relations are obvious

𝜚𝑚 ≥ 𝑐𝑚 and 𝜚lin
𝑚 ≥ 𝜆𝑚 ≥ 𝑐𝑚 .

Let 𝐼 denote a countable index set and B = {𝑏𝑘 ∈ 𝐶 (Ω) : 𝑘 ∈ 𝐼} a dictionary
consisting of continuous functions (often the additional requirement is needed that
the functions in B are uniformly bounded). For 𝑛 ∈ N, we define the set of linear
combinations of 𝑛 elements of B as

Σ𝑛 :=

{∑︁
𝑗∈𝐽

𝑐 𝑗𝑏 𝑗 (·) : 𝐽 ⊂ 𝐼, |𝐽 | ≤ 𝑛, (𝑐 𝑗 ) 𝑗∈𝐽 ∈ C𝐽

}
.

Furthermore, given 𝐽 ⊂ 𝐼 we denote the linear span of (𝑏 𝑗 (x)) 𝑗∈𝐽 by

𝑉𝐽 := spanC{𝑏 𝑗 (·) : 𝑗 ∈ 𝐽}.

Note that the set Σ𝑛 is “non-linear” (not a vector space), whereas the space 𝑉𝐽 is linear.
For a Borel measure 𝜇 on Ω orthogonality of the 𝑏𝑖 (·) with respect to 𝜇 is often of
advantage for our framework. We denote by

𝜎𝑛 (𝑭;B)𝑌 := sup
∥ 𝑓 ∥𝑭 ≤1

𝜎𝑛 ( 𝑓 ;B)𝑌 := sup
∥ 𝑓 ∥𝑭 ≤1

inf
𝑔∈Σ𝑛

∥ 𝑓 − 𝑔∥𝑌

the best 𝑛-term approximation widths and by

𝐸𝐽 (𝑭;B)𝑌 := sup
∥ 𝑓 ∥𝑭 ≤1

𝐸𝐽 ( 𝑓 ;B)𝑌 := sup
∥ 𝑓 ∥𝑭 ≤1

inf
𝑔∈𝑉𝐽

∥ 𝑓 − 𝑔∥𝑌

the error of best approximation (from 𝑉𝐽 ) in 𝑌 .

3 Square Root Lasso and Recovery Guarantees

Let us define a decoder known as square root Lasso (rLasso) in the literature, see H.
Petersen, P. Jung [28] and the references therein. The advantage of (rLasso) over basis
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pursuit denoising as used in [14] is the “noise blindness” which results in the advantage
that we do not have to incorporate additional information from the function class 𝑭
of interest. This feature is also present for recent greedy methods, as observed by Dai,
Temlyakov in [10], see especially the remark after their Corollary 2.1. We will tailor
square root Lasso to the function recovery problem. For the general scenario described
above, the decoder map 𝑅𝑚,𝜆 : 𝐶 (Ω) → 𝐶 (Ω) is chosen in the following way.

Definition 1. Let 𝜆 > 0, 𝐽 ⊂ 𝐼 a finite set, X = {𝑥1, . . . , 𝑥𝑚} ⊂ Ω. Put

𝑨 := 1/
√
𝑚(𝑏 𝑗 (𝑥ℓ))1≤ℓ≤𝑚, 𝑗∈𝐽 ∈ C𝑚×|𝐽 |

and for y = 𝑓 (X)/
√
𝑚 ∈ C𝑚,

𝑅𝑚,𝜆 ( 𝑓 ; X) :=
∑︁
𝑗∈𝐽

(c# (y)) 𝑗𝑏 𝑗 (·) ∈ 𝑉𝐽 ⊂ 𝐿∞, (3)

where c# (y) ∈ C |𝐽 | is any (fixed) solution of the square root Lasso minimization problem

inf
𝒛∈C|𝐽 |

(
∥𝒛∥ℓ1 ( |𝐽 | ) + 𝜆∥𝑨𝒛 − y∥ℓ2 (𝑚)

)
. (4)

This defines a (not necessarily linear) map 𝑅𝑚,𝜆 : 𝐶 (Ω) → 𝐶 (Ω). The parameter 𝜆 > 0
is chosen below and may depend on other parameters.

To show our results we rely on techniques from compressed sensing that require the
RIP and one of its consequences.

Definition 2. For a matrix 𝑨 ∈ C𝑚×𝑁 we say that is satisfies the Restricted Isometry
Property (RIP) of order 𝑛 with RIP constant 𝛿𝑛 if for any 𝑛-sparse vector 𝒗 ∈ C𝑁 that

(1 − 𝛿𝑛)∥𝒗∥2
ℓ2
≤ ∥A · 𝒗∥2

ℓ2
≤ (1 + 𝛿𝑛)∥𝒗∥2

ℓ2
. (5)

Lemma 1 ([12, Proposition 6.3]). Let 𝑨 ∈ C𝑚×𝑁 have RIP of order 2𝑛 with RIP
constant 𝛿2𝑛. Then it holds for any 𝑛-sparse vectors u, v ∈ C𝑁 with supp u∩ supp v = ∅
that ��〈𝑨u, 𝑨v

〉�� ≤ 𝛿2𝑛∥u∥ℓ2 ∥v∥ℓ2 . (6)

Theorem 1 (RIP implies ℓ2-robust NSP). For A ∈ C𝑚×𝑁 assume that 𝛿2𝑛 < 1
3 . Then

A satisfies the ℓ2-robust null space property (NSP) of order 𝑛, i.e.

∥c𝑆 ∥ℓ2 ≤
𝜌
√
𝑛
∥c𝑆C ∥ℓ1 + 𝜏∥Ac∥ℓ2 ∀c ∈ C𝑁 , ∀𝑆 ⊂ [𝑁],

��𝑆�� ≤ 𝑛, (7)

where the constants 𝜌 ∈ (0, 1), 𝜏 > 0 depend only on 𝛿2𝑛.

Proof. Let c ∈ ker A \ {0}. We partition [𝑁] into the index sets

𝑆0 := 𝐽𝑛 (c)
𝑆1 := 𝐽2𝑛 (c) \ 𝐽𝑛 (c)
𝑆2 := 𝐽3𝑛 (c) \ 𝐽2𝑛 (c)

...
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where 𝐽𝑛 (c) is the index set of the largest 𝑛 entries of c in absolute value. To prove
now that the (rNSP), i.e. (7) holds, it is sufficient to show it for the extreme choice of
𝑆 = 𝑆0 = 𝐽𝑛 (c). We do this by using Lemma 1

∥c𝑆0 ∥2
ℓ2
≤ 1

1 − 𝛿𝑛
∥Ac𝑆0 ∥2

ℓ2
=

1
1 − 𝛿𝑛

〈
Ac𝑆0 ,Ac −

∑︁
𝑘≥1

Ac𝑆𝑘

〉
≤ 1

1 − 𝛿𝑛

(
|⟨Ac𝑆0 ,Ac⟩| +

∑︁
𝑘≥1

|⟨Ac𝑆0 ,Ac𝑆𝑘
⟩|
)

≤ 1
1 − 𝛿𝑛

(
∥Ac𝑆0 ∥ℓ2 ∥Ac∥ℓ2 + 𝛿2𝑛

∑︁
𝑘≥1

∥c𝑆0 ∥ℓ2 ∥c𝑆𝑘
∥ℓ2

)
≤ 1

1 − 𝛿𝑛

(√︁
𝛿𝑛 + 1∥c𝑆0 ∥ℓ2 ∥Ac∥ℓ2 + 𝛿2𝑛∥c𝑆0 ∥ℓ2 ·

1
√
𝑛

∑︁
𝑘≥1

∥c𝑆𝑘−1 ∥ℓ1

)
.

After division by ∥c𝑆0 ∥ℓ2 and Hölder’s inequality, this yields

∥c𝑆0 ∥ℓ2 ≤
√

1 + 𝛿2𝑛
1 − 𝛿2𝑛

∥Ac∥ℓ2 +
𝛿2𝑛

1 − 𝛿2𝑛

1
√
𝑛
∥c𝑆C

0
∥ℓ1 +

𝛿2𝑛
1 − 𝛿2𝑛

∥c𝑆0 ∥ℓ2 .

We used that fact that 𝛿2𝑛 ≥ 𝛿𝑛 to simplify the constants.
Now after using a bootstrapping argument, i.e. moving the last term to the left side

and rearranging, we obtain

∥c𝑆0 ∥ℓ2 ≤
(
1 − 𝛿2𝑛

1 − 𝛿2𝑛

)−1 𝛿2𝑛
1 − 𝛿2𝑛

1
√
𝑛
∥c𝑆C

0
∥ℓ1 +

(
1 − 𝛿2𝑛

1 − 𝛿2𝑛

)−1
√

1 + 𝛿2𝑛
1 − 𝛿2𝑛

∥Ac∥ℓ2 .

We set 𝜌 and 𝜏 accordingly and get the assertion. In particular we get 𝜌 ∈ (0, 1) from
the condition 𝛿2𝑛 < 1

3 .

In what follows, we formulate the results only for the case of the multivariate
trigonometric system

B = T 𝑑 = {exp(2𝜋ik·) : k ∈ Z𝑑}

defined on the torus Ω = T𝑑 = [0, 1]𝑑 . The improved RIP result below (Theorem 2)
stays valid for other bounded orthonormal systems as shown in Brugiapaglia, Dirksen,
H.C. Jung, Rauhut [5]. Here we are specifically interested in the multivariate Fourier
system, which is why we rely on the result by Bourgain [4] and Haviv and Regev
[13], see also [14, Theorem 2.16] for a discussion on the multivariate aspect. Note that
one can consider a general system B in 𝐿2 w.r.t. a probability measure and work then
with a quasi-projection operator 𝑃 : 𝐿2 → 𝐿2 from [14, Definition 2.3]. For partial
non-periodic setting which also works here see [14, Section 5].

In our setting of the Fourier system the operator 𝑉𝑀 takes the place of the quasi-
projection 𝑃, where𝑉𝑀 is the modified de la Valleé Poussin operator (see, e.g. [14, Sect.
3.1])

𝑉𝑀 ( 𝑓 ) (x) =
∑︁

k∈Z𝑑

𝑓 (k) 𝑣k exp(2𝜋ik · x), (8)
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with weights 𝑣k =
∏𝑑

𝑗=1 𝑣𝑘 𝑗
, where

𝑣𝑘 𝑗
=


1, |𝑘 𝑗 | ≤ 𝑀,
(2𝑑+1)𝑀−|𝑘 𝑗 |

2𝑑𝑀 , 𝑀 < |𝑘 𝑗 | ≤ (2𝑑 + 1)𝑀,

0, |𝑘 𝑗 | > (2𝑑 + 1)𝑀 ,

(9)

𝑓 (k) =
∫
T𝑑 𝑓 (x) exp(−2𝜋ik · x) dx are the Fourier coefficients.

This modified de la Valleé Poussin operator has a uniformly bounded operator norm.
Indeed, from [14, Sect. 3.1] we obtain

∥𝑉𝑀 ∥𝐿∞→𝐿∞ ≤
(
1 + 1

𝑑

)𝑑
≤ 𝑒. (10)

One may use an enumeration of [−𝐷, 𝐷]𝑑 = {𝒌1, ..., 𝒌𝑁 } ⊂ Z𝑑 with 𝑁 = (2𝐷+1)𝑑
and define the enumerated multivariate Fourier system as 𝒆 𝑗 (·) := exp(2𝜋i𝒌 𝑗 ·), 𝑗 =

1, ..., 𝑁 .
We will use points that are uniformly i.i.d. subsampled from the full grid 𝐺 (𝐷, 𝑑) :=

ℓ
2𝐷 : ℓ ∈ {0, . . . , 2𝐷}𝑑 , see Figure 2. This is called in what follows a discrete uniform
distribution 𝜇𝐺 = 1/|𝐺 |∑x∈𝐺 𝛿x.

Let us prove the following statement which combines the robust recovery guarantee
in H. Petersen and P. Jung [28, Theorem 3.1] using square root Lasso with the fact that
RIP matrices of order 2𝑛 with sufficiently small RIP constant 𝛿2𝑛 < 1/3 provide the
robust ℓ2 null spaces property of order 𝑛, see Theorem 1.

Theorem 2. There exist universal constants 𝛼, 𝛽, 𝛾, 𝛿, 𝜅 > 0 such that the following
holds true. Let 𝐷 ∈ N, 𝑁 = (2𝐷 + 1)𝑑 and 𝑛, 𝑚 ∈ N satisfy

𝑚 ≥ 𝛼 · 𝑑 · 𝑛 · (log(𝑛 + 1))2 · log(𝐷 + 1). (11)

Put A = 1/
√
𝑚(𝒆 𝑗 (xℓ))1≤ℓ≤𝑚,1≤ 𝑗≤𝑁 for x1, . . . , x𝑚 𝑖𝑖𝑑∼ 𝜇𝐺 . Then with probability at

least 1−𝑁−𝛾 log (𝑛+1) with respect to the choice of x1, . . . , x𝑚 the following holds: Given
any 𝜂 > 0, c ∈ C𝑁 and y ∈ C𝑚, and a solution c# ∈ C𝑁 of the (rLasso) minimization
problem

inf
z∈C𝑁

∥z∥ℓ1 (𝑁 ) + 𝜅
√
𝑛∥Az − y∥ℓ2 (𝑚) (12)

then
∥c − c#∥ℓ1 (𝑁 ) ≤ 𝛽𝜎𝑛 (c)1 + 𝛿

√
𝑛 · ∥Ac − y∥ℓ2 (13)

and
∥c − c#∥ℓ2 (𝑁 ) ≤ 𝛽

𝜎𝑛 (c)1√
𝑛

+ 𝛿 · ∥Ac − y∥ℓ2 , (14)

where
𝜎𝑛 (c)ℓ1 := inf

z∈C𝑁 ,∥z∥ℓ0 (𝑁 ) ≤𝑛
∥c − z∥ℓ1 (𝑁 ) ,

with ∥z∥ℓ0 (𝑁 ) := |{1 ≤ 𝑗 ≤ 𝑁 : 𝑧 𝑗 ≠ 0}|.

Note that since 𝑁 ≥ 2, the number 1−𝑁−𝛾 log(𝑛+1) and therefore also the probability
of choosing a vector of “good” sampling points X = {x1, . . . , x𝑚} is close to 1.
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Proof. Choosing 𝛼 large enough in (11) ensures that 𝑨 has RIP of order 2𝑛 with RIP
constant 𝛿2𝑛 < 1/3, see [13, Theorem 3.7]. By Theorem 1 we have that 𝑨 then satisfies
the ℓ2-robust null space property (rNSP) of order 𝑛, which means that there are absolute
constants 0 < 𝜚 < 1 and 𝜏 > 0 such that for all c ∈ C𝑁 and all 𝑆 ⊂ [𝑁] with |𝑆 | ≤ 𝑛

∥c𝑆 ∥ℓ2 ≤ 𝜚𝑛−1/2∥c𝑆𝑐 ∥ℓ1 + 𝜏∥𝑨 · c∥ (2) ,

where ∥ · ∥ (2) = ∥ · ∥ℓ2 . This implies

∥c𝑆 ∥ℓ1 ≤ 𝜚∥c𝑆𝑐 ∥ℓ1 + 𝜏∥𝑨 · c∥ (1) ,

with ∥ · ∥ (1) = 𝑛1/2∥ · ∥ℓ2 . It gives the 𝑞-robust NSP o f order 𝑛 for 𝑞 = 1 and 𝑞 = 2 with
respect to norms ∥ · ∥ (𝑞) depending on 𝑞. According to Theorem 3.1 in [28] we now
find a universal 𝜅 > 0 such that 𝜆 = 𝜅 ·

√
𝑛 is a valid choice in (4) to get (13) and (14)

simultaneously.

Theorem 3. There exist universal constants𝐶, 𝛼, 𝜅, 𝛾 > 0 such that the following holds.
Let 𝑀, 𝑛 ∈ N and put 𝐷 := (2𝑑 + 1)𝑀 . Setting 𝜆 := 𝜅

√
𝑛 and drawing at least

𝑚 := ⌈𝛼 · 𝑑 · 𝑛 · (log(𝑛 + 1))2 · log(𝐷 + 1)⌉

sampling points X = {x1, . . . , x𝑚} 𝑖𝑖𝑑∼ 𝜇𝐺 , i.i.d. from the uniform measure on the grid it
holds with probability at least 1 − 𝑁−𝛾 log(𝑛+1) for 2 ≤ 𝑞 ≤ ∞ that for any 𝑓 ∈ 𝐶 (T𝑑)

∥ 𝑓 − 𝑅𝑚,𝜆 ( 𝑓 ; X)∥𝐿𝑞
≤ 𝐶𝑛1/2−1/𝑞 ·

(
𝜎𝑛 ( 𝑓 ;T 𝑑)𝐿∞ + 𝐸 [−𝑀,𝑀 ]𝑑∩Z𝑑 ( 𝑓 ;T 𝑑)𝐿∞

)
,

where 𝑅𝑚,𝜆 denotes (rLasso) decoder from Definition 1 such that the approximant
𝑅𝑚,𝜆 ( 𝑓 ; X) is contained in the space of trigonometric polynomialsT ([−(2𝑑+1)𝑁, (2𝑑+
1)𝑁]𝑑).

Proof. To prove Theorem 3 for 2 ≤ 𝑞 ≤ ∞ we first get the 𝐿∞-bound for the worst-case
error and combine it via interpolation with the 𝐿2-bound.

For the 𝐿∞ bound we will use the control over ∥c− c#∥ℓ1 (𝑁 ) in Theorem 2, whereas
the control on ∥c− c#∥ℓ2 (𝑁 ) serves for the 𝐿2 bound. Let 𝜀 > 0. Take an arbitrary 𝑓 ∈ 𝑭
and let 𝑓 ∗ = 𝑉𝑀 𝑠, for 𝑠 such that ∥ 𝑓 − 𝑠∥𝐿∞ ≤ 𝜎𝑛 ( 𝑓 ;T 𝑑)𝐿∞ + 𝜀. The coefficient vector
c of 𝑓 ∗ is 𝑛-sparse. We also set y = 𝑓 (X)/

√
𝑚 and 𝒆 = ( 𝑓 (X) − 𝑓 ∗ (X))/

√
𝑚. Hence

∥A · c − y∥ℓ2 = ∥e∥ℓ2 ≤ ∥ 𝑓 (X) − 𝑓 ∗ (X)∥ℓ∞ . Then, taking into account the boundedness
of the Fourier system, we have from Theorem 2

∥ 𝑓 ∗ − 𝑅𝑚,𝜆

(
𝑓 ; X)∥𝐿∞ ≤

𝑁∑︁
𝑗=0

��(c 𝑗 − c#
𝑗 (y))

��∥𝑒 𝑗 (·)∥𝐿∞ ≤ ∥c − c#∥ℓ1

≤ 𝛽𝜎𝑛 (c)1 + 𝛿 ·
√
𝑛∥A · c − y∥ℓ2

≤ 𝛿 ·
√
𝑛∥ 𝑓 (X) − 𝑓 ∗ (X)∥ℓ∞ .

(15)

Note that ∥ 𝑓 (X) − 𝑓 ∗ (X)∥ℓ∞ ≤ ∥ 𝑓 − 𝑓 ∗∥𝐿∞ therefore we get

∥ 𝑓 − 𝑓 ∗∥𝐿∞ ≤ ∥ 𝑓 −𝑉𝑀 𝑓 ∥𝐿∞ + ∥𝑉𝑀 𝑓 − 𝑓 ∗∥𝐿∞ . (16)
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We need to bound both of these terms from above. This can be achieved by standard
computations, that we decided to include for the convenience of the reader. Let 𝑔 ∈
T
(
[−𝑀, 𝑀]𝑑

)
denote an arbitrary trigonometric polynomial. Clearly, 𝑉𝑀𝑔 = 𝑔 and

therefore,

∥ 𝑓 −𝑉𝑀 𝑓 ∥𝐿∞ = ∥ 𝑓 − 𝑔 + 𝑔 −𝑉𝑀 𝑓 ∥𝐿∞ = ∥ 𝑓 − 𝑔 −𝑉𝑀 ( 𝑓 − 𝑔)∥𝐿∞

≤ ∥ 𝑓 − 𝑔∥𝐿∞ + ∥𝑉𝑀 ( 𝑓 − 𝑔)∥𝐿∞ ≤ (1 + 𝑒)∥ 𝑓 − 𝑔∥𝐿∞ .
(17)

Taking the infimum over 𝑔 ∈ T
(
[−𝑀, 𝑀]𝑑

)
yields

∥ 𝑓 −𝑉𝑀 𝑓 ∥𝐿∞ ≤ (1 + 𝑒)𝐸 [−𝑀,𝑀 ]𝑑 ( 𝑓 ). (18)

Finally we can estimate the second term from (16), using 𝑓 ∗ = 𝑉𝑚𝑠 we get

∥𝑉𝑀 𝑓 − 𝑓 ∗∥𝐿∞ = ∥𝑉𝑀 𝑓 −𝑉𝑀 𝑠∥𝐿∞ ≤ 𝑒∥ 𝑓 − 𝑠∥𝐿∞ = 𝑒𝜎𝑛 ( 𝑓 ;T 𝑑)𝐿∞ + 𝑒𝜀 . (19)

We can combine (15), (16), (18) and (19) to obtain

∥ 𝑓 − 𝑅𝑚,𝜆

(
𝑓 ; X)∥𝐿∞ ≤ ∥ 𝑓 − 𝑓 ∗∥𝐿∞ + ∥ 𝑓 ∗ − 𝑅𝑚,𝜆

(
𝑓 ; X)∥𝐿∞

≤ (𝛿
√
𝑛 + 1)∥ 𝑓 − 𝑓 ∗∥𝐿∞

≤ (𝛿
√
𝑛 + 1)∥ 𝑓 −𝑉𝑀 𝑓 ∥𝐿∞ + ∥𝑉𝑀 𝑓 − 𝑓 ∗∥𝐿∞

≤ 𝐶
√
𝑛

(
𝜎𝑛 ( 𝑓 ;T 𝑑)𝐿∞ + 𝐸 [−𝑀,𝑀 ]𝑑∩Z𝑑 ( 𝑓 ;T 𝑑)𝐿∞

)
.

(20)

We obtain the desired bound for 𝑞 = ∞ in (20) letting 𝜀 go to zero . The 𝐿2-result
is proven completely analogous ly. We use Parseval in (15) to step from the 𝐿2-norm to
the ℓ2-norm of the coefficients. Using the corresponding estimate in Theorem 2 we end
up with

∥ 𝑓 − 𝑅𝑚,𝜆

(
𝑓 ; X)∥𝐿2 ≤ 𝐶

(
𝜎𝑛 ( 𝑓 ;T 𝑑)𝐿∞ + 𝐸 [−𝑀,𝑀 ]𝑑∩Z𝑑 ( 𝑓 ;T 𝑑)𝐿∞

)
.

By a standard interpolation argument we have that for all 𝑓 with ∥ 𝑓 ∥𝑭 ≤ 1 with
probability at least 1 − 𝑁−𝛾 log(𝑛+1) it holds that

∥ 𝑓 − 𝑅𝑚,𝜆

(
𝑓 ; X)∥𝐿𝑞

≤ ∥ 𝑓 − 𝑅𝑚,𝜆

(
𝑓 ; X)∥1−𝜃

𝐿2
∥ 𝑓 − 𝑅𝑚,𝜆

(
𝑓 ; X)∥ 𝜃𝐿∞

= ∥ 𝑓 − 𝑅𝑚,𝜆

(
𝑓 ; X)∥2/𝑞

𝐿2
∥ 𝑓 − 𝑅𝑚,𝜆

(
𝑓 ; X)∥1−2/𝑞

𝐿∞
,

where the interpolation parameter 𝜃 has to be chosen in such a way that 1/𝑞 = (1 −
𝜃)/2 + 𝜃/∞ which yields 𝜃 = 1 − 2/𝑞. This concludes the proof.

Corollary 1. Under the assumptions of Theorem 3 with 𝑀 > 𝑑 and for 2 ≤ 𝑞 ≤ ∞, it
holds that

sup
∥ 𝑓 ∥𝑭 ≤1

∥ 𝑓 − 𝑅𝑚,𝜆 ( 𝑓 ; X)∥𝐿𝑞
≤ 𝐶 · 𝑛1/2−1/𝑞 ·

(
𝜎𝑛 (𝑭;T 𝑑)𝐿∞ + 𝐸 [−𝑀,𝑀 ]𝑑 (𝑭;T 𝑑)𝐿∞

)
,

where 𝜆 = 𝜅
√
𝑛.
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4 Examples

We will now discuss examples where Corollary 1 improve s existing results in certain
directions. We start in Subsection 4.1 with the mixed Wiener spaces A𝑟

mix, a general-
ization of the classical Wiener algebra A. These spaces have been studied a lot due to
their good embedding properties and their connection to Barron classes. Recent work on
these spaces and their approximation properties was done by Jahn, T. Ullrich and Voigt-
laender [14]; Kolomoitsev, Lomako, Tikhonov [15]; Krieg [16]; Moeller [22]; Moeller,
Stasyuk and T. Ullrich [23]; V. K. Nguyen, V. N. Nguyen and Sickel [25] and others.

Definition 3. For 𝑟 ≥ 0 we define the mixed Wiener space A𝑟
mix of functions 𝑓 ∈ 𝐿1 (T𝑑)

with the finite norm

∥ 𝑓 ∥A𝑟
mix

:=
∑︁

k∈Z𝑑

𝑑∏
𝑖=1

(1 + |𝑘𝑖 |)𝑟 | 𝑓 (k) |,

where 𝑓 (k) are the respective Fourier coefficients. For the univariate case we use the
notation A𝑟 since the n the smoothness is not mixed anymore. In the case 𝑟 = 0 we get
the Wiener algebra that will be denoted in what follows by A.

In Subsection 4.2 we investigate how and in which cases the (rLasso) can beat
linear algorithms for spaces of functions with bounded mixed derivative defined in the
following way. Define for 𝑥 ∈ T and 𝑟 > 0 the univariate Bernoulli kernel

𝐹𝑟 (𝑥) := 1 + 2
∞∑︁
𝑘=1

𝑘−𝑟 cos(2𝜋𝑘𝑥) =
∑︁
𝑘∈Z

max{1, |𝑘 |}−𝑟 exp(2𝜋i𝑘𝑥)

and define the multivariate Bernoulli kernels as 𝐹𝑟 (𝒙) :=
∏𝑑

𝑗=1 𝐹𝑟 (𝑥 𝑗 ), 𝒙 ∈ T𝑑 .

Definition 4. Let 𝑟 > 0 and 1 < 𝑝 < ∞. Then W𝑟
𝑝 is defined as the normed space of all

elements 𝑓 ∈ 𝐿𝑝 (T𝑑) which can be written as

𝑓 = 𝐹𝑟 ∗ 𝜑 :=
∫
T𝑑

𝐹𝑟 (· − 𝒚)𝜑(𝒚) 𝑑𝒚

for some 𝜑 ∈ 𝐿𝑝 (T𝑑), equipped with the norm ∥ 𝑓 ∥W𝑟
𝑝

:= ∥𝜑∥𝐿𝑝 (T𝑑 ) .

In order to prove the statements, we will use embeddings of A𝑟
mix and W𝑟

𝑝 into the
Besov spaces B𝑟

𝑝, 𝜃
of functions with bounded mixed differences.

Definition 5. Let 𝑟 ≥ 0, 1 ≤ 𝜃 ≤ ∞, 1 < 𝑝 < ∞. Then the periodic Besov space B𝑟
𝑝, 𝜃

with mixed smoothness is defined as the normed space of all elements 𝑓 ∈ 𝐿𝑝 (T𝑑)
endowed with the norm (with the usual modifications if 𝜃 = ∞)

∥ 𝑓 ∥B𝑟
𝑝,𝜃

:=
( ∑︁
𝒔∈N𝑑

0

2 |𝒔 |ℓ1𝑟 𝜃



 ∑︁

k∈𝜌(𝒔)
𝑓 (k) exp(2𝜋ik · x)




𝜃
𝑝

)1/𝜃
, 1 ≤ 𝜃 < ∞,

where

𝜌(𝒔) :=
{
k ∈ Z𝑑 : ⌊2𝑠 𝑗−1⌋ ≤ |𝑘 𝑗 | < 2𝑠 𝑗 , 𝑗 = 1, . . . , 𝑑

}
, 𝒔 ∈ N𝑑

0 . (21)
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4.1 𝑳𝒒-Recovery of Functions belonging to Mixed Wiener Spaces

Corollary 2. Let 𝑟 > 1/2 and 2 ≤ 𝑞 ≤ ∞. Then there is a constant 𝐶𝑟 ,𝑑 > 0 such that

𝜚⌈𝐶𝑟,𝑑𝑛(log(𝑛+1) )3 ⌉ (A𝑟
mix)𝐿𝑞

≲ 𝑛−(𝑟+1/𝑞) (log(𝑛 + 1)) (𝑑−1)𝑟+1/2. (22)

Proof. Using [14, Lemma 4.3] and choosing 𝑀 := ⌊𝑛(𝑟+1/2)/𝑟 ⌋ we obtain (22) as a
direct consequence of Corollary 1.

Remark 1. The upper bound in Corollary 2 is sharp in the main order, which even
coincides with the one for the Gelfand width. One can show this by using the good em-
bedding properties of Wiener spaces and exact order estimates for the Gelfand numbers
of the Besov spaces embeddings by Vybiral [35, Theorem 4.12]. Indeed,

𝜚𝑚 (A𝑟
mix (T

𝑑))𝐿𝑞
≥ 𝜚𝑚 (A𝑟 (T))𝐿𝑞

≥ 𝜚𝑚 (𝐵𝑟+1/2
2,1 )𝐿𝑞

≥ 𝜚𝑚 (𝐵𝑟+1/2
2,1 )𝐵0

𝑞,∞

≥ 𝑐𝑚 (𝐵𝑟+1/2
2,1 )𝐵0

𝑞,∞
≍ 𝑚−(𝑟+1/𝑞) .

(23)

In the first line of (23) we retreat to the one-dimensional setting.

Remark 2 (Nonlinearity helps for A𝑟
mix).

If we compare this upper bound for non-linear approximation to lower bounds
for linear approximation we can show how much better non-linear approximation is
compared to linear approximation. Indeed [25, Theorem 4.7] states (in our notation,
putting 𝑟 = 1, 𝑠 = 𝑟) that for 𝑟 > 0 it holds that

𝜚lin
𝑚 (A𝑟

mix (T
𝑑))𝐿𝑞

≳𝑚−𝑟 (log𝑚) (𝑑−1)𝑟 .

We have that the maximal possible difference in the rates is attained for 𝑞 = 2 and
the same main rate for 𝑞 = ∞ when comparing linear and non-linear approximation of
mixed Wiener spaces in 𝐿𝑞 spaces, since the difference between rates is always 1/𝑞.

The sharp upper bounds for a linear recovery from samples in a more general setting,
in particular for the worst-case errors of recovery of functions from the weighted Wiener
spaces by the Smolyak algorithm, were obtained in [15], see, e.g., Theorem 5.1 and
Remark 6.4. In [17, Corollary 23] the upper bounds were proved for an algorithm that
uses subsampled random points. They are sharp in the case 𝑞 = 2, see also [17, Remark
24] for the comparison with the Smolyak algorithm.

4.2 Results for Functions with Bounded Mixed Derivative in 𝑳𝒑

In order to have access to function values we use the restriction 𝑟 > 1/𝑝 which implies
that every equivalence class 𝑓 ∈ W𝑟

𝑝 contains a continuous periodic function, see [8,
Lemmas 3.4.1(iii) and 3.4.3]. Moreover, the embedding W𝑟

𝑝 ↩→ 𝐶 (T𝑑) is then compact.
The results below are partly mentioned in [14, Section 4.2]. Here we extend these results
and give some further details. The overview of our findings concerning the optimality
of different non-linear algorithms is presented in Figure 1. For a detailed comparison of
linear recovery algorithms we refer to [18, Figure 1].
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Corollary 3 (Lower right region). Let 1 < 𝑝 ≤ 2 ≤ 𝑞 ≤ ∞ and 𝑟 > 1/𝑝. Then there is
a constant 𝐶𝑟 , 𝑝,𝑑 > 0 such that

𝜚⌈𝐶𝑟,𝑝,𝑑𝑛(log(𝑛+1) )3 ⌉ (W𝑟
𝑝)𝐿𝑞

≲ 𝑛
−(𝑟− 1

𝑝
+ 1

𝑞
) (log(𝑛 + 1)) (𝑑−1) (𝑟−2( 1

𝑝
− 1

2 ) )+
1
2 . (24)

Proof. From Corollary 1 and the argumentation from the proof of Corollary 4.14 in
[14] (the class W𝑟

𝑝 is the same as 𝑆𝑟𝑝𝑊 (T𝑑) in their notation), choosing 𝑁 := 2𝑚 with
𝑛2𝑟 (𝑟−1/𝑝)−1 ≤ 𝑁 ≤ 2𝑛2𝑟 (𝑟−1/𝑝)−1 we get

𝜚⌈𝐶𝑟,𝑝,𝑑 𝑛 log(𝑛+1)3 ⌉ (W𝑟
𝑝)𝐿𝑞

≤ 𝐶𝑛1/2−1/𝑞 · 𝜎𝑛 (W𝑟
𝑝;T 𝑑)𝐿∞ .

Combining this with the upper bound for the best 𝑛-term trigonometric approximation
from [32, Thm. 2.9], we get (24).

Remark 3 (Main rate sharp in Corollary 3). One can show the sharpness of the main rate
of convergence in Corollary 3 using the fooling argument from [26, Theorem 23] (for
𝑑 = 1). Actually, the main rate 𝑚−(𝑟−(1/𝑝−1/𝑞) ) is optimal for both linear and non-linear
sampling recovery.

Note that in the region 1 < 𝑝 < 2 < 𝑞 < ∞, the recovery from arbitrary linear
information of functions from the class W𝑟

𝑝 in 𝐿𝑞 always outperforms (also non-linear)
sampling recovery in the main rate. i.e., 𝜆𝑚 (W𝑟

𝑝)𝐿𝑞
= 𝑜(𝜚𝑚 (W𝑟

𝑝)𝐿𝑞
) , see [7, Theo-

rem 7.4].
Interestingly in the case 1/𝑝 + 1/𝑞 > 1 the Gelfand widths 𝑐𝑚 (W𝑟

𝑝)𝐿𝑞
decay faster

in the main rate than the respective linear widths 𝜆𝑚 (W𝑟
𝑝)𝐿𝑞

. For 1/𝑝+1/𝑞 ≤ 1 it holds
that 𝑐𝑚 (W𝑟

𝑝)𝐿𝑞
≍ 𝜆𝑚 (W𝑟

𝑝)𝐿𝑞
.

Let us compare the bound for (rLasso) from Corollary 3 with those for other
recovery methods. Here we assume that 1 < 𝑝 < 2 < 𝑞 < ∞, the case 𝑞 = 2 will be
discussed separately.

Remark 4. (i) [Comparison to (Smolyak)] In the paper [7, Cor. 7.1] an upper bound
for the linear sampling numbers of W𝑟

𝑝 (the same as 𝑆𝑟
𝑝,2𝐹 (T

𝑑) with 𝜇 = 𝑑 in their
notation) in 𝐿𝑞 has been given for the worst-case recovery using the Smolyak algorithm,
which for 𝑟 > 1/𝑝, 1 < 𝑝 < 𝑞 < ∞ yields that

𝜚lin
𝑚 (W𝑟

𝑝)𝐿𝑞
≲ 𝑚

−(𝑟− 1
𝑝
+ 1

𝑞
) (log𝑚) (𝑑−1) (𝑟− 1

𝑝
+ 1

𝑞
)
. (25)

By the embedding B𝑟
𝑝,𝑝 ↩→ W𝑟

𝑝 in case 1 < 𝑝 < 2 < 𝑞 < ∞ together with [9, Thm.
5.1,(ii)] we know that we cannot do better in 𝐿𝑞 than in (25) if we restrict ourselves to
sparse grid points. Hence, our non-linear approach outperforms sparse grids if 𝑑 is large
and

2(1/𝑝 − 1/2) > 1/𝑝 − 1/𝑞 ⇐⇒ 1/𝑝 + 1/𝑞 > 1 .

(ii) [Comparison to (Lsqr)] In [18, Cor. 21] we obtain (25) for 1 < 𝑝 < 2 < 𝑞 < ∞
also with a different linear method, namely a weighted least squares estimator based
on subsampled random points involving the solution of the Kadison-Singer problem
[21]. We do not know if the bound given there is sharp and whether it may outperform
(rLasso).
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Remark 5 (𝐿2-estimates outperform any linear method). In [14, Corollary 4.16] it was
proven that for 1 < 𝑝 < 2 and 𝑟 > 1/𝑝 it holds that

𝜚⌈𝐶𝑟,𝑝,𝑑𝑛(log(𝑛+1) )3 ⌉ (W𝑟
𝑝)𝐿2 ≲ 𝑛

−𝑟+ 1
𝑝
− 1

2 (log(𝑛 + 1)) (𝑑−1) (𝑟− 2
𝑝
+1)+ 1

2 .

As mentioned in [14, Remark 4.17], for sufficiently large 𝑑 the non-linear sampling
numbers decay faster in this situation than the respective linear widths, which coincide
in the order of decay with the linear sampling numbers.

Let us proceed with the case 𝑝 > 2.

Corollary 4 (Left region including small smoothness). Let 2 ≤ 𝑝 < ∞, 1 ≤ 𝑞 < ∞.
Then there is a constant 𝐶𝑟 , 𝑝,𝑑 > 0 such that with 𝑚 = ⌈𝐶𝑟 , 𝑝,𝑑𝑛(log(𝑛 + 1))3⌉

𝜚𝑚 (W𝑟
𝑝)𝐿𝑞

≲


𝑛
−(𝑟−( 1

2 −
1
𝑞
)+ ) (log(𝑛 + 1)) (𝑑−1) (1−𝑟 )+𝑟 , 1/𝑝 < 𝑟 < 1/2,

𝑛
−(𝑟−( 1

2 −
1
𝑞
)+ ) (log(𝑛 + 1)) (𝑑−1) (1−𝑟 )+𝑟 (log log 𝑛)𝑟+1, 𝑟 = 1/2,

𝑛
−(𝑟−( 1

2 −
1
𝑞
)+ ) (log 𝑛) (𝑑−1)𝑟+ 1

2 , 𝑟 > 1/2.
(26)

Proof. Since ∥·∥𝐿𝑞
≤ ∥·∥𝐿2 for 𝑞 ≤ 2, it suffices to consider the case 2 ≤ 𝑞 < ∞. Further,

in order to use Corollary 1, we need upper estimates for the quantities 𝜎𝑛 (W𝑟
𝑝;T 𝑑)𝐿∞

and 𝐸 [−𝑀,𝑀 ]𝑑∩Z𝑑 (W𝑟
𝑝;T 𝑑)𝐿∞ . The rate of convergence of the respective best 𝑛-term

approximation width for 2 ≤ 𝑝 < ∞ is

𝜎𝑛 (W𝑟
𝑝;T 𝑑)𝐿∞ ≲


𝑛−𝑟 (log 𝑛) (𝑑−1) (1−𝑟 )+𝑟 , 1/𝑝 < 𝑟 < 1/2,
𝑛−𝑟 (log 𝑛) (𝑑−1) (1−𝑟 )+𝑟 (log log 𝑛)𝑟+1, 𝑟 = 1/2,
𝑛−𝑟 (log 𝑛) (𝑑−1)𝑟+1/2, 𝑟 > 1/2.

(27)

The case of small smoothness (1/𝑝 < 𝑟 ≤ 1/2) is known from [34, Theorems 6.1, 6.2],
the big smoothness case (𝑟 > 1/2) is taken from [32, Theorem 1.3], see also [8, Theorem
7.5.2].

In what follows we show that for an appropriately chosen 𝑀 = 𝑀 (𝑛, 𝑟, 𝑝), the
quantity 𝐸 [−𝑀,𝑀 ]𝑑∩Z𝑑 (W𝑟

𝑝;T 𝑑)𝐿∞ has a faster rate of convergence than the respective
best 𝑛-term approximation, see Lemma 2 below.

Hence, Corollary 1 yields the estimate

𝜚⌈𝐶𝑟,𝑝,𝑑𝑛(log(𝑛+1) )3 ⌉ (W𝑟
𝑝)𝐿𝑞

≤ 2𝑛1/2−1/𝑞 · 𝜎𝑛 (W𝑟
𝑝;T 𝑑)𝐿∞ .

To conclude the proof, we use (27).

Lemma 2. Let 𝑀 ∈ N, 2 ≤ 𝑝 < ∞ and 𝑟 > 1/𝑝. Then it holds that

𝐸 [−𝑀,𝑀 ]𝑑∩Z𝑑 (W𝑟
𝑝;T 𝑑)𝐿∞ ≲ 𝑀

−(𝑟− 1
𝑝
)
.

In addition, for 𝑀 such that 𝑛2𝑟 (𝑟−1/𝑝)−1 ≤ 𝑀 ≤ 2𝑛2𝑟 (𝑟−1/𝑝)−1 it holds that

𝐸 [−𝑀,𝑀 ]𝑑∩Z𝑑 (W𝑟
𝑝;T 𝑑)𝐿∞ ≲ 𝑛−𝑟 ≲ 𝜎𝑛 (W𝑟

𝑝;T 𝑑)𝐿∞ . (28)
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Proof. By the embedding W𝑟
𝑝 ↩→ B𝑟

𝑝,𝑝 , 𝑝 ≥ 2, and the Nikol’skii inequality, we get

𝐸 [−𝑀,𝑀 ]𝑑∩Z𝑑 (W𝑟
𝑝;T 𝑑)𝐿∞ ≤ sup

∥ 𝑓 ∥B𝑟𝑝,𝑝 ≤1
inf

k∈Z𝑑\[−𝑀,𝑀 ]𝑑
∥ 𝑓 (k) exp(2𝜋ik · x)∥𝐿∞

≤ sup
∥ 𝑓 ∥B𝑟𝑝,𝑝 ≤1

∑︁
𝒔∈N𝑑

0 ,∃𝑠 𝑗 : 2𝑠 𝑗 >𝑀

2
|𝒔 |1
𝑝




 ∑︁
k∈𝜌(𝒔)

𝑓 (k) exp(2𝜋ik · x)




𝑝
, (29)

where the blocks 𝜌(𝒔) are defined in (21).
In what follows we use Hölder’s inequality and obtain

sup
∥ 𝑓 ∥B𝑟𝑝,𝑝 ≤1

∑︁
𝒔∈N𝑑

0 ,∃𝑠 𝑗 : 2𝑠 𝑗 >𝑀

2−|𝒔 |1 (𝑟− 1
𝑝
)



 ∑︁

k∈𝜌(𝒔)
𝑓 (k) exp(2𝜋ik · x)





𝑝
2𝑟 |𝒔 |1

≤ 𝑀
−(𝑟− 1

𝑝
) ©­­«

∑︁
𝒔∈N𝑑

0

2−|𝒔 |1 (𝑟− 1
𝑝
) (1− 1

𝑝
)ª®®¬

1− 1
𝑝

sup
∥ 𝑓 ∥B𝑟𝑝,𝑝 ≤1

∥ 𝑓 ∥B𝑟
𝑝,𝑝

≲ 𝑀
−(𝑟− 1

𝑝
)
.

Choosing the parameter 𝑀 such that 𝑛2𝑟 (𝑟−1/𝑝)−1 ≤ 𝑀 ≤ 2𝑛2𝑟 (𝑟−1/𝑝)−1 implies (28).

Remark 6 (Left upper square (1 < 𝑞 ≤ 2 ≤ 𝑝 < ∞)). (i) ((rLasso) is almost sharp) The
order of Gelfand widths in this region is 𝑐𝑚 (W𝑟

𝑝)𝐿𝑞
≍ 𝜆𝑚 (W𝑟

𝑝)𝐿𝑞
≍ 𝑚−𝑟 (log𝑚) (𝑑−1)𝑟

(see, e.g. [8, Section 9.6]). With (rLasso)we obtain the same main rate of convergence
but additional (𝑑-independent) logarithms, i.e. this non-linear method is almost optimal
w.r.t. Gelfand numbers.

(ii) (Comparison to (Lsqr) ) The sharp (w.r.t. Gelfand numbers) bound for (Lsqr)
in the case 1 < 𝑞 < 2 < 𝑝 < ∞ was obtained in [18, Cor. 21]. Note that the approach in
[18] required a square summability of linear width, and cover s only the case 𝑟 > 1/2,
whereas in [17] and [33] this condition can be avoided by paying a 𝑑-independent
logarithm.

(iii) (Comparison to (Smolyak)) In the considered region the right order for
(Smolyak) is 𝑚−𝑟 (log𝑚) (𝑑−1) (𝑟+1/2) (see [8, Thm. 5.3.1] and references therein).
In fact, by the embedding B𝑟

𝑝,2 ↩→ W𝑟
𝑝 together with [9, Thm. 5.1,(ii)] we know that

we cannot do better in 𝐿𝑞 if we restrict ourselves to sparse grid points. This estimate is
worse in logarithms than those for (rLasso) for large 𝑑.

Remark 7 (Left lower square (2 ≤ 𝑝, 𝑞 < ∞)). We will distinguish two cases: 2 ≤ 𝑝 <

𝑞 < ∞ (lower triangular) and 2 < 𝑞 < 𝑝 < ∞ (upper triangular).
(i) In the region 2 ≤ 𝑝 < 𝑞 < ∞ (Smolyak) achieves the exact order w.r.t. Gelfand

numbers (see [7, Cor. 7.1]) It is better in the main rate than the bound for (rLasso)
(which is in turn better than (Lsqr) from [18, Cor. 21]). Note that for 𝑝 = 2 < 𝑞 ≤ ∞
(Lsqr) gives the same (sharp) order of decay as (Smolyak).

(ii) For 2 < 𝑞 < 𝑝 < ∞ we do not know anything about the optimality of (linear and
non-linear) sampling algorithms. The known upper bounds for (rLasso) decay slower
in the main rate than the respective Gelfand numbers. In turn the existing upper bounds
for (Smolyak) and (Lsqr) are worse than those for the linear widths. Note that in this
region Gelfand numbers decay faster than linear widths in the main rate.
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Remark 8 (Right upper region (1 < 𝑝, 𝑞 < 2)). (i) In the whole region the upper
bound for (rLasso), derived from Corollary 3 putting 𝑞 = 2, does not achieve the
right order of Gelfand (neither linear) numbers. We note that this fact alone, without
having a matching lower bound for (rLasso), does not lead to the nonoptimality of the
discussed method. It is rather an open question.

(ii) To discuss other algorithms let us consider separately two triangular areas: 1 <

𝑝 < 𝑞 < 2 (lower triangular) and 1 < 𝑞 ≤ 𝑝 < 2 (upper triangular). For 1 < 𝑝 < 𝑞 < 2
the bound for (Smolyak) [7, Cor. 7.1] coincides with the order for linear widths and is
better than the known upper bound for (Lsqr) [18] (note that the respective Gelfand
numbers decay faster in this region). In the case 1 < 𝑞 ≤ 𝑝 < 2 we cannot say anything
about the optimality of (Smolyak) or (Lsqr) w.r.t. neither Gelfand nor linear widths.
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